Answer:
1d = -3
2b = 2
2c = 1
3a = 3
3d = 4
Step-by-step explanation:
Polynomial 1: [tex]x^2-8x+15[/tex]
Multiply the leading coefficient, 1, and the last term, 15. You get: 15.
Then, list out the factors of 15 and the addends of -8 until you get two of numbers that are the same:
Factors of 15: -5 * -3
Addends of -8: -5 + -3
Replace the -8x with -5x - 3x:
[tex]x^2-5x-3x+15[/tex]
Put parentheses around the first 2 terms & last 2 terms and factor like so:
[tex](x^2-5x)-(3x+15)[/tex]
[tex]x(x-5)-3(x-5)[/tex]
[tex](x-5)(x-3)[/tex]
Looking at the answer (ax + b)(cx + d), d would correspond with -3.
Polynomial 2: [tex]2x^3-8x^2-24x[/tex]
First factor out the x:
[tex]x(2x^{2}-8x-24)[/tex]
Divide the polynomial inside by 2 and place the 2 outside with the x:
[tex]2x(x^2-4x-12)[/tex]
Then find the factors of 1*-12 and the addends of -4 and see which two numbers match:
Factors of -12: -6 * 2
Addends of -4: -6 + 2
Replace the -8x with -6x + 2x:
[tex]2x(x^2-6x+2x-12)[/tex]
Put parentheses around the first 2 terms & last 2 terms and factor like so:
[tex]2x((x^2-6x)+(2x-12))[/tex]
[tex]2x(x(x-6)+2(x-6))[/tex]
[tex]2x((x+2)(x-6))[/tex]
[tex]2x(x+2)(x-6)[/tex]
Looking at the answer (2x)(ax + b)(cx + d), b & c would correspond with 2 & 1.
Polynomial 3: [tex]6x^2+14x+4[/tex]
Divide the polynomial by 2:
[tex](2)(3x^2+7x+2)[/tex]
Find the factors of 3*2 and the addends of 7 and see which two numbers match:
Factors of 6: 6 * 1
Addends of 7: 6 + 1
Replace the 7x with 6x + x:
[tex](2)(3x^2+6x+x+2)[/tex]
Put parentheses around the first 2 terms & last 2 terms and factor like so:
[tex](2)((3x^2+6x)+(x+2))[/tex]
[tex](2)(3x(x+2)+(x+2))[/tex]
[tex](2)((3x+1)(x+2))[/tex]
[tex](2)(3x+1)(x+2)[/tex]
Then multiply the 2 with the (x+2) and here's your final answer:
[tex](3x+1)(2x+4))[/tex]
Looking at the answer (ax + b)(cx + d), a & d correspond with 3 & 4.
Hope that helps (●'◡'●)
(This took a while to write, sorry about that)
Your grandma recently moved to Hawaii (Hawaiian Standard Time Zone). You always call her at 8:00pm on her birthday (November 6th). You are at home in Southern California. What time do you need to call her to reach her at 8:00pm Hawaiian Time
Which function has a simplified base of 4RootIndex 3 StartRoot 4 EndRoot?
f(x) = 2(RootIndex 3 StartRoot 16 EndRoot) Superscript x
f(x) = 2(RootIndex 3 StartRoot 64 EndRoot) Superscript x
f(x) = 4(RootIndex 3 StartRoot 16 EndRoot) Superscript 2 x
f(x) = 4(RootIndex 3 StartRoot 64 EndRoot) Superscript 2 x
Answer is C f(x) = 4(RootIndex 3 StartRoot 16 EndRoot) Superscript 2 x
Answer:
c is answer
Step-by-step explanation:
yes
Answer:
C
Step-by-step explanation:
took test
A sample of students was asked what political party do they belong. which of the following types of graphical display would be appropriate for the sample?
A. Stemplot.
B. Pie chart.
C. Scatterplot.
D. All of the above.
Answer:
B. Pie chart.
Step-by-step explanation:
In this question, the students are asked what political party they belong. The best display format would be one in which the graph can be divided into parts, or percents, according to the percentage of students belonging to each political party. The graph that best describes this, distributing a group into parts, is a pie chart, and thus, the correct answer is given by option b.
Scatterplot is used when two variables correlate together, that is, there is a relationship between them, which we don't have between the number, or proportion of students belonging to each political party. Stemplot are used when there is a high number of quantitative data, which we do not have here.
A ball is thrown vertically upward with an initial velocity of 19 m/s. Its height, h(t)metres after t seconds, is given by the equation h(t) = -3t2 + 20t + 2.0.
The time taken by the ball to reach the maximum height is ________ seconds. Round your answer to the nearest tenth.
Answer:
Step-by-step explanation:
There are 2 different ways to do this: calculus and by completing the square. In this particular instance, calculus is WAY easier, and since I don't know for what class you are doing this, I'll do both ways. First the calculus way. We know the position equation, and the first derivative of the position is velocity. We also know that when the velocity is equal to 0 is when the object is at its max height. So we'll find the derivative first, then solve it for t:
If [tex]s(t)=-3t^2+20t+2[/tex] then the first derivative is
v(t) = -6t + 20 Solving for t requires that we set the velocity equal to 0 (again, this is where the object is at its max height), so
0 = -6t + 20 and
-20 = -6t so
t = 3.3 seconds. Now that we know that at 3.3 seconds the object is at its highest point, we sub that time into the position function to see where it is at that time:
s(3.3) = [tex]-3(3.3)^2+20(3.3)+2[/tex] and
s(3.3) = 35.3 meters.
Now onto the more difficult way...completing the square. Begin by setting the position function equal to 0 and then move over the constant to get:
[tex]-3t^2+20t=-2[/tex] Since the leading coefficient is not a 1 (it's a 3), we have to factor out the 3, leaving us with:
[tex]-3(t^2-\frac{20}{3}t)=-2[/tex] Now the rule is to take half the linear term, square it, and add it to both sides. Our linear term is [tex]\frac{20}{3}[/tex] and half of that is [tex]\frac{20}{6}[/tex]. Squaring that:
[tex](\frac{20}{6})^2=\frac{400}{36}=\frac{100}{9}[/tex]. We will add that in to both sides. On the left it's easy, but on the right we have to take into account that we still have that -3 sitting out front, refusing to be ignored. So we have to multiply it in when we add it to the right. Doing that gives us:
[tex]-3(t^2-\frac{20}{3}t+\frac{100}{9})=-2-\frac{100}{3}[/tex] We will clean this up a bit now. The reason we do this is because on the left we have created a perfect square binomial which will give us the time we are looking for to answer this question. Simplifying the right and at the same time writing the perfect square binomial gives us:
[tex]-3(t-\frac{20}{6})^2=-\frac{106}{3}[/tex] Now the last step is to move the constant back over and set the quadratic back equal to y:
[tex]y=-3(t-\frac{20}{6})^2+\frac{106}{3}[/tex]. The vertex of this quadratic is
[tex](\frac{20}{6},\frac{106}{3})[/tex] where
[tex]\frac{20}{6}=3.3[/tex] as the time it takes for the ball to reach its max height of
[tex]\frac{106}{3}=35.3[/tex] meters.
I'd say if you plan on taking calculus cuz you're not there yet, you'll see that many of these types of problems become much simpler when you know it!
June, Gavyn and Alex share some sweets in the ratio 5:5:3. June gets 22 more sweets than Alex. How many sweets are there altogether?
Answer:
Let June's sweets be 5x.
Then Gavyn's sweets will be 5x.
And Alex's sweets will be 3x.
5x = 3x + 22
2x = 22
x = 11
So June has 5 x 11 = 55 sweets
Gavyn has 5 x 11 = 55 sweets
And Alex have 3 x 11 = 33 sweets
Total
= 55 + 55 + 33
= 143 sweets
Find functions f(x) and g(x) so the given function can be expressed as
h(x) = f(g(x)).
(Use non-identity functions for
f(x) and g(x).)
h(x) = 5/x-4
Answer:
[tex]f(x) = \frac{5}{x}[/tex]
[tex]g(x) = x - 4[/tex]
Step-by-step explanation:
Composite function:
[tex]h(x) = f(g(x)) = (f \circ g)(x)[/tex]
h(x) = 5/x-4
We have x on the denominator and not the numerator, so the outer function is given by:
[tex]f(x) = \frac{5}{x}[/tex]
The denominator is x - 4, so this is the inner function, so:
[tex]g(x) = x - 4[/tex]
Suppose that you are offered the following "deal.
You roll a six-sided die.
If you roll a 6, you win $8.
If you roll a 3, 4 or 5, you win $1.
Otherwise, you pay $7.
Complete the Probability Distribution table shown below.
Let X represent your profit and list the X values from smallest to largest. Roond to 4 decimal places where
appropriate.
Probability Distribution
Table
Х
P(X)
Find the expected profit. $
(Round to the nearest cent)
Answer:
expected profit is - $0.50
Step-by-step explanation:
1 $(7.00) 0.166666667 $(1.17)
2 $(7.00) 0.166666667 $(1.17)
3 $1.00 0.166666667 $0.17
4 $1.00 0.166666667 $0.17
5 $1.00 0.166666667 $0.17
6 $8.00 0.166666667 $1.33
$(0.50)
GIVING OUT BRAINLIEST IF GIVEN AN ANSWER WITH THOUROUGH EXPLANATION AND NOT JUST AN ANSWER! THANKS!
During the first part of a 6-hour trip, you travel 240 miles at an average speed of r miles per hour. For the next 72 miles of the trip, you
increase your speed by 10 miles per hour. What were
your two average speeds?
9514 1404 393
Answer:
50 mph for 4.8 hours60 mph for 1.2 hoursStep-by-step explanation:
One way to write the relationship between time, speed, and distance is ...
time = distance/speed
For the first part of the trip, the time is ...
t1 = 240/r
For the second part of the trip, the time is ...
t2 = 72/(r+10)
The total time is 6 hours, so we have ...
t1 +t2 = 6
240/r +72/(r+10) = 6
We can simplify this a bit by multiplying by (r)(r+10)/6 to get ...
40(r+10) +12(r) = r(r+10)
r² -42r -400 = 0 . . . . . . . . subtract the left side and collect terms
(r -50)(r +8) = 0 . . . . . . . . factor
r = 50 . . . . . the positive solution of interest.
The two average speeds were 50 mph and 60 mph.
Find the perimeter of WXYZ. Round to the nearest tenth if necessary.
Answer:
C. 15.6
Step-by-step explanation:
Perimeter of WXYZ = WX + XY + YZ + ZW
Use the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] to calculate the length of each segment.
✔️Distance between W(-1, 1) and X(1, 2):
Let,
[tex] W(-1, 1) = (x_1, y_1) [/tex]
[tex] X(1, 2) = (x_2, y_2) [/tex]
Plug in the values
[tex] WX = \sqrt{(1 - (-1))^2 + (2 - 1)^2} [/tex]
[tex] WX = \sqrt{(2)^2 + (1)^2} [/tex]
[tex] WX = \sqrt{4 + 1} [/tex]
[tex] WX = \sqrt{5} [/tex]
[tex] WX = 2.24 [/tex]
✔️Distance between X(1, 2) and Y(2, -4)
Let,
[tex] X(1, 2) = (x_1, y_1) [/tex]
[tex] Y(2, -4) = (x_2, y_2) [/tex]
Plug in the values
[tex] XY = \sqrt{(2 - 1)^2 + (-4 - 2)^2} [/tex]
[tex] XY = \sqrt{(1)^2 + (-6)^2} [/tex]
[tex] XY = \sqrt{1 + 36} [/tex]
[tex] XY = \sqrt{37} [/tex]
[tex] XY = 6.08 [/tex]
✔️Distance between Y(2, -4) and Z(-2, -1)
Let,
[tex] Y(2, -4) = (x_1, y_1) [/tex]
[tex] Z(-2, -1) = (x_2, y_2) [/tex]
Plug in the values
[tex] YZ = \sqrt{(-2 - 2)^2 + (-1 -(-4))^2} [/tex]
[tex] YZ = \sqrt{(-4)^2 + (3)^2} [/tex]
[tex] YZ = \sqrt{16 + 9} [/tex]
[tex] YZ = \sqrt{25} [/tex]
[tex] YZ = 5 [/tex]
✔️Distance between Z(-2, -1) and W(-1, 1)
Let,
[tex] Z(-2, -1) = (x_1, y_1) [/tex]
[tex] W(-1, 1) = (x_2, y_2) [/tex]
Plug in the values
[tex] ZW = \sqrt{(-1 -(-2))^2 + (1 - (-1))^2} [/tex]
[tex] ZW = \sqrt{(1)^2 + (2)^2} [/tex]
[tex] ZW = \sqrt{1 + 4} [/tex]
[tex] ZW = \sqrt{5} [/tex]
[tex] ZW = 2.24 [/tex]
✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56
≈ 15.6
Answer:CCCCCCCCCCCCCCCCC
Step-by-step explanation:
The length of the box is 15 centimeters, the breadth of the box is 20 centimeter, the height of a box, 20 centimeter fine its volume. Step by step
Answer:
volume=length×width×height
v=15×20×20
v=6000
Consider the function f(x)=x^3-4x^2+2. Calculate the limit of the difference quotient at x0=3 for f(x).
The limit of the difference quotient of the above function [tex]f(x)[/tex] at [tex]x=3[/tex] is [tex]3[/tex] such that [tex]f(x)=x^{3} - 4x^{2} + 2[/tex].
Difference of quotientThe difference quotient of a function [tex]f(x)[/tex] is [tex]\frac{f(x+h)-f(x)}{h}[/tex].
How to evaluate the limit of the function?The given equation is, [tex]f(x)=x^{3} -4x^{2} +2[/tex]
So, [tex]f(x+h)=(x+h)^{3} -4(x+h)^{2} +2= x^{3} +h^{3}+3x^{2} h+3xh^{2} -4x^{2} -4h^{2} -8xh+2[/tex]
Now, [tex]f(x+h)-f(x)[/tex]
[tex]=x^{3}+h^{3}+3x^{2}h+3xh^{2}-4x^{2}-4h^{2}-8xh+2-x^{3}+4x^{2}-2[/tex]
[tex]=h^{3}+3x^{2}h+3xh^{2}-4h^{2}-8xh[/tex]
So, [tex]\frac{f(x+h)-f(x)}{h} =\frac{h^{3}+3x^{2}h+3xh^{2} -4h^{2}-8xh }{h}[/tex]
[tex]=h^{2}+3x^{2}+3xh-4h-8x[/tex]
Now, at [tex]x=3[/tex],
[tex]h^{2}+3x^{2}+3xh-4h-8x=h^{2}+27+9h-4h-24=h^{2}+5h+3[/tex]
If [tex]h[/tex]→[tex]0[/tex], the value of [tex]h^{2}+5h+3=3[/tex]
Thus, the limit of the difference quotient of the above function [tex]f(x)[/tex] at [tex]x=3[/tex] is [tex]3[/tex].
Learn more about the limit of the difference quotient here- https://brainly.com/question/17008881
#SPJ2
Perpendicular lines
What is the segment
100 POINTS!!!!!
Directions: Respond to this question to demonstrate your understanding of the topic/content. Be sure to provide adequate and relevant details learned in the module to support your response. Pay close attention to organizing your response so it makes sense and uses correct grammar. Your response should be at least 5-7 sentences at a minimum.
Question: Given answer the questions that follow.
a. Your friend claims the graph of f(x)=2x increases at a faster rate than the graph of g(x)=x2 when x ≥ 0. Is your friend correct? Explain your reasoning.
b. How are the 2 functions different?
Answer:
a. The friend is incorrect.
2(x) is the same as x(2). PEMDAS does not apply to the same order of operation under normal conditions and both are directly proportional functions.
b. The parentheses are the only thing making the functions different. After you simplify from the parentheses, both values have the same priority.
Step-by-step explanation:
Your friend is looking at laptops for college, and is comparing the different
screen sizes. Use the diagram and formula below to find the height of the
laptop screen. Round your answer to the tenths place.
d - VW
d= 72.7mn
h
W 026
Answer:
B. h = 7.4 inches
Step-by-step explanation:
height of the laptop screen = h
d = 12.1 in.
w = 9.6 in.
We are given the formula,
d = √(w² + h²)
Plug in the values and solve for h
12.1 = √(9.6² + h²)
Square both sides
12.1² = 9.6² + h²
146.41 = 92.16 + h²
146.41 - 92.16 = h²
54.25 = h²
√54.25 = h
7.4 = h (nearest tenth)
h = 7.4 inches
Consumers Energy states that the average electric bill across the state is $39.09. You want to test the claim that the average bill amount is actually different from $39.09. What are the appropriate hypotheses for this test
The null hypothesis is [tex]\mu = 39.09[/tex]
The symbol [tex]\mu[/tex] is the Greek letter mu
The alternate hypothesis is [tex]\mu \ne 39.09[/tex] telling us we have a two-tailed test here. The "not equal" is directly tied to the keyword "different" given in the instructions. In other words, mu being different from 39.09 directly leads to [tex]\mu \ne 39.09[/tex]
So either mu is 39.09 or it's not 39.09
You can use H0 and H1 to represent the null and alternate hypotheses respectively.
----------------------
Summary:
The two hypotheses are
H0: [tex]\mu = 39.09[/tex]
H1: [tex]\mu \ne 39.09[/tex]
This is a two tailed test.
A right rectangular prism has a length of 2 1/4 cm, width of 8 cm, and height of 20 1/2 cm.
What is the volume of the prism?
Enter the answer in the box.
cm³
Answer:
369 cm^3
Step-by-step explanation:
you just multiply all the numbers together
Answer:
369 cm³.
Step-by-step explanation:
Volume of a rectangular prism is just length × width × height. So:
2.25 × 8 = 18
18 × 20.5 = 369
So, the volume is 369 cm³.
Answer my question you heathens
Each month your cell phone company charges you $ 40 for your plan plus 2 cents for each text you send. You have $ 120 budgeted for cell phone expenses for the month. Construct an inequality to make a determination about the number of texts you can send each month. Note that you cannot send a fraction of a text. You must send __________ _______________ texts this month in order to stay within your budget.
Answer:
50 text messages would have to be sent or received in order for the plans to cost the same each month.
Step-by-step explanation:
x = number of text messages sent
0.2x+40=50
0.2x = 10
5(0.2x) = 5(10)
x = 50
Therefore, 50 text messages would have to be sent or received in order for the plans to cost the same each month.
Hattie had $3,000 to invest and wants to earn 10.6% interest per year. She will put some of the money into an account that earns 12% per year and the rest into an account that earns 10% per year. How much money should she put into each account?
Answer:
900 at 12%
2100 at 10%
Step-by-step explanation:
Let x= amount invested at 12%
let y= amount invested at 10%
with that being said we can write the two equation
Equation 1: x+y=3000
Equation 2: 3000*.106=.12x+.1y
isolte x from equation 1
x= 3000-y
plug this into equation 2
318=.12(3000-y)+.1y
318=360-.12y+.1y
-42= -.02y
y= 2100
Plug this into equation 1
x+2100=3000
x=900
she should invest $900 into the account earning 12% interest and $2100 into the account earning 10% interest.
How to determine How much money should she put into each accountLet's denote the amount of money Hattie invests at 12% as \(x\) dollars, and the amount she invests at 10% as \(\$3000 - x\) dollars.
The formula for calculating interest is: \(\text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time}\).
For the 12% account:
Interest_12% = \(x \times 0.12 \times 1\) (1 year)
For the 10% account:
Interest_10% = \((3000 - x) \times 0.10 \times 1\) (1 year)
Hattie wants to earn 10.6% interest on the total investment, so we can set up the equation:
\(\text{Total Interest} = \text{Interest}_12% + \text{Interest}_10%\)
\(3000 \times 0.106 = x \times 0.12 + (3000 - x) \times 0.10\)
Now, solve for \(x\):
\(318 = 0.12x + 300 - 0.10x\)
\(318 = 0.02x + 300\)
\(18 = 0.02x\)
\(x = 900\)
Hattie should invest $900 at 12% and \(3000 - 900 = 2100\) at 10%.
Therefore, she should invest $900 into the account earning 12% interest and $2100 into the account earning 10% interest.
Learn more about interest at https://brainly.com/question/29451175
#SPJ3
PLEASE HELP!!!
A television is purchased by a company for $210. They mark up the price by 55%. What is the selling price? Show two different ways to solve this problem.
Answer:
$325.50
Step-by-step explanation:
1) 210÷100 = 2.1
2.1×55 = 115.5
210 + 115.5 = 325.5
2) 210×55 = 11550
11550÷100 = 115.5
210 + 115.5 = 325.5
HELP HELP HELP MATH I WILL GIVE U EXTRA POINTS⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
503.75, 504.75, 505.75, 506.75
Step-by-step explanation:
x+(x+1)+(x+2)+(x+3)=2021
4x+6=2021
4x=2015
x=503.75
so it would be
503.75+504.75+505.75+506.75= 2021
AY
5
The slope of the graphed line is 2. Which formulas HELP PLEASEEEE
3
represent the line that is graphed? Check all that apply.
4
1(4,4)
3
(1/2)
Oy-1 = {(x-2)
Oy-2 = {(x - 1)
Oy-4 = (x - 4)
x
2 3 4 5
2
o flux) = { x + 1
3
47
4
f(x) = 2 x + 4
5
Answer:
y - 2 = 2/3 (x-1)
ORy - 4 = 2/3(x-4)
NOTE ;ALL WILL GIVE THE SAME RESULTStep-by-step explanation:
With this graph,the equation can be found on a straight line as the graph is .
So the formula is
[tex]y - y1 = m(x - x1)[/tex]
where your m is your gradient or slope as already said,the equation can be used by this formula (note;after finding your normal slope (not on a straight line ) firstly)
When you are done take any of the points connecting to the x axis and y axis directly as in (4,-4) or (2,1)
Let your first number be x1 and second y1 and place it in the formula .
NOTE: Y and x is constant and your general solution should be in the form;y = mx +cwhere m is still your normal slope.
what is 4/7 raised to the power of negative 1 as a rational number
Answer:
7/4
Step-by-step explanation:
(4/7)^-1
We know a^-b = 1/a^b
1/ (4/7)^1
7/4
Answer:
(4/7)^-1
=1/(4/7)^1
=1÷4/7
=1×7/4
=7/4
Therefore 7/4 is equal to 1.75 as a rational number
ora started watching a movie at 2:45 p.m. She watched the movie for hours before stopping the movie for hours to eat dinner. After dinner, Nora finished watching the remaining hours of the movie. At what time did the movie end?
Answer: Movies Average around 1 hour to 2 hours long. 1:30 to 2:30 so id say somewhere around 4-5 pm. Which leaves time for dinner after
Step-by-step explanation:
What is the circumference of the given circle in terms of [tex]\pi[/tex]?
a. 14[tex]\pi[/tex] in.
b. 28[tex]\pi[/tex] in.
c. 42[tex]\pi[/tex] in.
d. 196[tex]\pi[/tex] in.
Answer:
b. 28[tex]\pi[/tex] in.
Step-by-step explanation:
circumference of a circle = 2 [tex]\pi[/tex] r
whrere r is the radius of rhe circle
= 2 × [tex]\pi[/tex] × 14 in.
= 28 [tex]\pi[/tex] in.
that is option b
We have to find,
The circumference of the given circle in terms of the π.
The formula we use,
→ C = 2πr
Then we can find the circumference,
→ 2 × π × r
→ 2 × π × 14
→ 28π in.
Hence, option (b) is correct answer.
The expansion of (x-2)(x+2) is …..
Answer:
x2-4
Step-by-step explanation:
Answer:
(x+2)(x-2)(x²-2²)(x²-4)hope it helps
stay safe healthy and happy...which linear inequality represents the graph below?
A. y < -1/4x-4
B. y < 4x-4
C. y < -1/4x+4
D. y < -4x+4
A particular network service provider charges 50 Kobo per second to make a call. How many minutes will a caller with 300 naira airtime last.
9514 1404 393
Answer:
10 minutes
Step-by-step explanation:
The current legal tender conversion rate is 50 kobo = 0.50 naira. Then the airtime balance is ...
(300 NGN)/(0.50 NGN/s) × (1 min)/(60 s) = 300/(0.50×60) min = 10 min
The population of a bacteria colony is growing exponentially, doubling every 6 hours. If there are 150 bacteria currently present, how many (to the nearest ten bacteria) will be present in 10 hours
Answer:
If rounded to the nearest 10 bacteria, then it would be 500 bacteria.
Step-by-step explanation:
First multiply 150 by two in order to get 300, that leaves 4 hours to figure out. From there you can figure out the rest by seeing that 4 is 2/3 of 6. I converted it into the decimal number .66. Multiply 300 by .66 to get 198 and then add it to 300 to get 498. Then just round it up to the nearest 10 bacteria which leaves you with the final answer of 500 bacteria.
Optimal-Eats blender has a mean time before failure of 37 months with a standard deviation of 5 months, and the failure times are normally distributed. What should be the warranty period, in months, so that the manufacturer will not have more than 7% of the blenders returned
Answer:
The warranty period should be of 30 months.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Optimal-Eats blender has a mean time before failure of 37 months with a standard deviation of 5 months.
This means that [tex]\mu = 37, \sigma = 5[/tex]
What should be the warranty period, in months, so that the manufacturer will not have more than 7% of the blenders returned?
The warranty period should be the 7th percentile, which is X when Z has a p-value if 0.07, so X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 37}{5}[/tex]
[tex]X - 37 = -1.475*5[/tex]
[tex]X = 29.6[/tex]
Rounding to the nearest whole number, 30.
The warranty period should be of 30 months.
y is inversely proportional to the square of x. If y=4 when x=6 then what is y when x is 8?
Step-by-step explanation:
y=k/x
4=k/6 4*6=k =24 . if x=8, y=24/8,y=3