1) Each of the following would be considered company-confidential except
A) a contract bid B) employee salaries C) your company's strategic plan D) your company's address
The substance xenon has the following properties:
normal melting point: 161.3 K
normal boiling point: 165.0 K
triple point: 0.37 atm, 152.0 K
critical point: 57.6 atm, 289.7 K
A sample of xenon at a pressure of 1.00 atm and a temperature of 204.0 K is cooled at constant pressure to a temperature of 163.7 K.Which of the following are true?
a. One or more phase changes will occur.
b. The final state of the substance is a liquid.
c. The final state of the substance is a solid.
d. The sample is initially a gas.
e. The liquid initially present will vaporize.
Answer:
the liquid woulriekwvhrnsshsnekwb ndrhwmoadi
In a device to produce drinking water, humid air at 320C, 90% relative humidity and 1 atm is cooled to 50C at constant pressure. If the duty on the unit is 2,200 kW of heat is removed from the humid air, how much water is produced and what is the volumetric flow rate of air entering the unit
Answer: hello your question lacks some data below is the missing data
Air at 32C has H = 0.204 kJ/mol and at 50C has H = -0.576 kJ/mol
H of steam can be found on the steam tables – vapor at 32C and 1 atm; vapor at 5C and liquid at 5C. Assume the volume of the humid air follows the ideal gas law.
H of water liquid at 5C = 21 kJ/kg; vapor at 5C = 2510.8 kJ/kg; H of water vapor at 32C = 2560.0 kJ/kg
Answer :
a) 34.98 lit/min
b) 1432.53 m^3/min
Explanation:
a) Calculate how much water is produced
density of water = 1 kg/liter
First we will determine the mass of condensed water using the relation below
inlet mass - outlet vapor mass = 0.0339508 * n * 18/1000 ----- ( 1 )
where : n = 57241.57
hence equation 1 = 34.98 Kg/min
∴ volume of water produced = mass of condensed water / density of water
= 34.98 Kg/min / 1 kg/liter
= 34.98 lit/min
b) calculate the Volumetric flow rate of air entering the unit
applying the relation below
Pv = nRT
101325 *V = 57241.57 * 8.314 * 305
∴ V = 1432.53 m^3/min
The human eye, as well as the light-sensitive chemicals on color photographic film, respond differently to light sources with different spectral distributions. Daylight lighting corresponds to the spectral distribution of the solar disk, which may be approximated as a blackbody at 5800K. Incandescent lighting from the usual household bulb corresponds approximately to the spectral distribution of a black body at 2900K. Calculate the band emission fractions for the visible region, 0.47 mu m to 0.65 mum, for each of the lighting sources. Calculate the wavelength corresponding to the maximum spectral intensity for each of the light sources
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
Values are gotten from the table named: blackbody radiation functions
a) Calculate the band emission fractions for the visible region
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
b)calculate wavelength corresponding to the maximum spectral intensity
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm