Answer:
True
Step-by-step explanation:
Each f(x) value increases by 5 so therefore this function would be linear
Hope you understand :)
the graph function f(x) is illustrated in figure below (-2,1) ,(-1,2) ,(1,2) ,(2,3) .Use the transformation techniques to graph the following functions
a) y=f(x)-2
b) y=f(-x)
Answer:
a) y = f(x) - 2 (x, y) ⇒ (x, y - 2)b) y = f(-x) (x, y) ⇒ (-x, y)a) y=f(x)-2
(-2, 1) → (-2, 1 - 2) = (-2, -1)(-1, 2) → (-1, 2 - 2) = (-1, 0)(1, 2) → (1, 2 - 2) = (1, 0)(2, 3) → (2, 3 - 2) = (2, 1)b) y=f(-x)
(-2, 1) → (-(-2), 1) = (2, 1)(-1, 2) → (-(-1), 2) = (1, 2)(1, 2) → (-1, 2)(2, 3) → (-2, 3)How many orders are possible to view 6 videos from a stack of 8 videos?
Answer:
28
Step-by-step explanation:
We know that ,
n C r = n! / ( n - r)! r! 8! / ( 8 - 6)! 6!8! / 2! × 6! 7 × 8 / 2 × 1 28Is this a function? Yes or no?
Answer:
NO
Step-by-step explanation:
NO
Which rectangle has an area of 18 square units? On a coordinate plane, a rectangle is 2 units high and 7 units wide. On a coordinate plane, a rectangle is 2 units high and 6 units wide. On a coordinate plane, a rectangle is 3 units high and 5 units wide. On a coordinate plane, a rectangle is 3 units high and 6 units wide.
Answer:
On a coordinate plane, a rectangle is 3 units high and 6 units wide.
Answer:
option "B"
You Welcome
Step-by-step explanation:
Children arrive at a house to do Halloween trick-or- treating according to a Poisson process at the unlucky rate of 13/hour. What is the probability that the time between the 15th and 16th arrivals will be more than 4 minutes ? (Hint: Think exponential.)
a) e e-2 = 0.1353
b) e-13/15 = 0.4204
c) e-1 = 0.3679
d) 1-2-1 = 0.6321
Answer:
0.4204 probability, option b.
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Children arrive at a house to do Halloween trick-or- treating according to a Poisson process at the unlucky rate of 13/hour
13 arrivals during an hour, which means that the mean time between arrivals, in minutes is of [tex]\mu = \frac{13}{60} = 0.2167[/tex]
What is the probability that the time between the 15th and 16th arrivals will be more than 4 minutes ?
This is P(X > 4). So
[tex]P(X > 4) = e^{-0.2167*4} = 0.4204[/tex]
So the correct answer is given by option b.
From the table below, determine whether the data shows an exponential function. Explain why or why not.
x
3
2
1
–1
y
8
2
0.5
0.125
a. No; the domain values are at regular intervals and the range values have a common factor 0.25. b. No; the domain values are not at regular intervals although the range values have a common factor. c. Yes; the domain values are at regular intervals and the range values have a common factor 4. d. Yes; the domain values are at regular intervals and the range values have a common factor 0.25.
9514 1404 393
Answer:
b. No; the domain values are not at regular intervals although the range values have a common factor.
Step-by-step explanation:
The differences between x-values are ...
-1, -1, -1, -2 . . . . not a constant difference
The ratios of y-values are ...
2/8 = 0.5/2 = 0.125/0.5 = 0.25 . . . . a constant difference
The fact that the domain values do not have a common difference renders the common factor of the range values irrelevant. The relation is not exponential.
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
A rectangular vegetable garden will have a width that is 3 feet less than the length, and an area of 54square feet. If x represents the length, then the length can be found by solving the equation: x(x-3)=54 What is the length, x, of the garden? The length is blank feet.
Answer: 9 feet
Step-by-step explanation:
From the information given, we have already been given the equation which is x(x-3)=54. Therefore we will find the value of x which will be:
x(x-3)=54
x² - 3x - 54
x² - 9x + 6x - 54
x(x - 9) + 6(x - 9)
Therefore,
(x - 9) = 0
x = 0 + 9
x = 9
The length is 9 feet
The width will be:
x - 3 = 9 - 3 = 6 feet
A computer monitor is listed as being 22 inches. This distance is the diagonal distance across the screen. If the screen measures 12 inches in height, what is the actual width of the screen to the nearest inch?
22 inches
18.43 inches
25.05 inches
32.5 inches
Answer
The width of the screen is 18.43.
Explanation
Use the Pythagorean Theorem (a^2+b^2=c^2) to find the height.
In a right triangle, a and b are legs. In this instance, a and b would be the height and width of the computer monitor. Let's say the height is a and the width is b (you're trying to find b). The hypotenuse of a right triangle is c. For the computer monitor, c is the diagonal.
So put in everything you know to find b; 12^2+b^2=22^2.
12^2 is 144 and 22^2 is 484. Now you have 144+b^2=484. When you simplify, you get b^2=340. When you simplify again, you find that b is about 18.43.
Here are the test scores for 8 students in Mr. M's class. 87, 55, 96, 38, 83, 64, 44, 81. What is the percentage of these test scores that are less than 84?
Answer:
75%
Step-by-step explanation:
Given that the score of 8 students in Mr. M's class are 87, 55, 96, 38, 83, 64, 44, 81, the scores less than 84 are 55, 38, 83, 64, 44, 81.
These means that 6 student had scores less that 84 of the 8 students hence the percentage of these test scores that are less than 84
= 6/8 * 100%
= 75%
This means that 75% of the students had scores less than 84
Which choice correctly shows the line y = -x?
А
B
NOW
-
1 2 3 4
NH
-4 -3 -2 -1 1 2 3 4
UN
С
2
1 2 3 4
-4-3-2/4 1 2 3 4
-4 -3 -2 -3
NA
2
At
2
Answer:
The answer is A
Step-by-step explanation:
Hope this helps
which is the correct answer ?
Answer:
11/12 cups
Step-by-step explanation:
2/3+1/4 = ( 2x4 + 3x1 )/( 3x4 ) = ( 8+3 )/12 = 11/12
Using the digits 2 through 8, find the number of different 5-digit numbers such that, digits can be used more than once.
Answer:
7 digits can be used for each position
There are a total of 5 positions
N = 7^5 = 16,807 numbers
You have 7 choices for the first position, second position, etc.
Question 2
A force F=5i+3j-2k is applied to move a block of cement from A(0,1,1) to B(4.-1,3).
Determine the work done by the force.
The work is simply the dot product of the force and displacement (which I assume are given in Newtons and meters, respectively):
W = F • d
W = (5i + 3j - 2k) N • ((4i - j + 3k) m - (j + k) m)
W = (5i + 3j - 2k) • (4i - 2j + 2k) Nm
W = (20 - 6 - 4) Nm
W = 10 J
(3x^3)^2 write without exponent
Answer:
9*x*x*x*x*x*x.
Step-by-step explanation:
(3x^3)^2
= 3^2 * x^(3*2)
= 3^2 * x^6
= 9*x*x*x*x*x*x
Find the distance between the points (-5, -4) and (3, 1).
On a coordinate plane, points are at (3, 1), (negative 5, negative 4).
Step-by-step explanation:
it will help u
WILL GIVE BRAINLIEST!!!
Write as a polynomial: 14b + 1 - 6(2 - 11b)
Answer:
80b-11
Step-by-step explanation:
14b + 1 - 6(2 - 11b)
Distribute
14b+1-12+66b
Combine like terms
80b-11
Answer:
80b - 11
Step-by-step explanation:
what is the problem ?
just multiply it out and combine terms.
14b + 1 - 6(2 - 11b) = 14b + 1 - 12 + 66b = 80b - 11
solve the inequality 4t^2 ≤ 9t-2 please show steps and interval notation. thank you!
Answer:
[0.25, 2]
Step-by-step explanation:
We have
4t² ≤ 9t-2
subtract 9t-2 from both sides to make this a quadratic
4t²-9t+2 ≤ 0
To solve this, we can solve for 4t²-9t+2=0 and do some guess and check to find which values result in the function being less than 0.
4t²-9t+2=0
We can see that -8 and -1 add up to -9, the coefficient of t, and 4 (the coefficient of t²) and 2 multiply to 8, which is also equal to -8 * -1. Therefore, we can write this as
4t²-8t-t+2=0
4t(t-2)-1(t-2)=0
(4t-1)(t-2)=0
Our zeros are thus t=2 and t = 1/4. Using these zeros, we can set up three zones: t < 1/4, 1/4<t<2, and t>2. We can take one random value from each of these zones and see if it fits the criteria of
4t²-9t+2 ≤ 0
For t<1/4, we can plug in 0. 4(0)²-9(0) + 2 = 2 >0 , so this is not correct
For 1/4<t<2, we can plug 1 in. 4(1)²-9(1) +2 = -3 <0, so this is correct
For t > 2, we can plug 5 in. 4(5)²-9(5) + 2 = 57 > 0, so this is not correct.
Therefore, for 4t^2 ≤ 9t-2 , which can also be written as 4t²-9t+2 ≤ 0, when t is between 1/4 and 2, the inequality is correct. Furthermore, as the sides are equal when t= 1/4 and t=2, this can be written as [0.25, 2]
Gieo 120 hạt giống của một loại cây thấy có 15 hạt nảy mầm. Với độ tin cậy 95% hãy tìm ước lượng khoảng cho tỷ lệ nảy mầm của loại hạt giống đó.
Mn giúp mình với ạ
Answer:
sorry can't understand the language
Linda found that the cost to get a swimming pool installed in her backyard is a linear function of the pool's area. A swimming pool with an area of 1,000 square feet can be installed for $50,000, whereas the installation of an 800 square foot swimming pool costs $35,000. Select the correct graph that models the given relationship.
Answer:
$35,000
Step-by-step explanation:
if $50,000 is to install an area of 1,000 square feet swimming pool and $35,000 can be used to install an 800 square foot swimming pool I think the best graph model is 800 square feet for $35,000 for a cost cut of $15,000 is a good bargain
In your office desk drawer you have 10 different flavors of fruit leather. How many distinct flavor groupings can you make with your fruit leather stash?
1) What is the opposite of adding 5?
2) What is the opposite of subtracting 20?
3) What is the opposite of multiplying by 1/2?
4) What is the opposite of dividing by 10?
Answer:
1) subtracting 5
2) adding 20
3) dividing by 2 (multiplying by 1/2)
4) multiplying by 1/10 (dividing by 10)
Step-by-step explanation:
There are four main operations in math: adding, subtracting, multiplying, and dividing. Each of the operations has an opposite. Adding and subtracting are opposites and multiplying and dividing are opposites. This means that subtracting can undo adding and vice versa; additionally, dividing can undo multiplying or vice versa. So, to find the opposite of something switch the operation to the opposite and keep the number. However, it is important to note that with multiplying and dividing you can also find the opposite by keeping the operation while changing the number to the reciprocal.
CAN SOMEONE HELP ME ON ANALYZING DOT PLOTS!!!
Answer:
yes
Step-by-step explanation:
but I can't see them here
Which expression has a value of 15 when it equals
2
49-57
3--5
61-28
28
19
Answer:
it is 61-28 but I not sure u can scan for any application to make sure u get it ur answer thx for
2(-x-4)+3=-7x+5+5x
Pls help!!!!!!!!
Find the value of x pls help
9514 1404 393
Answer:
x = 36°
Step-by-step explanation:
The exterior angle is equal to the sum of the remote interior angles. A linear pair is supplementary. So, you can find x either of two ways:
2x = x + (180 -4x) ⇒ 5x = 180 ⇒ x = 36
Or ..
4x = x + (180 -2x) ⇒ 5x = 180 ⇒ x = 36
The value of x is 36°.
In 2013, the Public Religion Research Institute conducted a survey of 1,033 adults, 18 years of age or older, in the continental United States. One of the questions on their survey was as follows:
Answer:
Probability[Number of people from church] = 0.26 (Approx.)
Step-by-step explanation:
Given:
Total number of adult in survey = 1,033
Missing information:
Number of people from church = 269
Find:
Probability[Number of people from church]
Computation:
Probability of an event = Number of favourable outcomes / Number of total outcomes
Probability[Number of people from church] = Number of people from church / Total number of adult in survey
Probability[Number of people from church] = 269 / 1,033
Probability[Number of people from church] = 0.2604
Probability[Number of people from church] = 0.26 (Approx.)
Solve the system, or show that it has no solution. (If there is no solution, enter NO SOLUTION. If there are an infinite number of solutions, enter the general solution in terms of x, where x is any real number.)
20x − 80y = 100
−14x + 56y = −70
(x, y) =
Answer:
The system has an infinite set of solutions [tex](x,y) = (x, \frac{x-5}{4})[/tex]
Step-by-step explanation:
From the first equation:
[tex]20x - 80y = 100[/tex]
[tex]20x = 100 + 80y[/tex]
[tex]x = \frac{100 + 80y}{20}[/tex]
[tex]x = 5 + 4y[/tex]
Replacing on the second equation:
[tex]-14x + 56y = -70[/tex]
[tex]-14(5 + 4y) + 56y = -70[/tex]
[tex]-70 - 56y + 56y = -70[/tex]
[tex]0 = 0[/tex]
This means that the system has an infinite number of solutions, considering:
[tex]x = 5 + 4y[/tex]
[tex]4y = x - 5[/tex]
[tex]y = \frac{x - 5}{4}[/tex]
The system has an infinite set of solutions [tex](x,y) = (x, \frac{x-5}{4})[/tex]
Need the answers from a - e
Answer:
10
Step-by-step explanation:
Sorry. I needed to answer this question to get access.
6. Aerial photography is to be taken of a tract of land that is 8 x 8 mi2. Flying height will be 4000 ft above average terrain, and the camera has focal length of 6 inches. If the focal plane opening is 9 x 9 in., and minimum side overlap is 30%, how many flight lines will be needed to cover the tract for the given data
Answer:
the number of flight lines needed is approximately 72
Step-by-step explanation:
Given the data in the question;
Aerial photography is to be taken of a tract of land that is 8 x 8 mi²
L × B = 8 x 8 mi²
Flying height H = 4000 ft = ( 4000 × 12 )inches = 48000 in
focal length f = 6 in
[tex]l[/tex] × b = 9 × 9 in²
side overlap = 30% = 0.3
meaning remaining side overlap = 100% - 30% = 70% = 0.7
{ not end to end overlap }
we take 100% { remaining overlap }
[tex]l[/tex]' = 9 × 100% = 9 in
b' = 9 × 70% = 6.3 in
Now the scale will be;
Scale = f/H
we substitute
Scale = 6 in / 48000 in = 1 / 8000
so our scale is; 1 : 8000
⇒ 1 in = 8000 in
⇒ 1 in = (8000 / 63360)mi
⇒ 1 in = 0.126 mi
so since
L × B = 8 x 8 mi²
[tex]l[/tex]' = ( 9 × 0.126 mi ) = 1.134 mi
b' = ( 6.3 × 0.126 mi ) = 0.7938 mi
Now we get the flight lines;
N = ( L × B ) / ( [tex]l[/tex]' × b' )
we substitute
N = ( 8 mi × 8 mi ) / ( 1.134 mi × 0.7938 mi )
N = 64 / 0.9001692
N = 71.0977 ≈ 72
Therefore, the number of flight lines needed is approximately 72