Answer:
To use an area model to determine the quotient of 556 and 16, we can divide a rectangle of area 556 into 16 equal parts. Each part will have an area of 556/16.
We can start by dividing 556 into 16 groups of 10 (160), and then into 16 groups of 3 (48). That leaves us with a remainder of 4.
So we have:
556 = 16 x 34 + 48 + 4
This shows that 556 can be written as 16 times some whole number (34) plus a remainder of 48 + 4/16.
Simplifying the remainder, we have:
48 + 4/16 = 48 + 1/4 = 48.25
Therefore, the quotient of 556 and 16 is:
556/16 = 34 1/4
The quotient of 556 and 16 using an area model can be determined by producing a rectangle with the total area of 556 and one side of 16. The length of the other side will be the quotient. In this case, the quotient is 34 3/4.
Explanation:When asked to determine the quotient of 556 and 16 using the area model, one way to think of this is making a rectangle. The total area is 556 and one side is 16. The length of the other side will be the quotient.
Start by first estimating how many times 16 could fit into 556. Let's take 30 as an estimate, because 30*16 = 480, which is relatively close to 556. Draw a rectangle with the width of 16 and the length of 30.
Find the difference between the rectangle's area and 556. So, 556 - 480 = 76. Now, 76 is our remaining area to fill. 16 goes into 76 four more times, adding up to 64.
There is still a leftover area, which is 76-64 = 12. This is smaller than our width of 16. So, your final answer is 34 12/16 or 34 3/4 in simplest form.
Learn more about Area Model here:https://brainly.com/question/18472914
#SPJ2
HELP PLS combine the like terms 3x+5-x+3+4x
Answer:
3x, 4x | 5, 3
Step-by-step explanation:
Each of these measures is rounded to nearest whole: a=5cm and b=3cm Calculate the upper bound of a +b
The upper bound of a + b can be found by adding the upper bounds of a and b.
For a = 5cm, the nearest whole number is 5. The upper bound would be the midpoint between 5 and 6, which is 5.5.
For b = 3cm, the nearest whole number is 3. The upper bound would be the midpoint between 3 and 4, which is 3.5.
So the upper bound of a + b is:
5.5 + 3.5 = 9
Therefore, the upper bound of a + b is 9cm.
Jen’s assignment is to read at least 85 pages of a novel. Jen has read 31 pages. How many pages p does Jen have left to read? Write an inequality that represents this situation. Then solve the inequality
Jen has 54 pages left to read to meet her assignment requirement.
The inequality that represents this situation is p ≥ 85 - 31
To find how many pages Jen has left to read, we can subtract the number of pages she has already read from the minimum number of pages she needs to read.
The minimum number of pages Jen needs to read is 85, and she has already read 31 pages. So, the number of pages she has left to read, p, can be found by:
p = 85 - 31
p = 54
Therefore, Jen has 54 pages left to read.
To represent this situation with an inequality, we can use:
p ≥ 85 - 31
This inequality states that the number of pages Jen still needs to read, p, must be greater than or equal to the difference between the minimum number of pages she needs to read (85) and the number of pages she has already read (31).
Solving for p:
p ≥ 85 - 31
p ≥ 54
This means that Jen must read at least 54 more pages to meet her assignment requirement.
To learn more about inequality Click here:
brainly.com/question/30228778
#SPJ4
A hawk flying at 19 m/s at an altitude of 228 m accidentally drops its prey. The parabolic trajectory of the falling prey is described by the equation y = 228 − x^2/57 until it hits the ground, where y is its height above the ground and x is its horizontal distance traveled in meters. Calculate the distance traveled by the prey from the time it is dropped until the time it hits the ground. Express your answer correct to the nearest tenth of a meter.
The parabolic trajectory of the falling prey can be described by the equation y = 228 – x2/57, where y is the height above the ground and x is the horizontal distance traveled in meters. In this case, the prey was dropped at a height of 228 m and flying at 19 m/s. To calculate the total distance traveled by the prey, we can use the equation for the parabola to solve for x.
We can rearrange the equation y = 228 – x2/57 to solve for x, which gives us[tex]x = √(57*(228 – y))[/tex]. When the prey hits the ground, the height (y) is 0. Plugging this into the equation for x, we can calculate that the total distance traveled by the prey is[tex]x = √(57*(228 - 0)) = √(57*228) = 84.9 m.\\[/tex] Expressing this answer to the nearest tenth of a meter gives us the final answer of 84.9 m.
for such more questions on parabolic trajectory
https://brainly.com/question/13244761
#SPJ11
y=x^2+7x-3
complete the square to re-write the quadratic function in vertex form.
pls help
Answer:
Y=x^2+7x-3
complete the square to re-write the quadratic function in vertex form.
pls help
Step-by-step explanation:
To complete the square, we need to add and subtract a constant term inside the parentheses, which when combined with the quadratic term will give us a perfect square trinomial.
y = x^2 + 7x - 3
y = (x^2 + 7x + ?) - ? - 3 (adding and subtracting the same constant)
y = (x^2 + 7x + (7/2)^2) - (7/2)^2 - 3 (the constant we need to add is half of the coefficient of the x-term squared)
y = (x + 7/2)^2 - 49/4 - 3
y = (x + 7/2)^2 - 61/4
So the quadratic function in vertex form is y = (x + 7/2)^2 - 61/4, which has a vertex at (-7/2, -61/4).
Find the unknown lengths in these similar triangles. (Round off to two decimal places.)
The value of the unknown lengths in these similar triangles is FH is 6.67 units and EG is 27 units.
What is triangle?A triangle is a polygon with three sides and three angles. It is a two-dimensional shape that is commonly studied in mathematics, geometry, and other fields. The sum of the angles in a triangle is always 180 degrees, and the lengths of the sides can vary. Triangles can be classified based on the lengths of their sides and the measures of their angles. Common types of triangles include equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many important properties and are used in various applications, including construction, engineering, and physics.
Here,
1. Let x be the length of FH. We have:
AB/EF = BD/FH
12/8 = 10/x
Cross-multiplying, we get:
12x = 80
x = 80/12
x ≈ 6.67
Therefore, FH ≈ 6.67.
2. Let y be the length of EG. We have:
AC/BD = FH/EG
15/9 = 5/y
Cross-multiplying, we get:
5y = 135
y = 135/5
y ≈ 27
Therefore, EG ≈ 27.
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1
How many sides has a polygon if the sum of its
interior angles is 1440⁰
Answer:
10 sides
Step-by-step explanation:
We can use the formula for the sum of the interior angles of a polygon to solve this problem. The formula for the sum of the interior angles of a polygon with n sides, where S is the sum of the interior angles, and n is the number of sides of the polygon is:
S = (n - 2) x 180 degrees
If the sum of the interior angles is 1440 degrees, we can set this equal to the formula and solve for n:
1440 = (n - 2) x 180
Dividing both sides by 180, we get:
8 = n - 2
Adding 2 to both sides, we get:
n = 10
Therefore, a polygon with a sum of interior angles of 1440 degrees has 10 sides.
Triangle ABC has coordinates A(4,1), B(5,9),and C (2,7). If the triangle is translated 7 units to left, what are the coordinates of B'?
Answer:
(-2,9)
Step-by-step explanation:
when moving it 5 units left on the x axis it would be 5-7
So in turn you would be given (-2,9)
Because the y stays the same you would still have (?,9)
What is the y-intercept of the line
with the equation y = - 4x - 12
Answer:
-12 is the y intercept while your slope is -4
Step-by-step explanation:
if a traingle with all sides of equal legnth has a perimeter of 15x 27 , what is an expression for the legnth of one of the sides
If a triangle with all sides of equal length has a perimeter of 15x + 27, the expression for the length of one of the sides is (5x + 9).
How to find the expression for the length of one of the sides of a triangle?The perimeter of a triangle is the sum of the lengths of all three sides. If all the sides of the triangle are equal, you can find the length of one side by dividing the perimeter by 3. Here, the perimeter is given as 15x + 27. Therefore, the length of one side will be (15x + 27) / 3 = 5x + 9. Hence, an expression for the length of one of the sides is (5x + 9).
Learn more about expression here: https://brainly.com/question/1859113.
#SPJ11
Maria purchased 1,000 shares of stock for $35. 50 per share in 2014. She sold them in 2016 for $55. 10 per share. Express her capital gain as a percent, rounded to the nearest tenth of a percent
Maria's capital gain is 55.21%. Rounded to the nearest tenth of a percent, this is 55.2%.
To determine Maria's capital gain as a percent, we need to calculate the difference between the selling price and the purchase price, and then express this difference as a percentage of the purchase price.
The purchase price for 1,000 shares of stock was:
$35.50 x 1,000 = $35,500
The selling price for 1,000 shares of stock was:
$55.10 x 1,000 = $55,100
The capital gain is the difference between the selling price and the purchase price:
$55,100 - $35,500 = $19,600
To express this gain as a percentage of the purchase price, we divide the capital gain by the purchase price and multiply by 100:
($19,600 / $35,500) x 100 = 55.21%
In summary, to calculate the percent capital gain from the purchase and selling price of a stock, we simply divide the difference between the two prices by the purchase price and multiply by 100.
To learn more about capital gain click on,
https://brainly.com/question/28628208
#SPJ4
What is the Smallest Positive Integer with at least 8 odd Factors and at least 16 even Factors?
Therefore, the smallest positive integer with at least 8 odd factors and at least 16 even factors is N = 1800.
what is Combination?In mathematics, combination is a way to count the number of possible selections of k objects from a set of n distinct objects, without regard to the order in which they are selected.
The number of combinations of k objects from a set of n objects is denoted by [tex]nCk[/tex] or [tex]C(n,k),[/tex] and is given by the formula:
[tex]nCk = n! / (k! *(n-k)!)[/tex]
where n! denotes the factorial of n, i.e., the product of all positive integers up to n.
by the question.
Now, let's consider the parity (evenness or oddness) of the factors of N. A factor of N is odd if and only if it has an odd number of factors of each odd prime factor of N. Similarly, a factor of N is even if and only if it has an even number of factors of each odd prime factor of N. Therefore, the condition that N has at least 8 odd factors and at least 16 even factors can be expressed as:
[tex](a_{1} +1) * (a_{2} +1) * ... * (an+1) = 8 * 2^{16}[/tex]
Let's consider the factor 2 separately. Since N has at least 16 even factors, it must have at least 16 factors of 2. Therefore, we have a_i >= 4 for at least one prime factor p_i=2. Let's assume without loss of generality that p[tex]1=2[/tex] and [tex]a1 > =4.[/tex]
Now, let's consider the remaining prime factors of N. Since N has at least 8 odd factors, it must have at least 8 factors that are not divisible by 2. Therefore, the product (a2+1) * ... * (an+1) must be at least 8. Let's assume without loss of generality that n>=2 (i.e., N has at least three distinct prime factors).
Since a_i >= 4 for i=1, we have:
[tex]N > = 2^4 * p2 * p3 > = 2^4 * 3 * 5 = 240[/tex]
Let's now try to find the smallest such N. To minimize N, we want to make the product (a2+1) * ... * (an+1) as small as possible. Since 8 = 2 * 2 * 2, we can try to distribute the factors 2, 2, 2 among the factors (a2+1), (a3+1), (a4+1) in such a way that their product is minimized. The only possibility is:
[tex](a2+1) = 2^2, (a3+1) = 2^1, (a4+1) = 2^1[/tex]
This gives us:
[tex]N = 2^4 * 3^2 * 5^2 = 1800[/tex]
To learn more about distribute:
https://brainly.com/question/29062095
#SPJ
Baseball hats are on sale for 12% off the original price of the sale price is $12.50 what was the original price? round the answer to the nearest cent
The original price of the baseball hat before 12% off in the sale was $14.20.
What is a percentage?A number can be expressed as a fraction of 100 using a percentage. It frequently serves to indicate a portion of a total and is represented by the sign %. We may state that 25% of the class is made up of guys, for instance, if there are 100 pupils in the class and 25 of them are male.
The Roman term per centum, which meaning "by the hundred," is where the word "percent" originates.
Let us suppose the original price of the baseball hat = x.
Given that, baseball hats are on sale for 12% off the original price.
That is,
12.50 = x(1 - 12/100)
12.50 = x(100 - 12)/100
12.50 = x(0.88)
x = 14.2
Hence, the original price of the baseball hat was $14.20.
Learn more about percent here:
https://brainly.com/question/29763752
#SPJ1
a teacher monitored the number of people texting during class each day and calculated the corresponding probability distribution. what type of probability distribution did the teacher use?
The given probability distribution "a teacher monitored the number of people texting during class each day and calculated the corresponding probability distribution." is a type of discrete probability distribution.
What is the Probability distribution?The probability distribution is used to describe the probability of each outcome in a series of possible outcomes. It is a mathematical representation of the outcomes of an experiment.
The teacher likely used a discrete probability distribution to calculate the probability of a certain number of people texting during class each day.
A discrete probability distribution is used to analyze data where the outcome is counted in whole numbers, such as the number of people texting in a given class period.
Learn more about Probability distribution here:
https://brainly.com/question/14210034
#SPJ11
What is 6/11 as a decimal rounded to 3 decimal places?
Estimating the within-group variance. Refer to the previous exercise. Here are the cell standard deviations and sample sizes for cooking enjoyment: Find the pooled estimate of the standard deviation for these data. Use the rule for examining standard deviations in ANOVA from Chapter 12 (page 560) to determine if it is reasonable to use a pooled standard deviation for the analysis of these data.
In the following question, among the given options, the statement is said to be, The pooled estimate of the standard deviation for the data given is √(54.14^2/10 + 24.26^2/10) = 22.74.
According to the rule for examining standard deviations in ANOVA from Chapter 12 (page 560), the within-group standard deviation should be no more than twice the size of the between-group standard deviation. In this case, the between-group standard deviation is 44.85 and the within-group standard deviation (22.74) is less than twice the size of the between-group standard deviation, so it is reasonable to use a pooled standard deviation for the analysis of these data.
For more such questions on deviation
https://brainly.com/question/475676
#SPJ11
we assume there is sometimes sunny days and sometimes rainy days, and on day 1, which we're going to call d1, the probability of sunny is 0.9. and then let's assume that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance. so, what are the chances that d2 is sunny?
Probability of D2 being sunny = 0.78.
On day 1, which is called D1, the probability of sunny is 0.9. It is also given that a sunny day follows a sunny day with 0.8 chance, and a sunny day follows a rainy day with 0.6 chance.
Therefore, we need to find the chances that D2 is sunny.
There are two possibilities for D2: either it can be a sunny day, or it can be a rainy day.
Now, Let us find the probability of D2 being sunny.
We have the following possible cases for D2.
D1 = Sunny; D2 = Sunny
D1 = Sunny; D2 = Rainy
D1 = Rainy; D2 = Sunny
D1 = Rainy; D2 = Rainy
The probability of D1 being sunny is 0.9.
When a sunny day follows a sunny day, the probability is 0.8.
When a sunny day follows a rainy day, the probability is 0.6.
Therefore, the probability of D2 being sunny is given by the formula:
Probability of D2 being sunny = (0.9 × 0.8) + (0.1 × 0.6) = 0.72 + 0.06 = 0.78.
Therefore, the probability that D2 is sunny are 0.78 or 78%.
To learn more about probability refer :
https://brainly.com/question/13957582
#SPJ11
if x < y < z and all three are consecutive non-zero integers, then which of the following must be a positive odd integer?
Option (A) x+1 is a positive odd integer.
Given that, x < y < z and all three are consecutive non-zero integers.Let the first number be x, then the other two consecutive non-zero integers will be (x+1) and (x+2).To find out the positive odd integer among these, let us take each of them and verify if they are positive odd integers.∴ x+1 is odd, x+2 is even∴ x+1 is the only positive odd integer out of the three.
Learn more about Non-zero integers
brainly.com/question/2032387
#SPJ11
a normal distribution of exam scores has a standard deviation of 8. a score that is 12 points above the mean would have a z-score of: a score that is 20 points below the mean would have a z-score of:
The standard deviation of a normal distribution of exam scores is 8. A score that is 12 points above the mean would have a z-score of 1.5, and a score that is 20 points below the mean would have a z-score of -2.5.
What is the z-score?The z-score can be calculated by dividing the difference between a data value and the mean of the data set by the standard deviation of the data set.
The z-score of a score that is 12 points above the mean in a normal distribution of exam scores with a standard deviation of 8.
z = (x−μ)/σ = (x−μ)/σ = (12−0)/8 = 1.5
The z-score of a score that is 12 points above the mean in a normal distribution of exam scores with a standard deviation of 8 is 1.5.
The z-score of a score that is 20 points below the mean in a normal distribution of exam scores with a standard deviation of 8.
z = {x-μ}/{σ} = {-20-0}/{8} = −2.5
The z-score of a score that is 20 points below the mean in a normal distribution of exam scores with a standard deviation of 8 is -2.5.
Learn more about Z-score here:
https://brainly.com/question/15016913
#SPJ11
Sally has 3:4 as many beads as Kelly. Kelly has 18 more beads than Sally. Find the average number of beads the girl have
The average number of beads that the girls have is 63
Let's start by using algebra to represent the given information:
Let b be the number of beads that Sally has.
Then, Kelly has 3/4 times as many beads as Sally, which can be expressed as (3/4)b.
Also, we know that Kelly has 18 more beads than Sally, which can be expressed as (b + 18).
Putting these together, we can write the equation:
(3/4)b = b + 18
Solving for b, we get:
b = 72
So, Sally has 72 beads, and Kelly has (3/4) × 72 = 54 beads.
The average number of beads that the girls have is (72 + 54)/2 = 63 beads
Learn more about average here
brainly.com/question/16956746
#SPJ4
Sarah is a healthy baby who was exclusively breast-fed for her first 12 months. Which of the following is most likely a description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population? 85th percentile at 3 months; 85th percentile at 6 months; 9oth percentile at 9 months; 95th percentile at 12 months 75th percentile at 3 months; 40th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months 30th percentile at 3 months; 50th percentile at 6 months; 70th percentile at 9 months; 80th percentile at 12 months 25th percentile at 3 months; 25th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months
The 12 months of age) as percentiles of the CDC growth chart reference population.
The most likely description of Sarah's weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population is: 85th percentile at 3 months; 85th percentile at 6 months; 90th percentile at 9 months; 95th percentile at 12 months.What is percentile in statistics?In statistics, a percentile is a value below which a specific percentage of observations in a group falls. It is used to split up data into segments that represent an equal proportion of the entire group, resulting in a data set split into 100 equal portions, with each portion representing one percentage point. Sarah's weight is in the 85th percentile at 3 months, 85th percentile at 6 months, 90th percentile at 9 months, and 95th percentile at 12 months is a most likely description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population.
Learn more about Percentiles
brainly.com/question/28800128
#SPJ11