Please help. I’ll mark you as brainliest if correct!

Please Help. Ill Mark You As Brainliest If Correct!

Answers

Answer 1

Answer:

Children = 150

Students = 98

Adults = 75

Step-by-step explanation:

C + S + A = 323

5C + 7S + 12A = 2336

A = 1/2C

C = 150

S = 98

A = 75


Related Questions

Write each expression in a simpler form that is equivalent to the given expression. Let g be a nonzero number. 1/g^1 or 1/g-1

Answers

Answer:

[tex]\boxed{\mathrm{view \: explanation}}[/tex]

Step-by-step explanation:

Apply rule : [tex]a^1 =a[/tex]

[tex]\displaystyle \frac{1}{g^1 } =\frac{1}{g}[/tex]

[tex]\displaystyle \frac{1}{g^{-1}}[/tex]

Apply rule : [tex]\displaystyle a^{-b}=\frac{1}{a^b}[/tex]

[tex]\displaystyle \frac{1}{\frac{1}{g^1 } }[/tex]

Apply rule : [tex]\displaystyle \frac{1}{\frac{1}{a} } =a[/tex]

[tex]\displaystyle \frac{1}{\frac{1}{g^1 } }=g[/tex]

Answer:

[tex]\frac{1}{g^1}[/tex]

= [tex]\frac{1}{g}[/tex]

[tex]\frac{1}{g - 1}[/tex]

= [tex]\frac{g^1}{1}[/tex]

= [tex]\frac{g}{1}[/tex]

= g

Hope this helps!

(a) Use appropriate algebra and Theorem to find the given inverse Laplace transform. (Write your answer as a function of t.)
L−1 {3s − 10/ s2 + 25}
(b) Use the Laplace transform to solve the given initial-value problem.
y' + 3y = e6t, y(0) = 2

Answers

(a) Expand the given expression as

[tex]\dfrac{3s-10}{s^2+25}=3\cdot\dfrac s{s^2+25}-2\cdot\dfrac5{s^2+25}[/tex]

You should recognize the Laplace transform of sine and cosine:

[tex]L[\cos(at)]=\dfrac s{s^2+a^2}[/tex]

[tex]L[\sin(at)]=\dfrac a{s^2+a^2}[/tex]

So we have

[tex]L^{-1}\left[\dfrac{3s-10}{s^2+25}\right]=3\cos(5t)-2\sin(5t)[/tex]

(b) Take the Laplace transform of both sides:

[tex]y'(t)+3y(t)=e^{6t}\implies (sY(s)-y(0))+3Y(s)=\dfrac1{s-6}[/tex]

Solve for [tex]Y(s)[/tex]:

[tex](s+3)Y(s)-2=\dfrac1{s-6}\implies Y(s)=\dfrac{2s-11}{(s-6)(s+3)}[/tex]

Decompose the right side into partial fractions:

[tex]\dfrac{2s-11}{(s-6)(s+3)}=\dfrac{\theta_1}{s-6}+\dfrac{\theta_2}{s+3}[/tex]

[tex]2s-11=\theta_1(s+3)+\theta_2(s-6)[/tex]

[tex]2s-11=(\theta_1+\theta_2)s+(3\theta_1-6\theta_2)[/tex]

[tex]\begin{cases}\theta_1+\theta_2=2\\3\theta_1-6\theta_2=-11\end{cases}\implies\theta_1=\dfrac19,\theta_2=\dfrac{17}9[/tex]

So we have

[tex]Y(s)=\dfrac19\cdot\dfrac1{s-6}+\dfrac{17}9\cdot\dfrac1{s+3}[/tex]

and taking the inverse transforms of both sides gives

[tex]y(t)=\dfrac19e^{6t}+\dfrac{17}9e^{-3t}[/tex]

Find the slope of the line that passes through the points (1, -4) and (3,-1)

Answers

Hi there! :)

Answer:

[tex]\huge\boxed{m = \frac{3}{2}}[/tex]

Find the slope using the slope formula:

[tex]m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Plug in the coordinates of each point:

[tex]m = \frac{-1 - (-4)}{3 - 1}[/tex]

Simplify:

[tex]m = \frac{3}{2}[/tex]

Therefore, the slope of the line is 3/2.

Answer:

3/2

Step-by-step explanation:

The slope is given by

m = (y2-y1)/(x2-x1)

    = ( -1 - -4)/(3-1)

     = ( -1+4)/(2)

     = ( 3/2)

Need Assistance
Please Show Work​

Answers

Answer:

3 years

Step-by-step explanation:

Use the formula I = prt, where I is the interest money made, p is the starting amount of money, r is the interest rate as a decimal, and t is the time the money was borrowed.

Plug in the values and solve for t:

108 = (1200)(0.03)(t)

108 = 36t

3 = t

= 3 years

Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?

Answers

Answer:

[tex]\sqrt{51}[/tex] units.

Step-by-step explanation:

Point E is inside a rectangle ABCD.

Please refer to the attached image for the given statement and dimensions.

Given that:

Sides AE = 6 units

BE = 7 units and

CE = 8 units

To find:

DE = ?

Solution:

For a point E inside the rectangle the following property hold true:

[tex]AE^2+CE^2=BE^2+DE^2[/tex]

Putting the given values to find the value of DE:

[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]

Which expression is equivalent to 2(5)^4

Answers

Answer:

2·5·5·5·5

Step-by-step explanation:

2(5)^4 is equivalent to 2·5·5·5·5; 2 is used as a multiplicand just once, but 5 is used four times.

A bag contains five white balls and four black balls. Your goal is to draw two black balls. You draw two balls at random. Once you have drawn two balls, you put back any white balls, and redraw so that you again have two drawn balls. What is the probability that you now have two black balls? (Include the probability that you chose two black balls on the first draw.)

Answers

Answer:

Probabilty of both Black

= 1/6

Step-by-step explanation:

A bag contains five white balls and four black balls.

Total number of balls= 5+4

Total number of balls= 9

Probabilty of selecting a black ball first

= 4/9

Black ball remaining= 3

Total ball remaining= 8

Probabilty of selecting another black ball without replacement

= 3/8

Probabilty of both Black

=3/8 *4/9

Probabilty of both Black

= 12/72

Probabilty of both Black

= 1/6

Solve for x² in x²-3x+2=0​

Answers

[tex]x^2-3x+2=0\\x^2-x-2x+2=0\\x(x-1)-2(x-1)=0\\(x-2)(x-1)=0\\x=2 \vee x=1\\\\x^2=4 \vee x^2=1[/tex]

Answer:

Step-by-step explanation:

First we try to factor x²-3x+2.

We have to look for two numbers that multiply to 2 and add -3.

The two numbers are -1 and -2.

(x-1)(x-2) = 0

x-1 = 0 -> x = 1

x-2 = -> x = 2

Now we find x^2.

(1)^2 = 1

(2)^2 =4

find the area of the figure pictured below. 3.8ft 8.3ft 7.4ft 3.9ft

Answers

The can be divided into two rectangles, one having length [tex]8.3[/tex] and width $3.8$

Another with, dimensions $7.4-3.8=3.6$ and $3.9$

Area of first rectangle=$3.8\times8.3=31.54$

Area of second rectangle =$3.6\times3.9=14.04$

Total area $=31.54+14.04=45.58$ ft²

Answer:

45.58 ft^2

Step-by-step explanation:

We can split the figure into two pieces

We have a tall rectangle that is 3.8 by 8.3

A = 3.8 * 8.3 =31.54 ft^2

We also have a small rectangle on the right

The dimensions are ( 7.4 - 3.8) by 3.9

A = 3.6*3.9 =14.04 ft^2

Add the areas together

31.54+14.04

45.58 ft^2

An amusement park is open 7 days a week. The park has 8 ticket booths, and each booth has a ticket seller from 10am to 6pm. On average, ticket sellers work 30 hours per week. Write and equation that can be used to find "t", the minimum number of ticket sellers the park needs. show work if possible.

Answers

Answer:

t = (448 hrs/ week) / (30 hrs / week)

Step-by-step explanation:

Number of times park opens in a week = 7

Number of ticket booth = 8

Opening hours = 10am - 6pm = 8 hours per day

Max working hours per ticket seller per week = 30 hours

Therefore each booth works for 8 hours per day,

Then ( 8 * 7) = 56 hours per week.

All 8 booths work for (56 * 8) = 448 hours per week

If Max working hours per ticket seller per week = 30 hours,

Then muninim number of workers required (t) :

Total working hours of all booth / maximum number of working hours per worker per week

t = (448 hrs/ week) / (30 hrs / week)

The graph of F(x), shown below in pink, has the same shape as the graph of
G(x) = x3, shown in gray. Which of the following is the equation for F(x)?

Answers

Greetings from Brasil...

In this problem we have 2 translations: 4 units horizontal to the left and 3 units vertical to the bottom.

The translations are established as follows:

→ Horizontal

F(X + k) ⇒ k units to the left

F(X - k) ⇒ k units to the right

→ Vertical

F(X) + k ⇒ k units up

F(X) - k ⇒ k units down

In our problem, the function shifted 4 units horizontal to the left and 3 units vertical to the bottom.

F(X) = X³

4 units horizontal to the left: F(X + 4)

3 units vertical to the bottom: F(X + 4) - 3

So,

F(X) = X³

F(X + 4) - 3 = (X + 4)³ - 3

The transformed function is f ( x ) = ( x + 4 )³ - 3 and the graph is plotted

What happens when a function is transformed?

Every modification may be a part of a function's transformation.

Typically, they can be stretched (by multiplying outputs or inputs) or moved horizontally (by converting inputs) or vertically (by altering output).

If the horizontal axis is the input axis and the vertical is for outputs, if the initial function is y = f(x), then:

Vertical shift, often known as phase shift:

Y=f(x+c) with a left shift of c units (same output, but c units earlier)

Y=f(x-c) with a right shift of c units (same output, but c units late)

Vertical movement:

Y = f(x) + d units higher, up

Y = f(x) - d units lower, d

Stretching:

Stretching vertically by a factor of k: y = k f (x)

Stretching horizontally by a factor of k: y = f(x/k)

Given data ,

Let the function be represented as g ( x )

Now , the value of g ( x ) = x³

And , the transformed function has coordinates as A ( -4 , -3 )

So , when function is shifted 4 units to the left , we get

g' ( x ) = ( x + 4 )³

And , when the function is shifted vertically by 3 units down , we get

f ( x ) = ( x + 4 )³ - 3

Hence , the transformed function is f ( x ) = ( x + 4 )³ - 3

To learn more about transformation of functions click :

https://brainly.com/question/26896273

#SPJ7

For this year's fundraiser, students at a certain school who sell at least 75 magazine subscriptions win a prize. If the fourth grade students at this school sell an average (arithmetic mean) of 47 subscriptions per student, the sales are normally distributed, and have a standard deviation of 14, then approximately what percent of the fourth grade students receive a prize

Answers

Answer:

The percentage is  k  =  2.3%

Step-by-step explanation:

From the question we are told that

  The  population mean is  [tex]\mu = 47[/tex]

    The  standard deviation is  [tex]\sigma = 14[/tex]

Given that the sales are normally distributed and that students at a certain school who sell at least 75 magazine subscriptions win a prize then the  percent of the fourth grade students receive a prize is mathematically represented as

     [tex]P(X > 75) = P(\frac{X - \mu }{\sigma } > \frac{75 - \mu }{\sigma })[/tex]

Generally

     [tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of \ X )[/tex]

So

   [tex]P(X > 75) = P(Z > \frac{75 - 47 }{14 })[/tex]

   [tex]P(X > 75) = P(Z > 2)[/tex]

From the standardized normal distribution table  

      [tex]P(Z > 2) =0.023[/tex]

=>   [tex]P(X > 75) = 0.023[/tex]

The  percentage of the fourth grade students receive a prize is  

  k =  0.023 * 100

   k  =  2.3%

   

Simplify 3 x times the fraction 1 over x to the power of negative 4 times x to the power of negative 3.

Answers

Answer:

3x^2

Step-by-step explanation:

3 x times the fraction 1 over x to the power of negative 4 => 3x * 1/x^-4

= 3x *x^4 = 3x^5

times x to the power of negative 3 => x^-3

3x^5 * x^-3 = 3x^2

Answer:

3x^2

Step-by-step explanation:

i got it right on the test on god!

Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0):

Answers

Answer:

It rotated 180 degrees

Step-by-step explanation:

If you use this image and paste in on to google docs you will be able to rotate the image. Use this tool so that your can identify the amount of degrees.

If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees

What is Quadrilateral?

In geometry a quadrilateral is a four-sided polygon, having four edges and four corners

What is Angle of rotation?

The angle of rotation is a measurement of the amount, of namely angle, that a figure is rotated about a fixed point, often the center of a circle.

Given,

Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0)

Consider the coordinates of D and D'

D(2,3) and D'(-2,-3)

Connect D and D'

∠D0D' = 180 Degrees

Hence, If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees

Learn more about Quadrilateral and Angle of rotation here

https://brainly.com/question/17106452

#SPJ2

Perimeter =68 Length (L) is 4 less than twice the width (W)

Answers

Answer:

Length = 21.3333333333;   Width: 12.6666666667

Step-by-step explanation:

Perimeter = 68

Perimeter of a rectangle:

2 (L +W)

Length (L) = 2W - 4

Width = W

2 ( 2W -4 +W) = 68

=> 2 (3W - 4) = 68

=> 6w -8 = 68

=> 6w = 76

=> w = 12.6666666667

Length = (12.6666666667 X 2) - 4

=> 21.3333333333

A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with mean 100 lb and 5 lb and standard deviation 1 lb and 0.5 lb, respectively. What percent of filled boxes weighing between 104 lb and 106 lb are to be expected?
a. 67%
b. None
c. 37%
d. 57%

Answers

Answer:

Option b. None is the correct option.

The Answer is 63%

Step-by-step explanation:

To solve for this question, we would be using the z score formula

The formula for calculating a z-score is given as:

z = (x-μ)/σ,

where

x is the raw score

μ is the population mean

σ is the population standard deviation.

We have boxes X and Y. So we will be combining both boxes

Mean of X = 100 lb

Mean of Y = 5 lb

Total mean = 100 + 5 = 105lb

Standard deviation for X = 1 lb

Standard deviation for Y = 0.5 lb

Remember Variance = Standard deviation ²

Variance for X = 1lb² = 1

Variance for Y = 0.5² = 0.25

Total variance = 1 + 0.25 = 1.25

Total standard deviation = √Total variance

= √1.25

Solving our question, we were asked to find the percent of filled boxes weighing between 104 lb and 106 lb are to be expected. Hence,

For 104lb

z = (x-μ)/σ,

z = 104 - 105 / √25

z = -0.89443

Using z score table ,

P( x = z)

P ( x = 104) = P( z = -0.89443) = 0.18555

For 1061b

z = (x-μ)/σ,

z = 106 - 105 / √25

z = 0.89443

Using z score table ,

P( x = z)

P ( x = 106) = P( z = 0.89443) = 0.81445

P(104 ≤ Z ≤ 106) = 0.81445 - 0.18555

= 0.6289

Converting to percentage, we have :

0.6289 × 100 = 62.89%

Approximately = 63 %

Therefore, the percent of filled boxes weighing between 104 lb and 106 lb that are to be expected is 63%

Since there is no 63% in the option, the correct answer is Option b. None.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be 63%.

What is a normal distribution?

It is also called the Gaussian Distribution. It is the most important continuous probability distribution. The curve looks like a bell, so it is also called a bell curve.

The z-score is a numerical measurement used in statistics of the value's relationship to the mean of a group of values, measured in terms of standards from the mean.

A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with a mean of 100 lb and 5 lb and standard deviation of 1 lb and 0.5 lb, respectively.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be

Then the Variance will be

[tex]Var = \sigma ^2[/tex]

Then for X, we have

[tex]Var (X) = 1^2 = 1[/tex]

Then for Y, we have

[tex]Var (Y) = 0.5^2 = 0.25[/tex]

Then the total variance will be

[tex]Total \ Var (X+Y) = 1 + 0.25 = 1.25[/tex]

The total standard deviation will be

[tex]\sigma _T = \sqrt{Var(X+Y)}\\\\\sigma _T = \sqrt{1.25}[/tex]

For 104 lb, then

[tex]z = \dfrac{104-105}{\sqrt{25}} = -0.89443\\\\P(x = 104) = 0.18555[/tex]

For 106 lb, then

[tex]z = \dfrac{106-105}{\sqrt{25}} = 0.89443\\\\P(x = 106) = 0.81445[/tex]

Then

[tex]P(104 \leq Z \leq 106) = 0.81445 - 0.18555 = 0.6289 \ or \ 62.89\%[/tex]

Approximately, 63%.

More about the normal distribution link is given below.

https://brainly.com/question/12421652

20 POINTS! You are planning to use a ceramic tile design in your new bathroom. The tiles are equilateral triangles. You decide to arrange the tiles in a hexagonal shape as shown. If the side of each tile measures 9 centimeters, what will be the exact area of each hexagonal shape?

Answers

Answer:

210.33 cm^2

Step-by-step explanation:

We know that 6 equilateral triangles makes one hexagon.

Also, an equilateral triangle has all its sides equal.

If the tile of each side of the triangular tile measure 9 cm, then the height of the triangular tiles can be gotten using Pythagoras's Theorem.

The triangle formed by each tile can be split along its height, into two right angle triangles with base (adjacent) 4.5 cm and slant side (hypotenuse) of 9 cm. The height  (opposite) is calculated as,

From Pythagoras's theorem,

[tex]hyp^{2} = adj^{2} + opp^{2}[/tex]

substituting, we have

[tex]9^{2} = 4.5^{2} + opp^{2}[/tex]

81 = 20.25 + [tex]opp^{2}[/tex]

[tex]opp^{2}[/tex] = 81 - 20.25 = 60.75

opp = [tex]\sqrt{60.75}[/tex] = 7.79 cm  this is the height of the right angle triangle, and also the height of the equilateral triangular tiles.

The area of a triangle = [tex]\frac{1}{2} bh[/tex]

where b is the base = 9 cm

h is the height = 7.79 cm

substituting, we have

area = [tex]\frac{1}{2}[/tex] x 9 x 7.79 = 35.055 cm^2

Area of the hexagon that will be formed = 6 x area of the triangular tiles

==> 6 x 35.055 cm^2 = 210.33 cm^2

How many ways can you arrange your 3 statistics books, 2 math books, and 1 computer science book on your bookshelf if (a) the books can be arranged in any order

Answers

Answer:

720 different ways.

Step-by-step explanation:

Permutation has to do with arrangement. For example, in order to arrange 'n' objects in any order, this can only be done in n! ways since there is no condition or restriction on how to arrange the objects.

n! = n(n-1)(n-2)... (n-r)!

If there are 3 statistics books, 2 math books, and 1 computer science book on your bookshelf, the total number of books altogether is 3 + 2 + 1 = 6 books.

The number of ways that 6 books can be arranged in any order is 6!.

6! = 6(6-1)(6-2)(6-3)(6-4)(6-5)

6! = 6*5*4*3*2*1

6! = 120*6

6!= 720 different ways.

Hence, the books on your shelf can be arranged in 720 different ways.

c. What is f (-5)?
When the function is f(x) =-3x+7

Answers

Answer:

f(-5) = 22

Step-by-step explanation:

f(x) =-3x+7

Let x = -5

f(-5) =-3*-5+7

      = 15 +7

       =22

3. Simplify the following
a)[(116)3 x 114]x 1212​

Answers

Answer:

48082464 is the answer

Step-by-step explanation:

=[(116)3×114] × 1212​

=[348×114] × 1212

=39672 × 1212

=48082464 is the answer

hope it will help :)

Hey There!!

All you really need To do is: Divide [(116)] 3 x 114] x 1212) ( 20 + 51 + 43) ÷ 7

Hope It Helped!~ ♡

ItsNobody~ ☆

Round 1, 165.492 to the nearest hundredth.

Answers

Answer:

1, 165.500

Step-by-step explanation:

1, 165.492 rounded to the nearest hundredth is 1, 165.500 because the hundredth space in the decimal is 5 or above, so the whole decimal gets rounded to the nearest hundred, which in this case, would be .500.

165.492 is the correct answer

How many months does it take for $700 to double at simple interest of 14%?
• It will take
number.
months to double $700, at simple interest of 14%.

Answers

It will approximately take 7 months to double $700 at a %14 interest rate.
700•.14=98
98 divided into 700= 7.14

Hello there are two questions in the link's if both were solved that would be awesome.

Answers

Answer:

[tex]\frac{x^{\frac{5}{6}} }{x^{\frac{1}{6}} } = x^{(\frac{5}{6} -\frac{1}{6}) }= x^{\frac{4}{6} }\\\sqrt{x} . \sqrt[4]{x} = x^{\frac{1}{2} } . x^{\frac{1}{4} } = x^{(\frac{1}{2} +\frac{1}{4}) } = x^{\frac{3}{4}[/tex]

Compute each matrix sum or product if it is defined. If an expression is undefined. Explain why. Let A = (3 4 0 -4 -1 4), B = (8 1 -4 -5 2 -4), C = (1 -1 3 1) and D = (3 -2 4 5).

- 2A, B - 2A, AC, CD

Compute the matrix product -2A.

A. -2A =

B. The expression-2A is undefined because A is not a square matrix.

C. The expression-2A is undefined because matrices cannot be multiplied by numbers.

D. The expression 2A is undefined because matrices cannot have negative coefficients.

Answers

Answer:

-2A = (-6, -8, 0, 8, 2, -8)

B - 2A = (2, -7, -4, 3, 4, -12)

AC is undefined.

CD = (3, 2, 12, 5)

Step-by-step explanation:

Given the matrices:

A = (3 4 0 -4 -1 4)

B = (8 1 -4 -5 2 -4)

C = (1 -1 3 1)

D = (3 -2 4 5)

We are required to compute the following

-2A, B - 2A, AC, CD

For -2A:

-2(3 4 0 -4 -1 4)

= (-6, -8, 0, 8, 2, -8)

For B - 2A:

Because B - 2A = B + (-2A), we have:

(8 1 -4 -5 2 -4) + (-6, -8, 0, 8, 2, -8)

(2, -7, -4, 3, 4, -12)

For AC:

(3 4 0 -4 -1 4)(1 -1 3 1)

This is undefined.

For CD:

(1 -1 3 1)(3 -2 4 5)

= (3, 2, 12, 5)

A new soft drink is being market tested. A sample of 400 individuals participated in the taste test and 80 indicated they like the taste. At 95% confidence, test to determine if at least 22% of the population will like the new soft drink.


Required:

Determine the p-value.

Answers

Answer: p-value of the test  = 0.167

Step-by-step explanation:

Given that,

sample size n = 400

sample success X = 80

confidence = 95%

significance level = 1 - (95/100) = 0.05

This is the left tailed test .

The null and alternative hypothesis is

H₀ : p = 0.22

Hₐ : p < 0.22

P = x/n = 80/400 = 0.2

Standard deviation of proportion α = √{  (p ( 1 - p ) / n }

α = √ { ( 0.22 ( 1 - 0.22 ) / 400 }

α = √ { 0.1716 / 400 }

α = √0.000429

α = 0.0207

Test statistic

z = (p - p₀) / α

z = ( 0.2 - 0.22 ) / 0.0207

z = - 0.02 / 0.0207

z = - 0.9661

fail to reject null hypothesis.

P-value Approach

P-value = 0.167

As P-value >= 0.05, fail to reject null hypothesis.

Since test is left tailed so p-value of the test is 0.167. Since p-value is greater than 0.05 so we fail to reject the null hypothesis.

In a recent survey of drinking laws, a random sample of 1000 women showed that 65% were in favor of increasing the legal drinking age. In a random sample of 1000 men, 60% favored increasing the legal drinking age. Test the claim that the percentage of men and women favoring a higher legal drinking age is different at (alpha 0.05).

Answers

Answer:

Step-by-step explanation:

Given that:

Let sample size of women be [tex]n_1[/tex]  = 1000

Let the proportion of the women be [tex]p_1[/tex] = 0.65

Let the sample size of the men be [tex]n_2[/tex] = 1000

Let the proportion of the mem be [tex]p_2[/tex]  = 0.60

The null and the alternative hypothesis can be computed as follows:

[tex]H_0: p_1 = p_2[/tex]

[tex]H_0a: p_1 \neq p_2[/tex]

Thus from the alternative hypothesis we can realize that this is a two tailed test.

However, the pooled sample proportion p = [tex]\dfrac{p_1n_1+p_2n_2 } {n_1 +n_2}[/tex]

p =[tex]\dfrac{0.65 * 1000+0.60*1000 } {1000 +1000}[/tex]

p = [tex]\dfrac{650+600 } {2000}[/tex]

p = 0.625

The standard error of the test can be computed as follows:

[tex]SE = \sqrt{p(1-p) ( \dfrac{1} {n_1}+ \dfrac{1}{n_2} )}[/tex]

[tex]SE = \sqrt{0.625(1-0.625) ( \dfrac{1} {1000}+ \dfrac{1}{1000} )}[/tex]

[tex]SE = \sqrt{0.625(0.375) ( 0.001+0.001 )}[/tex]

[tex]SE = \sqrt{0.234375 (0.002)}[/tex]

[tex]SE = \sqrt{4.6875 * 10^{-4}}[/tex]

[tex]SE = 0.02165[/tex]

The test statistics is :

[tex]z =\dfrac{p_1-p_2}{S.E}[/tex]

[tex]z =\dfrac{0.65-0.60}{0.02165}[/tex]

[tex]z =\dfrac{0.05}{0.02165}[/tex]

[tex]z =2.31[/tex]

At level of significance of 0.05  the critical value for the z test will  be in the region between - 1.96 and 1.96

Rejection region: To reject the null hypothesis if z < -1.96 or z > 1.96

Conclusion: Since the value of z is greater than 1.96, it lies in the region region. Therefore we reject the null hypothesis and we conclude that  the percentage of men and women favoring a higher legal drinking age is different.

20,000 is 10 times as much as

Answers

Answer:

2000

Step-by-step explanation:

20,000 is 2000 times the number 10.

What is an expression?

Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.

Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.

Given numbers are 20000 and 10. The number 20000 is how many times the number 10 will be calculated by dividing the number 20000 by 10.

E = 20000 / 10 = 2000

Therefore, the number 20,000 is 2000 times the number 10.

To know more about an expression follow

https://brainly.com/question/20066515

#SPJ2

Select the best answer for the question . 7. At a public swimming pool , the probability that an employee is a lifeguard is P(L) = 0.85 , and the probability that an employee is a teenager is P(T) = 0.58 . What's the probability that an employee is a lifeguard , given that the employee is a teenager ? O A. There isn't enough information given. O B. 1.47 OC. 0.68 O D.0.49​

Answers

Answer:

D)  0.49

Step-by-step explanation:

0.85 * 0.58 = 0.49

The probability is:

D  0.49

In an examination, 40% of the candidates failed. The number candidates who failed was 160. How many candidates passed the examination?

Answers

Answer:

240 candidates

Step-by-step explanation:

40% candidates failed, i. e. out of every 100 candidates 40 failed.

40 failed ----------------------------- 100 total students

1 failed --------------------------------100/40 total students, given 160 failed therefore

160 failed ----------------------------(100/40) x 160 total students

Total students = (100/40) x 160 = 400

Number of candidates passed = (total candidates) - (total candidates failed)

                                                   = 400 - 160 = 240 candidates

The function fix) = (x - 4)(x - 2) is shown.
What is the range of the function?
8
all real numbers less than or equal to 3
all real numbers less than or equal to -1
all real numbers greater than or equal to 3
all real numbers greater than or equal to - 1
6
2
16
2
14
COL
40
8
G D​

Answers

Answer:

The range of the function f(x)= (x-4)(x-2) is all real numbers greater than or equal to -1

Step-by-step explanation:

Other Questions
A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%. if a + b + c = 9 and ab + bc + ca = 26 find the value of a^2 + b^2 + c^2 ys is the perpendicular bisector of xz. What is the length of Xs if xz is 18 inches long? twice x,plus 8,is the same as -10 Figure out if the figure is volume or surface area.(and the cut out cm is 4cm) To what extent were the colonists' responses and forms of protest toward Britishrule just? WILL MARK BRAINLIEST!!!! PLZ HELP!!! A food packet is dropped from a helicopter and is modeled by the function f(x) = 15x2 + 6000. The graph below shows the height f(x), in feet, of the food packet at different times x, in seconds: Use the graph to determine the domain of f(x) for all viable x values, based on the context. x 6000 0 x 20 20 x 20 All real numbers Income statement data for Boone Company for two recent years ended December 31, are as follows: Current Year Previous Year Sales $396,000 $330,000 Cost of goods sold 330,400 280,000 Gross profit $65,600 $50,000 Selling expenses $17,600 $16,000 Administrative expenses 16,520 14,000 Total operating expenses $34,120 $30,000 Income before income tax $31,480 $20,000 Income tax expenses 12,600 8,000 Net income $18,880 $12,000 a. Prepare a comparative income statement with horizontal analysis, indicating the increase (decrease) for the current year when compared with the previous year. If required, round to one decimal place. Boone Company Comparative Income Statement For the Years Ended December 31 Current year Amount Previous year Amount Increase (Decrease) Amount Increase (Decrease) Percent Sales $396,000 $330,000 $ % Cost of goods sold 330,400 280,000 % Gross profit $65,600 $50,000 $ % Selling expenses 17,600 16,000 % Administrative expenses 16,520 14,000 % Total operating expenses $34,120 $30,000 $ % Income before income tax $31,480 $20,000 $ % Income tax expense 12,600 8,000 % Net income $18,880 $12,000 $ % b. The net income for Boone Company increased by 57.3% between years. This increase was the combined result of an in sales of 20% and percentage in cost of goods sold. The cost of goods sold increased at a rate than the increase in sales, thus causing the percentage increase in gross profit to be than the percentage increase in sales. The segments shown below could form a triangle.A. TrueB. False In a class test containing 10 questions, 5 marks are awarded for every correct answer and (2) marks are awarded for every incorrect answer and 0 for questions not attempted.Heena gets two correct and five incorrect answers out of seven questions she attempts. What is her score? If AC = 40, find the length of JK. Businesses should test data storage procedures periodically to ensure that backed up data is correct and complete, and that the storage media or cloud-based storage service works properly.A) TrueB) False Which promotion activity can you perform in a bookstore? A. A book signing B. Email Marketing C. blogging D. online coimpetitions Please answer question now The world on a turtles back Answer the following questions properly (complete sentences and direct citations/quotations where necessary) 3. What does The world on a turtles back suggest about the relationship between human beings and animals? be specific. 5-53/2-11 rationalize 99 litres of gasoline oil is poured into a cylindrical drum of 60cm in diameter. How deep is the oil in the drum? In a physics lab, Asha is given a 11.5 kg uniform rectangular plate with edge lengths 62.9 cm by 46.9 cm . Her lab instructor requires her to rotate the plate about an axis perpendicular to its plane and passing through one of its corners, and then prepare a report on the project. For her report, Asha needs the plate's moment of inertia ???? with respect to given rotation axis. Calculate ???? . BRAINLIEST, THANKS AND 5 STARS IF ANSWERED BOTH CORRECTLYWhich set of points represents a function? A. (-5, -4), (-4, -3), (-3, -2), (-2, -1) B. (-6, 2), (6, -2) (-5, 3), (-5, -3) C. (8, -1), (8, 2), (8, -3), (8, 4) D. (1, 3), (-4, 4), (3, -2), (1, 0) Which set of points represents a function? A. (2, -5), (4, 0), (7, 0), (2, 5) B. (-1, 4), (2, -4), (-1, -4), (-2, 4) C. (-5, -1), (-2, -1), (1, -1), (4, -1) D. (3, -5), (3, -1), (3, 2), (3, 4) Chemistry is often called the __________ science because it involves the study of the materials in the universe and the changes these materials undergo