The perimeter of a triangle is the summation of the three sides of the triangle. Base on the assumed values, the length of side BD is 2.
For [tex]\triangle ACD[/tex], the sides are: AC, AD and CD
So, the perimeter is:
[tex]P_{\triangle ACD} = AC + AD + CD[/tex]
For [tex]\triangle ABD[/tex], the sides are: AB, AD and BD
So, the perimeter is:
[tex]P_{\triangle ABD} = AB + AD + BD[/tex]
The difference in the perimeters is:
[tex]P_{\triangle ACD} - P_{\triangle ABD} =1 + \sqrt 3[/tex]
So, we have:
[tex](AC + AD + CD) - ( AB + AD + BD) =1 + \sqrt 3[/tex]
Open brackets
[tex]AC + AD + CD - AB - AD - BD =1 + \sqrt 3[/tex]
Evaluate like terms
[tex]AC + CD - AB - BD =1 + \sqrt 3[/tex]
Make BD the subject
[tex]BD = AC + CD - AB - (1 + \sqrt 3)[/tex]
The solution cannot be completed because the side lengths of [tex]\triangle ACD[/tex] and [tex]\triangle ABD[/tex] are not given; so, I will assume the following values.
[tex]AC =2; CD = 1; AB = \sqrt 3[/tex]
[tex]BD = AC + CD - AB - (1 + \sqrt 3)[/tex] becomes
[tex]BD = 2 + 1 + \sqrt 3 - (1 + \sqrt 3)[/tex]
Open bracket
[tex]BD = 2 + 1 + \sqrt 3 - 1 - \sqrt 3[/tex]
Evaluate like terms
[tex]BD = 2[/tex]
Base on the assumed values, the length of side BD is 2.
Read more about perimeters at:
https://brainly.com/question/6465134
If an orange seller bought 5 dozen oranges at the rate of tk.60 per four and sold them at the rate of tk50 per four,how much did he lose
Answer:
tk 30
Step-by-step explanation:
5 dozen = 5 * 12 = 60 oranges
12/4 = 3
total cost = 60 * 3 = tk.180
total sell = 50 * 3 = tk 150
total lose = 180 - 150 = tk 30
Find the equations of the tangents to the curve x=9t2+3, y=6t3+3 that pass through the point (12,9).
Answer:
The equation will be "[tex]y=x-3[/tex]".
Step-by-step explanation:
Given:
Points (12, 9) = (x, y)
⇒ [tex]x=9t^2+3[/tex]
then,
[tex]\frac{dy}{dt}=18t[/tex]
or,
⇒ [tex]y=6t^3+3[/tex]
then,
[tex]\frac{dy}{dt}=18t^2[/tex]
⇒ [tex]\frac{dy}{dx}=\frac{18t^2}{18t}[/tex]
[tex]=t[/tex]
By using the point slope form.
The equation of tangent will be:
⇒ [tex]y-9=1(x-12)[/tex]
[tex]y-9=x-12[/tex]
[tex]y=x-12+9[/tex]
[tex]y=x-3[/tex]
Which equation does the graph represent?
A. x^2 + y^2 = 4
B. x^2/3^2 + y^2/4^2 = 1
C. (X - 1)^2 / 3^2 + y^2/4^2 = 1
D.X^2 / 4^2 + (y + 1)^2 / 3^2 = 1
9514 1404 393
Answer:
B. x^2/3^2 + y^2/4^2 = 1
Step-by-step explanation:
The graph looks like a circle, but is not. It is a unit circle scaled by a factor of 3 in the x-direction and a factor of 4 in the y-direction. Thus, its equation is ...
(x/3)^2 +(y/4)^2 = 1
x^2/3^2 +y^2/4^2 = 1
My flvs teacher said that she was asked to hold off on grading my assignment. She will give me a call back when when gets more information. Anyone have the same problem?
Answer:
yeah, teachers kinda suck
The measures of the exterior angles of a convex pentagon can be represented as follows: angle 1=X, angle 2= 2x+9, angle 3=3x+4, angle 4=4x+11, angle 5=5x+18
Find the measure of each angle
What is the solution to -41-2x + 6 = -24?
O x = 0
O x = 0 or x = -6
0 x = 0 or x = 6
Ono solution
Hello!
-41 - 2x + 6 = -24 <=>
<=> -35 - 2x = -24 <=>
<=> -2x = -24 + 35 <=>
<=> -2x = 11 <=>
<=> x = -11/2 or -5.5
Good luck! :)
The solution of the equation is only one solution.
What is Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides. LHS = RHS is a common mathematical formula.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
We have,
-41 - 2x + 6 = -24
Now, solving for x we get
-41 + 6 -2x = -24
-35 - 2x = -24
-2x = -24 + 35
-2x = 11
x = -11/2
x= -5.5
As, the equation of linear and have x= -5.5.
Thus, the equation have only one solution.
Learn more about Equation here:
https://brainly.com/question/29538993
#SPJ7
PLEASE HELP FAST!! I MIGHT GIVE BRAINLIEST TO FASTEST AND ACCURATE
After a special medicine is introduced into a petri dish full of bacteria, the number of bacteria remaining in the dish decreases rapidly.
The relationship between the elapsed time t, in seconds, and the number of bacteria, B(t) in the petri dish is modeled by the following function:
B(t) = 9300 x (1/64)^t
Complete the following sentence about the rate of change of the bacterial culture
The bacterial culture loses 1/2 of its size every_______ seconds
Answer:
1/6
Step-by-step explanation:
We want to find how long it takes for the bacteria to lose half its size. We can do this by taking one point of the bacteria and finding how long it takes to go to half its size. When t=0, 9300 * (1/64)^t = 9300 * 1 = 9300 as anything to the power of 0 is 1. Therefore, we can solve for t when the end result of the bacteria is 9300/2= 4650, making our equation
4650 = 9300 * (1/64)^t
divide both sides by 9300
1/2 = (1/64)^t
First, we can tell that 2^6 = 64*. Because of this, we can say that (1/2)^6 = 1^6/2^6 = 1/64, so (1/64)^(1/6) = 1/2. We know this because
(1/2)^6 = 64
take the 6th root of both sides
(1/2) = (64)^(1/6)
. This means that t=1/6, so the bacterial culture loses 1/2 of its size every 1/6 seconds
* if this is harder to figure out, e.g. 3 and 729, we can plug (log₃729) into a calculator
Answer:
0.17 seconds
Step-by-step explanation:
i got this correct on Khan :)
i hope it helps
ESSE
Combine these radicals.
27-3
O √24
O 23
O-23
0 -3/2
here's the answer to your question
What is the area if measurements are 6m x 5.2m
Answer:
33.00 355.2
5.0m x 6.7m 33.50 360.6
5.0m x 6.8m 34.00 366.0
5.0m x 6.9m 34.50 371.4
5.1m x 6.0m 30.60 329.4
5.1m x 6.1m 31.11 334.9
5.1m x 6.2m 31.62 340.4
5.1m x 6.3m 32.13 345.8
5.1m x 6.4m 32.64 351.3
5.1m x 6.5m 33.15 356.8
5.1m x 6.6m 33.66 362.3
5.1m x 6.7m 34.17 367.8
5.1m x 6.8m 34.68 373.3
5.1m x 6.9m 35.19 378.8
I need help with the question below
Answer:
a: 1/12
b: 1/6
c: 1/2
d: 1/2
e: 1/12
f: 1/3
Step-by-step explanation:
Add O used 6 cups of whole wheat flour and eggs we flower and ax cups of white flour in the recipe what is the equation that can be used to find the value of Y the total amount of flour that adult used in the recipe and what are the constraints and the values of X and Y
Answer:
6x+y
Step-by-step explanation:
Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x=t−t−1, y=1+t2, t=1
Answer:
Step-by-step explanation:
First, I would find the point on the curve. By substituting t=1, I get (x, y). Next, I will try to eliminate the t and make a xy equation. In this case, the t's will cancel out in 'x=t-t-1" which wouldnt make this a curve. To find the equation of the tangent line, find the deretitave of the xy equation, and subsitute x in to find the slope at that point. Next, use point slope form to find the equation at the point.
50 POINTS
Use the function f(x) to answer the questions.
f(x) = −16x2 + 22x + 3
Part A: What are the x-intercepts of the graph of f(x)? Show your work. (2 points)
Part B: Is the vertex of the graph of f(x) going to be a maximum or a minimum? What are the coordinates of the vertex? Justify your answers and show your work. (3 points)
Part C: What are the steps you would use to graph f(x)? Justify that you can use the answers obtained in Part A and Part B to draw the graph. (5 points)
work and answers below
Answer:
[tex]\text{Part A.}\\(-\frac{1}{8},0),\\(\frac{3}{2},0)\\\\\text{Part B.}\\(\frac{11}{16},\frac{169}{16})\\\\\text{Part C.}[/tex]
Draw a parabola concave down with vertex at [tex](\frac{11}{16},\frac{169}{16})[/tex]. Since the leading coefficient of the equation is -16, the parabola should appear thinner than its parent function [tex]y=x^2[/tex]. Ensure that the parabola passes through the points [tex](\(-\frac{1}{8},0)[/tex] and [tex](\frac{3}{2},0)[/tex].
Step-by-step explanation:
Part A:
The x-intercepts of a function occur at [tex]y=0[/tex]. Therefore, let [tex]y=0[/tex] and solve for all values of [tex]x[/tex]:
[tex]0=-16x^2+22x+3[/tex]
The quadratic formula states that the real and nonreal solutions to a quadratic in standard form [tex]ax^2+bx+c[/tex] is equal to [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex].
In [tex]-16x^2+22x+3[/tex], assign:
[tex]a\implies -16[/tex] [tex]b\implies 22[/tex] [tex]c\implies 3[/tex]Therefore, the solutions to this quadratic are:
[tex]x=\frac{-22\pm\sqrt{22^2-4(-16)(3)}}{2(-16)},\\x=\frac{-22\pm 26}{-32},\\\begin{cases}x=\frac{-22+26}{-32}=\frac{4}{-32}=\boxed{-\frac{1}{8}},\\x=\frac{-22-26}{-32}=\frac{-48}{-32}=\boxed{\frac{3}{2}}\end{cases}[/tex]
The x-intercepts are then [tex]\boxed{(-\frac{1}{8},0)}[/tex] and [tex]\boxed{(\frac{3}{2},0)}[/tex].
Part B:
The a-term is negative and therefore the parabola is concave down. Thus, the vertex will be the maximum of the graph. The x-coordinate of the vertex of a quadratic in standard form [tex]ax^2+bx+c[/tex] is equal to [tex]x=\frac{-b}{2a}[/tex]. Using the same variables we assigned earlier, we get:
[tex]x=\frac{-22}{2(-16)}=\frac{-22}{-32}=\frac{11}{16}[/tex]
Substitute this into the equation of the parabola to get the y-value:
[tex]f(11/16)=-16(11/16)^2+22(11/16)+3,\\f(11/16)=\frac{169}{16}[/tex]
Therefore, the vertex of the parabola is located at [tex]\boxed{(\frac{11}{16},\frac{169}{16})}[/tex]
What is the value if x
Answer:
Step-by-step explanation:
what are the solutions to the quadratic equation (5y + 6)² = 24
Answer:
no solution
Step-by-step explanation:
25y² +36 = 24
(5y + 6) (5y + 6)
roots -6/5, -6/5
solution is always a positive root
What is the y-intercept of the line y+11= -2(x+5)?
Answer:
y-intercept is (0, -21)
Step-by-step explanation:
For y-intercept, x = 0:
[tex]{ \sf{y + 11 = - 2(0 + 5)}} \\ { \sf{y + 11 = - 10}} \\ { \sf{y = - 21}}[/tex]
A map that was created
using a scale of 1 inch : 3 miles
shows a lake with an area of
18 square inches. What is the
actual area of the lake?
9514 1404 393
Answer:
162 mi²
Step-by-step explanation:
The area on the map is ...
18(1 in)²
Then the area on the ground will be ...
18(3 mi)² = 18·9 mi² = 162 mi²
Pls help me? I’m struggling
Answer: Number 1 is 150
Step-by-step explanation: If you put 72 / 48% in your calculator, you will get your answer.
I need help solving 10gallons = miles
Answer:
50?
Step-by-step explanation:
Because its 50 miles per gallon, so gallon time 50 will be the miles? I'm not sure but i think it is
prove ||a+b|| ≤ ||a||+|b||
Step-by-step explanation:
|a+b|=✓(a²+b²)
|a|+|b|=a+b
||a+b|| ≤ ||a||+|b||
Mr. Olaffsen opened a sandwich shop and a smoothie stand in his neighborhood.
The following table and equation show function f, representing Mr. Olaffsen's profit, in dollars, x months since opening the sandwich shop.
x 1 2 3 4 5 6 7
f(x) 12,000 15,500 18,000 19,500 20,000 19,500 18,000
The following table and equation show function g, representing Mr. Olaffsen's profit, in dollars, x months since opening the smoothie stand.
x 1 2 3 4 5 6 7
g(x) 9,300 12,000 14,100 15,600 16,500 16,800 16,500
Select the true statement.
A.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,200.
B.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,500.
C.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,000.
D.
The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $2,700.
Answer: the difference between the max is 3,200.
Step-by-step explanation:
20,000-16,800= 3,200
Answer:
the difference between the max is 3,200.
Step-by-step explanation:
20,000-16,800= 3,200
Fine the area and circumference of each circle and round to the nearest tenth.
Answer: A=πr²
A=3.14(1.6inch)² r=d/2⇒3.2/2⇒1.6
A=3.14×2.56in²
A=8.0384in²
A≈8.04
now circumference,
C=2πr
C=2×3.14×1.6in
C=10.048in
C≈10.05
A driveway is in the shape of a rectangle 20 feet wide by 25 feet long.
(a)
Find the perimeter in feet.
(b)
Find the area in square feet.
help pls!!!!!
What is the inequality for this verbal description?
The value of y is greater than or equal to the sum of five times the value of x
and negative three.
Answer:
y ≥ 5x+ (-3)
Step-by-step explanation:
greater than or equal to ≥
The sum means add
y ≥ 5x+ (-3)
Answer:
Option D, y ≥ 5x + (-3)
Step-by-step explanation:
Step 1: Make an expression
The value of y is greater than or equal to the sum of five times the value of x and negative three.
The value of y is greater than or equal to ← y ≥
The sum of five times the value of x and negative three ← 5x + (-3)
y ≥ 5x + (-3)
Answer: Option D, y ≥ 5x + (-3)
100 Points + Brainliest Again. They deleted my other for being too easy :P
What is the circumference of a circle with a radius of 20 inches?
Answer:
125.66 inches
Step-by-step explanation:
Step 1: Calculate the circumference
The circumference formula is: C = πd
Another way of saying that is: C = 2πr
C = 2π(20)
C = 40π
C ≈ 125.66 inches
Answer: 125.66 inches
Plz help me find side x on the triangle
Answer:
x=71
Step-by-step explanation:
Since this is an isosceles triangle as indicated by the lines on the sides, the sides lengths are equal.
When the sides are equal, the base angles are equal
x=71
work out the value of (4√2)^2
Answer:
32
Step-by-step explanation:
(4[tex]\sqrt{2}[/tex] )²
= 4[tex]\sqrt{2}[/tex] × 4[tex]\sqrt{2}[/tex]
= 4 × 4 × [tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex]
= 16 × 2
= 32
f(x+h)-f(x)
Find the difference quotient
h
where h# 0, for the function below.
f(x) = 4x? -
-8
Simplify your answer as much as possible.
f(x + h) - f(x)
:
h
Х
Okay
9514 1404 393
Answer:
8x +4h
Step-by-step explanation:
[tex]\dfrac{f(x+h)-f(x)}{h}=\dfrac{(4(x+h)^2-8)-(4x^2-8)}{h}\\\\=\dfrac{(4x^2 +8xh+4h^2)-(4x^2-8)}{h}=\dfrac{8xh+4h^2}{h}\\\\=\boxed{8x+4h}[/tex]
write your answer in simplest radical form
Answer:
3 =f
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 60 = f/ sqrt(3)
sqrt(3) tan 60 = f
sqrt(3) * sqrt(3) = f
3 =f
Use the Empirical Rule to answer the questions below:
The distribution of weights for newborn babies is approximately normally distributed with a mean of 7.6 pounds and a standard deviation of 0.7 pounds.
1. What percent of newborn babies weigh more than 8.3 pounds? %
2. The middle 95% of newborn babies weigh between and pounds.
3. What percent of newborn babies weigh less than 6.2 pounds? %
4. Approximately 50% of newborn babies weigh more than pounds.
5. What percent of newborn babies weigh between 6.9 and 9.7 pounds? %
Answer:
1. 16%
2. The middle 95% of newborn babies weigh between 6.2 and 9 pounds.
3. 2.5%
4. Approximately 50% of newborn babies weigh more than 7.6 pounds.
5. 83.85%
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 7.6 pounds, standard deviation of 0.7 pounds
1. What percent of newborn babies weigh more than 8.3 pounds?
7.6 + 0.7 = 8.3.
So more than 1 standard deviation above the mean.
The normal distribution is symmetric, which means that 50% of the measures are below the mean and 50% are above.
Of those above the mean, 100 - 68 = 32% are more than one standard deviation above the mean. So
[tex]0.32*0.5 = 0.16[/tex]
16% of newborn babies weigh more than 8.3 pounds.
2. The middle 95% of newborn babies weigh between and pounds.
Within 2 standard deviations of the mean, so:
7.6 - 2*0.7 = 6.2 pounds
7.6 + 2*0.7 = 9 pounds.
The middle 95% of newborn babies weigh between 6.2 and 9 pounds.
3. What percent of newborn babies weigh less than 6.2 pounds?
More than 2 standard deviations below the mean, which is 5% of the 50% below the mean, so:
[tex]p = 0.05*0.5 = 0.025[/tex]
2.5% of newborn babies weigh less than 6.2 pounds.
4. Approximately 50% of newborn babies weigh more than pounds.
Due to the symmetry of the normal distribution, the mean, so 7.6 pounds.
Approximately 50% of newborn babies weigh more than 7.6 pounds.
5. What percent of newborn babies weigh between 6.9 and 9.7 pounds?
6.9 = 7.6 - 0.7
9.7 = 7.6 + 3*0.7
Within 1 standard deviation below the mean(68% of the 50% below) and 3 standard deviations above the mean(99.7% of the 50% above). So
[tex]p = 0.68*0.5 + 0.997*0.5 = 0.8385[/tex]
83.85% of newborn babies weigh between 6.9 and 9.7 pounds.