please help !!!!!!!!!!!!!!!!!! give the answer to the question i. which lighthouse will be warmer during the day time and why ? ii. which lighthouse will be warmer during the night time and why ? please help

Please Help !!!!!!!!!!!!!!!!!! Give The Answer To The Question I. Which Lighthouse Will Be Warmer During

Answers

Answer 1

Answer:

I. light house 1 will be warmer during the day ii. light house 2 will be warmer at night.

Explanation:

Because the land conducts heat better than water the light house farthest away from the water will get hotter during as the ground will heat up faster than the water. But this also means that the ground will lose heat faster at night where the water won't making the light house closest to the water hotter at night.


Related Questions

g Calculate the maximum wavelength of light that will cause the photoelectric effect for potassium. Potassium has work function 2.29 eV = 3.67 x 10–19 J.

Answers

Answer:

λ = 5.4196 10⁻⁷m,  λ = 541.96 nm    this is green ligh

Explanation:

The photoelectric effect was explained by Eintein assuming that the light was made up of particles called photons and these collided with the electrons taking them out of the material.

 

                     K = h f -Ф

where K is the kinetic energy of the ejected electrons, hf is the energy of the light quanta and fi is the work function of the material.

The speed of light is related to wavelength and frequency

                   c = λ / f

                  f = c /λ

we substitute

                K = h c / λ - Φ

for the case that they ask us the kinetic energy of the electons is zero (K = 0)

                 h c / λ = Ф

                λ = h c / Ф

we calculate

                 λ = 6.63 10⁻³⁴  3 10⁸ / 3.67 10⁻¹⁸

                 λ = 5.4196 10⁻⁷m

let's take nm

                lam = 541.96 nm

this is green light

In a physics lab, Asha is given a 11.5 kg uniform rectangular plate with edge lengths 62.9 cm by 46.9 cm . Her lab instructor requires her to rotate the plate about an axis perpendicular to its plane and passing through one of its corners, and then prepare a report on the project. For her report, Asha needs the plate's moment of inertia ???? with respect to given rotation axis. Calculate ???? .

Answers

Answer:

6.9kgm²

Explanation:

For an axis through the center of the rectangle, I = m[(w²+L²)/12

Using the parallel axis theorem, the added value of I = mR² = m[(w²/4 + L²/4]

Adding the 2 expressions,

I = (m/3)*(w²+L²)

I =6.95 kg∙m²

The distance from the Sun to Earth is approximately 149,600,000 km. The distance from the Sun to Venus is approximately 108,200,000 km. The elongation angle αα is the angle formed between the line of sight from Earth to the Sun and the line of sight from Earth to Venus. Suppose that the elongation angle for Venus is 10∘.10 ∘. Use this information to find the possible distances between Earth and Venus.

Answers

Answer:

335206922km

Explanation:

Pls see attached file

Some stove tops are smooth ceramic for easy cleaning. If the ceramic is 0.630 cm thick and heat conduction occurs through an area of 1.45 ✕ 10−2 m2 at a rate of 500 J/s, what is the temperature difference across it (in °C)? Ceramic has the same thermal conductivity as glass and concrete brick.

Answers

Answer:

The temperature difference [tex]\Delta T = 258.6 \ ^ o\ C[/tex]

Explanation:

From the question we are told that

   The  thickness is [tex]\Delta x = 0.630 cm = 0.0063 m[/tex]

    The  area is  [tex]A = 1.45 *10^{-2 } \ m^2[/tex]

     The rate is  [tex]P = 500 J/s[/tex]

       The  thermal conductivity is  [tex]\sigma = 0.84J[\cdot s \cdot m \cdot ^oC ][/tex]

Generally the rate heat conduction mathematically represented as

       [tex]P = \sigma * A * \frac{\Delta T}{\Delta x }[/tex]

=>    [tex]\Delta T = \frac{P * \Delta x }{\sigma * A }[/tex]

=>     [tex]\Delta T = \frac{ 500 * 0.00630 }{ 0.84 * 1.45 *10^{-2} }[/tex]

=>    [tex]\Delta T = 258.6 \ ^ o\ C[/tex]

Determine the value of the current in the solenoid so that the magnetic field at the center of the loop is zero tesla. Justify your answer.

Answers

Answer:

I will explain the concept of magnetic field and how it can be calculated.

Explanation:

The formula for magnetic field at the center of a loop is given as

B = μ[tex]_{o}[/tex]I / 2R

where B is the magnetic field

R is the radius of the loop

I is the current

and μ[tex]_{o}[/tex] is the magnetic permeability of free space which is a constant 4π × [tex]10^{-7}[/tex] newtons/ampere²

If the magnetic field at the center of the loop is 0, then μ[tex]_{o}[/tex]I = 0

I = 0 which means there will be no current flow in the loop.

Copper Pot A copper pot with a mass of 2 kg is sitting at room temperature (20°C). If 200 g of boiling water (100°C) are put in the pot, after a few minutes the water and the pot come to the same temperature. What temperature is this in °C?

Answers

Answer:

The final temperature is 61.65 °C

Explanation:

mass of copper pot [tex]m_{c}[/tex] = 2 kg

temperature of copper pot [tex]T_{c}[/tex] = 20 °C  (the pot will be in thermal equilibrium with the room)

specific heat capacity of copper [tex]C_{c}[/tex]= 385 J/kg-°C

The heat content of the copper pot = [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{c}[/tex] = 2 x 385 x 20 = 15400 J

mass of boiling water [tex]m_{w}[/tex] = 200 g = 0.2 kg

temperature of boiling water [tex]T_{w}[/tex] = 100 °C

specific heat capacity of water [tex]C_{w}[/tex] = 4182 J/kg-°C

The heat content of the water = [tex]m_{w}[/tex][tex]C_{w}[/tex][tex]T_{w}[/tex] = 0.2 x 4182 x 100 = 83640 J

The total heat content of the water and copper mix [tex]H_{T}[/tex] = 15400 + 83640 = 99040 J

This same heat is evenly distributed between the water and copper mass to achieve thermal equilibrium, therefore we use the equation

[tex]H_{T}[/tex] =   [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{f}[/tex] + [tex]m_{w}[/tex][tex]C_{w}[/tex]

where [tex]T_{f}[/tex] is the final temperature of the water and the copper

substituting values, we have

99040 = (2 x 385 x [tex]T_{f}[/tex]) + (0.2 x 4182 x

99040 = 770[tex]T_{f}[/tex] + 836.4

99040 = 1606.4[tex]T_{f}[/tex]

[tex]T_{f}[/tex] = 99040/1606.4 = 61.65 °C

Calculate the wavelength of light that has its third minimum at an angle of 30.0º when falling on double slits separated by 3.00 µm.

Answers

Answer:

λ = 428.6 nm

Explanation:

Hello,

In this case, we must remember that the Young's double slit experiment is described by the expression :

d sin θ = m λ

For constructive interference , and:

d sin θ = (m + ½) λ          

For destructive interference , whereas d accounts for the distance between the slits, λ for the wavelength and m for an integer that describes the order of interference . Thus, for the given angle 30º, the distance between the slits is 3.00 μm or 3.00 10⁻⁶ m and the order of interference is 3; we therefore use the destructive interference equation  to compute the wavelength as shown below:

λ = 3x10⁻⁶ sin (30) / (3 +1/2)

λ = 4.286 10⁻⁷ m

Or in manometers:

λ = 428.6 nm

Best regards.

If the rods with diameters and lengths listed below are made of the same material, which will undergo the largest percentage length change given the same applied force along its length?a. d, 3L b. 3d, L c. 2d, 2L d. 4d, L

Answers

Answer:

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

Explanation:

For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity

               F / A = Y ΔL/L

where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.

In this case the bars are made of the same material by which Young's modulus is the same for all

              ΔL / L = (F / A) / Y

the area of ​​the bar is the area of ​​a circle

               A = π r² = π d² / 4

               A = π / 4 d²

we substitute

              ΔL / L = (F / Y) 4 /πd²

changing length

               ΔL = (F / Y 4 /π) L / d²

The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change

a) values ​​given d and 3L

               ΔL = cte 3L / d²

               ΔL = cte L /d²  3

To find the percentage, we must divide the change in magnitude by its value and multiply by 100.

                ΔL/L % = [(F /Y  4/π 1/d²) 3L ] / 3L 100

                ΔL/L  % = cte 100%

 

b) 3d and L value, we repeat the same process as in part a

               ΔL = cte L / 9d²

               ΔL = cte L / d² 1/9

               ΔL / L% = cte 100/9

               ΔL / L% = cte 11%

   

c) 2d and 2L value

               ΔL = (cte L / d ½ )/ 2L

               ΔL/L% = cte 100/4

               ΔL/L% = cte 25%

d) value 4d and L

               ΔL = cte L / d² 1/16

                ΔL/L % = cte 100/16

                ΔL/L % = cte 6.25%

   

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

A metal cube with sides of length a=1cm is moving at velocity v0→=1m/sj^ across a uniform magnetic field B0→=5Tk^. The cube is oriented so that four of its edges are parallel to its direction of motion (i.e., the normal vectors of two faces are parallel to the direction of motion).Find E, the magnitude of the induced electric field inside the cube. Express your answer numerically, in newtons per coulomb.

Answers

Answer:

the magnitude of the electric field is 1.25 N/C

Explanation:

The induced emf in the cube ε = LB.v where B = magnitude of electric field = 5 T , L = length of side of cube = 1 cm = 0.01 m and v = velocity of cube = 1 m/s

ε = LB.v = 0.01 m × 5 T × 1 m/s = 0.05 V

Also, induced emf in the cube ε = ∫E.ds around the loop of the cube where E = electric field in metal cube

ε = ∫E.ds

ε = Eds since E is always parallel to the side of the cube

= E∫ds  ∫ds = 4L since we have 4 sides

= E(4L)

= 4EL

So,4EL = 0.05 V

E = 0.05 V/4L

= 0.05 V/(4 × 0.01 m)

= 0.05 V/0.04 m

= 1.25 V/m

= 1.25 N/C

So, the magnitude of the electric field is 1.25 N/C

The magnitude of the electric field is 1.25 N/C

Calculation of the  magnitude of the electric field:

But before that the following calculations need to be done.

ε = LB.v = 0.01 m × 5 T × 1 m/s

= 0.05 V

Now

ε = ∫E.ds

here ε = Eds because E is always parallel to the side of the cube

So,

= E∫ds  ∫ds

= 4L so we have 4 sides

Now

= E(4L)

= 4EL

So,4EL = 0.05 V

Now

E = 0.05 V/4L

= 0.05 V/(4 × 0.01 m)

= 0.05 V/0.04 m

= 1.25 V/m

= 1.25 N/C

hence, The magnitude of the electric field is 1.25 N/C

learn more about electric field here: https://brainly.com/question/1834208

Discuss the phase change condition due to reflection of light from a surface. Summarize equations of interference for thin film.

Answers

Answer:

if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º

Explanation:

When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.

When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.

Also, when light penetrates the medium, it modifies its wavelength

              λ = λ₀ / n

We take these two aspects into account, the condition for contributory interference is

            d sin θ = (m + 1/2) λ

for destructive interference we have

            d sin θ = m λ

in general this phenomenon is observed at 90º

           2 d = (m +1/2) λ° / n

          2nd = (m + ½) λ₀

The only force acting on a 3.4 kg canister that is moving in an xy plane has a magnitude of 3.0 N. The canister initially has a velocity of 2.5 m/s in the positive x direction, and some time later has a velocity of 4.8 m/s in the positive y direction. How much work is done on the canister by the 3.0 N force during this time

Answers

Answer:

   16.79J  

Explanation:

Given data

mass of canister= 3.4 kg

force acting on canister= 3 N

initial velocity u= 2.5 m/s

final velocity v= 4.8 m/s

The work done on the canister is the change in kinetic energy on the canister

change in [tex]KE= Kfinal- Kinitial[/tex]

K.E initial

[tex]Kintial= \frac{1}{2} mv^2\\\\Kintial= \frac{1}{2}*2*2.5^2\\\\KInitial= \frac{1}{2} *2*6.25\\\\Kinitial= 6.25J[/tex]

K.E final

[tex]Kfinal= \frac{1}{2} mv^2\\\\ Kfinal= \frac{1}{2}*2*4.8^2\\\\ Kfinal= \frac{1}{2} *2*23.04\\\\ Kfinal= 23.04J[/tex]

The net work done is [tex]KE= Kfinal- Kinitial[/tex]

[tex]W net= 23.04-6.25= 16.79J[/tex]

Which of these cannot be a resistor in a series or parallel circuit?
A)switch
B) battery
C) light bulb
D) all of these are resistors

Answers

Answer:

it is going to D. all of these are resistors

A step-down transformer is used for recharging the batteries of portable devices. The turns ratio N2/N1 for a particular transformer used in a CD player is 2:29. When used with 120-V (rms) household service, the transformer draws an rms current of 180 mA.
Find the rms output voltage of the transformer

Answers

Answer:

8.28 V

Explanation:

Using,

N2/N1 = V2/V1.................. Equation 1

Where N2/N1 = Turn ratio of the transformer, V1 = primary/input voltage, V2 = output/secondary voltage

make V2 the subject of the equation

V2 = (N2/N1)V1............ Equation 2

Given: N2/N1 = 2:29 = 2/29, V1 = 120 V

Substitute these values into equation 2

V2 = (2/29)120

V2 = 8.28 V

Hence the rms output voltage of the transformer = 8.28 V

A spark is generated in an automobile spark plug when there is an electric potential of 3000 V across the electrode gap. If 60 W of power is generated in a single spark that delivers a total charge of 3 nC, how long does it take for the spark to travel across the gap?
A. 50 ns
B. 75 ns
C. 125 ns
D. 150 ns
E. 225 ns 5

Answers

Answer:

The correct option is  d

Explanation:

From the question we are told that

     The  electric potential is  [tex]V = 3000 \ V[/tex]

      The  power is  [tex]P = 60 \ W[/tex]

      The  charge delivered is  [tex]q = 3nC = 3.0 *10^{-9} \ C[/tex]

Generally the power generated is mathematically represented as

         [tex]P = I V[/tex]

=>      [tex]I = \frac{P}{V }[/tex]

=>       [tex]I = \frac{60 }{3000 }[/tex]

=>     [tex]I = 0.02 \ A[/tex]

This  current flow is mathematically represented as

           [tex]I = \frac{q -q_o}{\Delta t }[/tex]

Where [tex]q_o[/tex] is the charge delivered at t=0 s which is 0s

     So

             [tex]0.02 = \frac{ (3.0 *10^{-9}) -0 }{t - 0 }[/tex]

               [tex]t = 1.50 *10^{-7 } \ s[/tex]

               [tex]t = 150 *10^{-9 } \ s[/tex]

zeugen and yardang differences​

Answers

Answer:

Yardangs are formed on vertical strata while zeugen on horizontal strata. ... Yardangs are formed on vertical hard/soft layers of rock, while zeugen (this is its plural form) are formed on horizontal bands of hard/soft rocks giving it a more mushroom-like shape. The Great Sphinx of Giza has been sculpted in a yardang

How does a negative ion differ from an uncharged atom of the same
element?
O A. The ion has a greater number of protons.
B. The ion has fewer protons.
O C. The ion has a greater number of electrons.
O D. The ion has fewer neutrons.​

Answers

Answer:

C if it is a negitive ion it has more electrons because protons determine what element it is

A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged uniformly with a total charge Q, what is the electric field at P? (Assume Q is positive. For the magnitude, use the following as necessary: ε0, Q, R, and θ.)

Answers

Answer:

Qsinθ/4πε₀R²θ

Explanation:

Let us have a small charge element dq which produces an electric field E. There is also a symmetric field at P due to a symmetric charge dq at P. Their vertical electric field components cancel out leaving the horizontal component dE' = dEcosθ = dqcosθ/4πε₀R² where r is the radius of the arc.

Now, let λ be the charge per unit length on the arc. then, the small charge element dq = λds where ds is the small arc length. Also ds = Rθ.

So dq = λRdθ.

Substituting dq into dE', we have

dE' = dqcosθ/4πε₀R²

= λRdθcosθ/4πε₀R²

= λdθcosθ/4πε₀R

E' = ∫dE' = ∫λRdθcosθ/4πε₀R² = (λ/4πε₀R)∫cosθdθ from -θ to θ

E' = (λ/4πε₀R)[sinθ] from -θ to θ

E' = (λ/4πε₀R)[sinθ]

= (λ/4πε₀R)[sinθ - sin(-θ)]

= (λ/4πε₀R)[sinθ + sinθ]

= 2(λ/4πε₀R)sinθ

= (λ/2πε₀R)sinθ

Now, the total charge Q = ∫dq = ∫λRdθ from -θ to +θ

Q = λR∫dθ = λR[θ - (-θ)] = λR[θ + θ] = 2λRθ

Q = 2λRθ

λ = Q/2Rθ

Substituting λ into E', we have

E' = (Q/2Rθ/2πε₀R)sinθ

E' = (Q/θ4πε₀R²)sinθ

E' = Qsinθ/4πε₀R²θ where θ is in radians

 

2. The nuclear model of the atom held that
a. electrons were randomly spread through "a sphere of uniform positive
electrification."
b. matter was made of tiny electrically charged particles that were smaller than the
atom
C. matter was made of tiny, indivisible particles.
d. the atom had a dense, positively charged nucleus.​

Answers

Answer:

the atom had a dense, positively charged nucleus.​

Explanation:

Ernest Rutherford, based on the experiment carried out by two of his graduate students, established the authenticity of the nuclear model of the atom.

According to the nuclear model, an atom is made up of a dense positive core called the nucleus. Electrons are found to move round this nucleus in orbits. This is akin to the movement of the planets round the sun in the solar system.

An LR circuit consists of a 35-mH inductor, a resistance of 12 ohms, an 18-V battery, and a switch. What is the current 5.0 ms after the switch is closed

Answers

Answer:

Current, I = 1.23 A

Explanation:

Given that,

Inductance, L = 35 mH

Resistance, R = 12 ohms

Potential difference, V = 18 V

We need to find current 5 ms after the switch is closed. Current in LR circuit is given by :

[tex]I=I_o(1-e^{-t/\tau })[/tex] ....(1)

Here,

[tex]I_o[/tex] is final current

[tex]I_o=\dfrac{V}{R}\\\\I_o=\dfrac{18}{12}=1.5\ A[/tex]

[tex]\tau[/tex] is time constant

[tex]\tau=\dfrac{L}{R}\\\\\tau=\dfrac{35\times 10^{-3}}{12}\\\\\tau=0.00291\ s[/tex]

So, equation (1) becomes :

[tex]I=1.5\times (1-e^{-5\times 10^{-3}/0.00291})\\\\I=1.23\ A[/tex]

So, after 5 ms the current in the circuit is 1.23 A.

Specular reflection occurs where the light ray in the glass strikes the reflector. If no light is to enter the water, we require that there be reflection only. Which phenomenon prevents the light from entering the water?

Answers

Answer:

The critical angle phenomenon.

Explanation:

Critical angle in optics is the smallest angle of incidence of a wave, that will give total reflection of the wave. This phenomenon occurs at the boundary of two medium, where light will normally move from one medium to another.

To prevent light from entering the water, the angle of incidence of the light incident on the water must exceed the critical angle.

Alpha particles (charge = +2e, mass = 6.68 × 10-27 kg) are accelerated in a cyclotron to a final orbit radius of 0.30 m. The magnetic field in the cyclotron is 0.80 T. The period of the circular motion of the alpha particles is closest to: A. 0.25 μs B. 0.16 μs C. 0.49 μs D. 0.40 μs E. 0.33 μs

Answers

Answer:

Option B: T ≈ 0.16 μs

Explanation:

We are given;

Mass; m = 6.68 × 10^(-27) kg

Magnetic field;B = 0.80 T

Charge;q = 2e

Now, e is the charge on an electron and it has a value of 1.6 × 10^(-19) C

So, q = 2 × 1.6 × 10^(-19)

q = 3.2 × 10^(-19) C

The period of the circular motion of the alpha particles moving along a in the presence of the magnetic field is given by;

T = 2πm/qB

Where ;

m, q and B are as stated earlier.

Plugging in the relevant values, we have;

T = (2π × 6.68 × 10^(-27))/(3.2 × 10^(-19) × 0.8)

T = 0.16395 × 10^(-6) s

This can also be written as;

T ≈ 0.16 μs

The target variable is the speed of light v in the glass, which you can determine from the index of refraction n of the glass. Which equations will you use to find n and v?

Answers

Answer:

n= speed of light in vacuum/ speed of light in the other medium.

Explanation:

If light is moving from medium 1 into medium 2 where medium 1 is vacuum (approximated to mean air) and we are required to find the velocity of light; then we can confidently write;

n= speed of light in vacuum/ speed of light in the other medium.

Hence;

n= c/v

Where;

n= refractive index of the material

c= speed of light in vacuum

v = speed of light in another medium.

Note that the refractive index is the amount by which a transparent medium decreases the speed of light.

A long straight solenoid has 800 turns. When the current in the solenoid is 2.90 amperes the average flux through each turn is 3.25×10−3Wb.
A. What is the inductance of the coil?
B. What must be the magnitude fo the rate of change of the current (di/dt) in order for the self-induced emf to equal 7.50 mV?

Answers

Answer:

Explanation:

Relation between flux and inductance is as follows

φ = Li

where φ is flux associated with induction of inductance L when a current i flows through it

putting the values

3.25 x 10⁻³ x 800 = L x 2.9

L = .9 H

for induced emf in an induction , the relation is

emf induced = L di / dt

Putting the values

7.5 x 10⁻³ = .9 x di / dt

di / dt = 8.33 x 10⁻³ A / s

(a) The self inductance of the solenoid is 0.897 H.

(b) The magnitude of the rate of change of the current is 0.00836 A/s.

The given parameters;

number of turns, N = 800 turnscurrent in the solenoid, I = 2.9 flux through the solenoid, Ф = 3.25 x 10⁻³ Wb

The self inductance of the solenoid is calculated as follows;

[tex]emf = \frac{d\phi}{dt}\\\\emf = \frac{Ldi}{dt} \\\\d\phi = Ldi\\\\\phi = BA\\\\NBA = LI\\\\L = \frac{NBA}{I} \\\\L = \frac{N\phi}{I} \\\\L = \frac{800 \times 3.25\times 10^{-3}}{2.9} \\\\L = 0.897 \ H\\\\[/tex]

The magnitude of the rate of change of the current is calculated as follows;

[tex]emf = L \frac{di}{dt} \\\\\frac{di}{dt} \ = \frac{emf}{L} \\\\\frac{di}{dt} = \frac{7.5 \times 10^{-3}}{0.897} \\\\\frac{di}{dt} = 0.00836 \ A/s[/tex]

Learn more here:https://brainly.com/question/17086348

In 8,450 seconds, the number of radioactive nuclei decreases to 1/16 of the number present initially. What is the half-life (in s) of the material

Answers

Answer:

2113 seconds

Explanation:

The general decay equation is given as [tex]N = N_0e^{-\lambda t} \\\\[/tex], then;

[tex]\dfrac{N}{N_0} = e^{-\lambda t} \\[/tex] where;

[tex]N/N_0[/tex] is the fraction of the radioactive substance present = 1/16

[tex]\lambda[/tex] is the decay constant

t is the time taken for decay to occur = 8,450s

Before we can find the half life of the material, we need to get the decay constant first.

Substituting the given values into the formula above, we will have;

[tex]\frac{1}{16} = e^{-\lambda(8450)} \\\\Taking\ ln\ of \both \ sides\\\\ln(\frac{1}{16} ) = ln(e^{-\lambda(8450)}) \\\\\\ln (\frac{1}{16} ) = -8450 \lambda\\\\\lambda = \frac{-2.7726}{-8450}\\ \\\lambda = 0.000328[/tex]

Half life f the material is expressed as [tex]t_{1/2} = \frac{0.693}{\lambda}[/tex]

[tex]t_{1/2} = \frac{0.693}{0.000328}[/tex]

[tex]t_{1/2} = 2,112.8 secs[/tex]

Hence, the half life of the material is approximately 2113 seconds

Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?1. Increasing the wavelength of the laser.2. Increasing the distance to the screen.3. Increasing the frequency of the laser.4. Increasing the number of lines per length.

Answers

Answer:

Increase in frequency of the laser

Explanation:

Because An increase in frequency will result in more lines per centimeter and a smaller distance between each consecutive line. And a decrease in distance between each gratin

An 1,820 W toaster, a 1,420 W electric frying pan, and a 55 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (The three devices are in parallel when plugged into the same socket.)

Required:
a. What current is drawn by each device?
b. Will this combination blow the 15-A fuse?

Answers

Answer:

toaster- 15.1A

electric frying pan- 11.8 A

lamp- 0.5 A

b) The combination will blow the fuse.

Explanation:

When devices are connected in parallel, the potential difference across each of the devices is the same but the current through each is different. Hence;

V= 120 V

Power= IV

For the toaster;

I= 1820/120 = 15.1 A

For the electric frying pan;

I= 1420/120 = 11.8 A

For the lamp;

55/120 = 0.5 A

Total current = 15.1 +11.8 + 0.5 = 27.4 A

The combination will blow the fuse.

Explanation:    

step one:

Given data

power of toaster= 1,820 W  

power of electric frying pan= 1,420 W  

power of lamp= 55 W  

current of the outlet= 15 A

voltage of outlet = 120 V

step two

since all  three appliances are connected in parallel to the socket outlet, they will use the same voltage of 120 V and the currents will be different across each appliance,

Hence the current across the Toaster will be I₁

using P=I₁V we have

I₁= P/V

I₁= 1820/120 =  15.16 A

A. The current drawn by each device

the current across the  electric frying pan will be I₂

using P=I₂V we have

I₂= P/V

I₂= 1420/120 =  11.83 A

the current across the   lamp will be I₃

using P=I₃V we have

I₃= P/V

I₃= 55/120 =  0.45 A

therefore the total current drawn by all appliances will be

Total current = I₁+I₂+I₃= 15.16 +11.83+ 0.45= 27.44

B.  Will this combination blow the 15-A fuse?

27.44 A > 15 A by 45% ...and this will make fuse to blow

A polarized laser beam of intensity 285 W/m2 shines on an ideal polarizer. The angle between the polarization direction of the laser beam and the polarizing axis of the polarizer is 16.0 ∘. What is the intensity of the light that emerges from the polarizer?

Answers

Answer:

The intensity is  [tex]I_1 = 263.35 \ W/m^2[/tex]

Explanation:

From the question we are told that

    The intensity of the beam is  [tex]I = 285\ W/m^2[/tex]

    The  angle is [tex]\theta = 16^o[/tex]

The  intensity of the light that emerges from the polarizer is mathematically represented by Malus' law as

        [tex]I_1 = I * cos^2 (\theta )[/tex]

substituting values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

substituting  values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

        [tex]I_1 = 263.35 \ W/m^2[/tex]

A lamp has the shape of a parabola when viewed from the side. The lamp is centimeters wide and centimeters deep. How far is the light source from the bottom of the lamp if the light source is placed at the focus

Answers

The question is not complete so i have attached it.

Answer:

The light source is 2 cm from the bottom of the lamp

Explanation:

From the attached image, we can see that the parabola opens up with its vertex at the origin.

Now, the standard form of equation for a parabola is:

x² = 4ay

Looking at the parabola in the attachment, the top right edge of the lamp has a coordinate of (12,18)

Thus, we have;

12² = 4a(18)

144 = 72a

a = 144/72

a = 2

Looking at the parabola again, the line of symmetry is at x = 0

Thus, axis of symmetry is at x = 0.

Thus, focus is at (0, 2)

So, if the light source is placed at the focus, the distance of the light source from the bottom of the lamp is 2 cm

The distance of the light source from the bottom of the lamp is 2 cm.

The given parameters;

the top right edge of the lamp has a coordinate of (12,18)

Apply standard parabola equation to determine the distance of the light source from the bottom of the lamp;

[tex]x^2 = 4ay\\\\12^2 = 4a(18)\\\\144 = 72 a\\\\a = \frac{144}{72} \\\\a = 2 \ cm[/tex]

Thus, the distance of the light source from the bottom of the lamp is 2 cm.

"Your question is not complete, it seems to be missing the following information";

the top right edge of the lamp has a coordinate of (12,18)

Learn more here:https://brainly.com/question/14459938

A box is sliding down an incline tilted at a 12° angle above horizontal. The box is initially sliding down the incline at a speed of 1.5 m/s. The coefficient of kinetic friction between the box and the incline is 0.34. How far does the box slide down the incline before coming to rest?

Answers

Answer:

The box will cover a distance of 0.9199m before coming to rest

Explanation:

We are given;

Angle of tilt; θ = 12°

Speed of sliding down; u = 1.5 m/s

Coefficient of kinetic friction; μ = 0.34

We are told that the box is sliding down an incline tilted at a 12° angle above horizontal.

Thus,

The components of the weight of the block would be;

Fx = mg sinθ = mg sin 12

Fy = mg cosθ = mg cos 12

For, the normal force on the block, it will be counter balanced by the Y component of weight of block and so we have;

Normal force; Fn = mg cos 12

Now formula for the frictional force would be given by;

Ff = μmg cos 12

So, Ff = 0.34mg cos 12

So, the net force along the inclined plane is;

Fnet = Fx - Ff

Fnet = mg sin 12 - 0.34mg cos 12

Where Fnet = mass x acceleration.

Thus;

ma = mg sin 12 - 0.34mg cos 12

m will cancel out to give;

a = g sin 12 - 0.34g cos 12

a = 9.81(0.2079) - 0.34(9.81 × 0.9781)

a = -1.223 m/s²

According to Newton's equation of motion, we have;

(v² - u²) = 2as

s = (v² - u²)/2a

Final velocity is zero. Thus;

s = (0² - 1.5²)/(2 × -1.223)

s = -2.25/-2.446

s = 0.9199 m

Thus, the box will cover 0.9199m before coming to rest

If this is the only water being used in your house, how fast is the water moving through your house's water supply line, which has a diameter of 0.021 m (about 3/4 of an inch)?

Answers

Answer:

0.273m/s

Explanation:

first find out the meaning of 0.90×10−4m3/s

literally, that is 0.9x6 = 5.4m3/s = 3•5.4m/s or 16.2 m/s

1.5 gal/min = 0.00009464 m³/s, perhaps that is what you mean?

cross-sectional area of pipe is πr² = 0.0105²π = 0.0003464 m²

so you have a a flow of 0.00009464 m³/s flowing through an area of 0.0003464 m²

they divide to 0.00009464 m³/s / 0.0003464 m² = 0.273 m/s

Other Questions
It was the bottom of the ninth inning and the home team was down by one. There was a man on second base when Bruce stepped up to the plate. Bruce pointed to right field. The pitcher threw his fastball. Bruce got a hold of it and sent it flying to right field. The home team won. What character trait does Bruce demonstrate? - The water rate for Columbus Ohiois $1.98 per 750 gallons of water.What is the water bill for a residentwho used 27,000 gallons? Which of the following correctly describes the process of Translation? I. tRNA anticodon bonds to mRNA codon II. Ribosome bonds to mRNA strand III. Ribosome reaches a STOP codon and detaches from the mRNA IV. Each tRNA adds an Amino Acid to the chain as the Ribosome moves along the mRNA V. Complimentary mRNA strand is made from DNA template Using Article 26 from the Universal Declaration of Human Rights, summarize then analyze the article in light of what youknow of the education in other countries that do not uphold this right. Include the different sections and discuss theeffects on a country if every country involved implemented this right. how many moles of copper are equivalent to 3.44x10^23 atoms of copper? What is an application letter?A: An application letter is used to apply for a specific job and includes keywords from the job posting.B: An application letter describes in detail your schooling, work experience, and any other experience.C: An application letter summarizes your intern experience for potential employers.D: An application letter is used to inquire about open positions or positions that may open in the near future essay on gandgi mukt mera gaon Why would African sculpture not portray the human body as it looks in real life? a shop has a sale and reduces all the prices by 15k in naira.find the sale price of an article of an article marked at 750naira helpppppp! only find the equation of the line. urgent! if you provide home healthcare, you're more likely to provide a access to rehabilitation b accurate bills for insurance needs c diagnoses of illness d analyses of bloodwork The vertex formation of a parabola is x = 8(y- 1)2-76.What is the standard form of the equation? The dog chased the ball down the street is it Active voice or Passive voice What is the sum of the complex numbers9- i and 5 i? An array of solar panels produces 9.35 A of direct current at a potential difference of 195 V. The current flows into an inverter that produces a 60 Hz alternating current with Vmax = 166V and Imax = 19.5A. A) What rms power is produced by the inverter? B) Use the rms values to find the power efficiency Pout/Pin of the inverter. Select the correct answer from each drop down menu.During an experiment, readings for blood pressure in a person's body were found to be constant. However, when measured by adifferent blood pressure cult, the readings differed by 15 points for each reading. This difference indicates that the results arebut notResetNextdimentum. All rights reserved Can someone help me with this? Does it mean cup or is it a typo? Also I need help with the answer. Explain why water, with its high specific heat capacity, is utilized for heating systems such as hot-water radiators. A price-discriminating monopolist having identical costs in two markets should charge a higher price in that market Group of answer choices Can you please help me with these journals on the book How to Break Up With Your Phone by Catherine Price?? (If you cant see the picture just zoom in on it) (Explain what your writing means so I can understand it)