Answer:
H. 40 inches
Step-by-step explanation:
On Wednesday, he is 40 inches taller. ... That would make 5 days of growth, for 100 inches. But this is only 3 days therefore he would grow 40 inches taller
What is the minimum perimeter of a rectangle with an area of 625 mm^2
Question 2 options:
100 mm
125 mm
156.25 mm
312.5 mm
Show your work:
Answer:
100 mm
Step-by-step explanation:
Square root the area to find the length of each side
[tex]\sqrt[]{625} =25[/tex]
Multiply 25 by 4 to get the sum of all four sides for the perimeter
25 x 4 = 100
What is the solution to this system of equations?
2x+y = 6
- - x - y = 2
0
0
(1, -1)
(0,8)
infinitely many solutions
no solution
Answer:
Step-by-step explanation:
{ 2/3 x+y=6
+
{ -2/3x-y=2
= 0=6
Hence,no solution.
Which of the following statements does not prove that ABCD is a parallelogram.
Given: A(-4, 7), B(3,0), C(2,-5) and D(-5, 2).
Answer:
answer A
Step-by-step explanation:
A=(-4,7)
C=(2,-5)
midpoint = U=((-4+2)/2, (7+(-5))/2)=(-1,1))
B=(3,0)
D=(-5,2)
midpoint = V=((3+(-5))/2,(0+2)/2)=( -1,1)
Diagonals have the same middle, the quadrilater is a parallogram.
Finish the following table for the given function with x as the independent variable
Answer:
hi?
Step-by-step explanation:
The length of a rectangle is 3 times the width. The perimeter of the rectangle is 64 cm. Show the equation that would be used to find the dimensions of the rectangle.
Answer:
64 = 2(3x + x)
Step-by-step explanation:
Perimeter of the rectangle = 64 cm
Width of the rectangle = x
Length of the rectangle = 3x
Perimeter of a rectangle = 2(length + width)
The equation is
64 = 2(3x + x)
64 = 6x + 2x
64 = 8x
x = 64/8
x = 8 cm
Width of the rectangle = x = 8 cm
Length of the rectangle = 3x
= 3(8 cm)
= 24 cm
Choose the graph that correctly corresponds to the equation y = −4
Answer:
e
Step-by-step explanation:
the graph should look something like this
choose the equation that satisfies the data in the table
[tex]\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}[/tex]
See this attachment
option D is correctb. Compare the similar triangle proof from question 3 with the inscribed square
proof. How are they different? Which method was easier for you to understand?
(1 point)
Answer:
i might be wrong but this is what i put
Step-by-step explanation:
In question 3 it was comparing three triangles where now it is using the triangles to find the area of a square instead of proving that they are the same.
WILL MARK BRAINLIEST
picture included^^^^
need help asap please n thank you!
^^^^
Answer:
14
Step-by-step explanation:
The a value is from the center to the maximum
We want from minimum to max so we need 2 times the amplitude
a = 7
2 *7 = 14
Pleaseeee helppppppp
Answer:
d = 8t
Step-by-step explanation:
A parallelogram is cut out of a 12 inch by 8 inch sheet of paper there are four right triangles remnats two have the dimensions 2 inches by 9 inches and the other two have the dimensions 3 inches by 6 inches
Answer:
96 in²
36 in²
60 in²
6.51 in
Step-by-step explanation:
Given that :
Dimension of paper = 12 in by 8 in
Dimension of right triangles :
2 in by 9 in ; 3 in by 6 in
Area of sheet of paper = 12 in * 8 in = 96 in²
Area of triangle = 1/2 base * height
Therefore, area of remnant right triangle :
2 * 1/2 * 2 * 9 = 18 in²
2 * 1/2 * 3 * 6 = 18 in²
Combined area of triangle left = 18in + 18in = 36 in²
Area of parallelogram = Area of sheet - Area of triangles left
Area of parallelogram = 96in² - 36in² = 60 in²
Base, b of parallelogram = 9.22 in
Area of parallelogram = base * altitude,h
60in² = 9.22h
h = 60 / 9.22 = 6.51 in
What is the area of this polygon
Answer:
51
Step-by-step explanation:
1. Approach
One is given the polygon, (ABCDE); the problem asks one to find the area of this polygon. The most logical step to take is to divide this polygon into easier parts, find the area of each part, and then add up the area to find the total area of the figure.
One way to divide this figure up is to draw the line (AC). This will create the triangle (ABC) and rectangle (ACDE).
2. Find the area of (ABC)
The formula to find the area of a triangle is the following:
[tex]A=\frac{b*h}{2}[/tex]
Where (b) is the base of the triangle, and (h) is the height. The base of the triangle (ABC) is (AC), which has a measure of (6) units. The height of the triangle is the distance from the base of the triangle to the vertex opposite the base. This measurement is (3) units. Substitute these values into the formula and solve for the area:
[tex]A=\frac{b*h}{2}[/tex]
Substitute,
[tex]A=\frac{6*3}{2}\\\\A=\frac{18}{2}\\\\A=9[/tex]
3. Find the area of (ACDE)
The formula to find the area of a rectangle is as follows:
[tex]A=b*h[/tex]
The base of the rectangle is the segment (AE), with a measure of (7) units. The height of the rectangle is the segment (AC) with a measurement of (6) units. Substitute these values into the formula and solve for the area:
[tex]A=7*6\\\\A=42[/tex]
4. Find the area of the total figure
To find the area of the total figure, add up the area of the triangle, and the area of the rectangle:
[tex]9+42= 51[/tex]
On a Job application Doris gave her age as 32 years. Her actual age at the time was about 27. What is the relative error fo her age?
Answer:
Relative error = 0.19
Step-by-step explanation:
From the question given above, the following data were obtained:
Measured age = 32 years
Actual age = 27 years
Relative error =?
Next, we shall determine the absolute error. This can be obtained as follow:
Measured age = 32 years
Actual age = 27 years
Absolute error =?
Absolute error = | Measured – Actual |
Absolute error = | 32 – 27 |
Absolute error = 5 years
Finally, we shall determine the relative error. This can be obtained as follow:
Absolute error = 5 years
Actual age = 27 years
Relative error =?
Relative error = Absolute error / Actual years
Relative error = 5 / 27
Relative error = 0.19
Can someone please help
Answer:
[tex]162.07[/tex]
Step-by-step explanation:
An image that creates represents this situation has been attached to this answer. As one can see, the diagram models the situation, the angle of depression represents the angle between the horizon line and the line of sight. The horizon line and the tower form a right angle (a (90) degree angle). This means that the angle of depression is complementary to the angle of sight. Therefore, one can state the following:
[tex](angle\ of\ depression) + (angle\ of \ sight)=90[/tex]
Substitute,
[tex](angle\ of\ depression) + (angle\ of \ sight)=90[/tex]
[tex](m<ABD)+(m<DBC)=90[/tex]
[tex]42+(m<DBC)=90[/tex]
Inverse operations,
[tex]42+(m<DBC)=90[/tex]
[tex]m<DBC=48[/tex]
Now one can use the right angle trigonometric ratios to solve this problem. The right angle trigonometric ratios are a series of ratios that describe the relationship between the sides and angles in a right triangle. These ratios are as follows:
[tex]sin(\theta)=\frac{opposite}{hypotenuse}\\\\cos(\theta)=\frac{adjacent}{hypotenuse}\\\\tan(\theta)=\frac{opposite}{adjacent}[/tex]
Bear in mind, the terms (opposite) and (adjacent) are subjective, and change depending on the reference angle. However, the term (hypotenuse) refers to the side opposite the right angle and is constant regardless of the reference angle.
In this case, one has found an angle in the triangle, one is given the measure of the side opposite this angle, and one is asked to find the side adjacent to this angle. Therefore, it would make the most sense to use the ratio tangent (tan).
[tex]tan(\theta)=\frac{opposite}{adjacnet}[/tex]
Substitute,
[tex]tan(48)=\frac{180}{adjacent}[/tex]
Inverse operations,
[tex]tan(48)=\frac{180}{adjacent}[/tex]
[tex]adjacent=\frac{180}{tan(48)}[/tex]
[tex]adjacent=162.07[/tex]
Harry reads that a particular element has an atom with a mass of 0.000000000012 grams. What is the weight of the atom expressed in scientific notation?
A.
1.2 × 10-9 grams
B.
1.2 × 10-11 grams
C.
1.2 × 1011 grams
D.
1.2 × 1012 grams
Answer:
Since this number is small we know that the exponent will be negative.
In scientific notation the decimal must be between the first two NON zero numbers. So move the decimal and count how many positions it was moved.
1.2 x 10 ^-11
Step-by-step explanation:
This Venn diagram shows the pizza topping preferences for 9 students.
What elements are in A and B?
(Look at picture)
Answer:
I think the answer is C.
QUICK! WHAT IS THIS ANSWER?
Answer:
a)2x-3y
b)4(9a-4)
Step-by-step explanation:
a)we want to expand the following expression:
[tex] \displaystyle - \frac{1}{4} ( - 8x + 12y)[/tex]
well to do so we consider distributive property thus distribute:
[tex] \displaystyle - \frac{1}{4} (- 8x )+ - \frac{1}{4}( 12y)[/tex]
reduce fraction which yields:
[tex] \displaystyle - \frac{1}{4} (- 8x )+ - \frac{1}{4}( 12y) \\ \\ \displaystyle 2x + ( - 3y)[/tex]
simplify Parentheses:
[tex] \displaystyle \boxed{ 2x - 3y}[/tex]
b)in the expression there's a common factor of 4 therefore factor it out:
[tex] \displaystyle 9.4a - 4.4 \\ \\ \displaystyle \boxed{4(9a - 4)}[/tex]
A random sample of 13 teenagers were surveyed for a hypothesis test about the mean weekly amount spent on convenience goods. Researchers conduct a one-mean hypothesis test, at the 1% significance level, to test whether the average spent per week on convenience goods is greater than 50 dollars.
Answer:
Please find the complete question and the graph in the attached file.
Step-by-step explanation:
On the basis of the data,
The level of importance is [tex]\alpha = 0.01[/tex]
Freedom levels [tex]= n -1 = 13 -1 = 12[/tex]
For the right-tailed test, the critical value is [tex]t_c = 2.681[/tex]
(Partially t-table permitted [tex]\alpha = 0.01 \ and\ df =12[/tex])
Mrs. Kennedy is teaching an 8th grade class. She is standing 7 meters in front of Catherine. Davis is sitting to Catherine’s left. If Davis and Mrs. Kennedy are 12 meters apart, how far apart are Davis and Catherine?
13.90 meters
5 meters
9.75 meters
4.36 meters
Answer:
9.75 meters
Step-by-step explanation:
Davis and Catherine are approximately 13.90 meters apart.
How to determine distance apartTo find the distance between Davis and Catherine, we can use the concept of right triangles and apply the Pythagorean theorem.
Let's consider a right triangle where the distance between Davis and Mrs. Kennedy is the base, the distance between Mrs. Kennedy and Catherine is the height, and the distance between Davis and Catherine is the hypotenuse.
According to the given information, Mrs. Kennedy is 7 meters in front of Catherine, and Davis and Mrs. Kennedy are 12 meters apart.
Using the Pythagorean theorem, we have:
(Base)² + (Height)² = (Hypotenuse)²
Substituting the given values:
(12)² + (7)² = (Hypotenuse)²
Simplifying the equation:
144 + 49 = (Hypotenuse)²
193 = (Hypotenuse)²
Taking the square root of both sides:
√193 ≈ 13.89 = 13.90
Therefore, Davis and Catherine are approximately 13.90 meters apart.
Learn more about distance at
https://brainly.com/question/26550516
#SPJ2
Help me plss I’m lost ☺️❤️
Answer:
there is only one way to to roll a 3
1/36 = .044 = 4.4%
Step-by-step explanation:
Analyze the diagram below and complete the instructions that follow.
Quadrilateral LMNO is a rectangle. Find MN.
A.
7
B.
10
C.
18
D.
27
Answer:
there is no diagram ......
Solve the equation sine Ф=0.6792 for 0°≤Ф≤360
Answer:
42.78⁹, 137.22⁹.
Step-by-step explanation:
sine Ф=0.6792
Angle Ф in the first quadrant = 42.78 degrees.
The sine is also positive in the second quadrant so the second solutio is
180 - 42.78
= 137.33 degres.
PLZZZZ HELPPPP… IF NOT 100% SURE PLZZ DONT ANSWER! BRAINLIEST TO FIRST AND CORRECT ANSWER!
Answer:
7/10
Step-by-step explanation:
½ of a cup of cheddar=½ x 1=½
⅕ of a cup of parmesan=⅕ x 1=⅕
all cheese used=½ + ⅕= 7/10
Which angles are adjacent to each other?
• Angle KGD and Angle AEB
• Angle BEC and Angle AEB
• Angle AEB and Angle ECU
• Angle JCI and Angle KGD
Answer:
Step-by-step explanation:
adjacent angles have a common vertex and a common ray
∠BEC and ∠AEB (common vertex E common ray EB)
please help
yuffytdgtutidrysryrdf
Answer:
19 + 1 + 9 + 1
put any of those in the slots
Answer:
19 + 1 + 9 + 1
peace
What is the solution to this equation?
log_8 16 + 2log_8x =2
The value of x for the given equation [tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2 will be 2 so option (B) must be correct.
What is a logarithm?The exponent indicates the power to which a base number is raised to produce a given number called a logarithm.
In another word, a logarithm is a different way to denote any number.
Given the equation
[tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2
We know that,
xlogb = log[tex]b^{x}[/tex]
So,
2[tex]log_{8}[/tex](x) = logx²
For the same base
logA + logB = log(AB)
So,
[tex]log_{8}[/tex](16) + [tex]log_{8}[/tex](x)² = 2
[tex]log_{8}[/tex](16x²) = 2
We know that
[tex]log_{a}[/tex](b) = c ⇒ b = [tex]a^{c}[/tex]
so,
[tex]log_{8}[/tex](16x²) = 2 ⇒ 8² = 16x²
x = 2 hence x = 2 will be correct answer.
For more about logarithm
https://brainly.com/question/20785664
#SPJ2
(8) The average daily temperatures in July of some cities in Texas are shown in the table. Which
of the following fiets the cities from greatest temperature to least temperatura
City
Average Daily
Temperature
Austin
84.52F
Dallas
85.9°F
San Antonio
85 F
Fort Worth
85.31°F
a. Dallas, Fort Worth, San Antonio, Austin
b. Austin, Dallas, San Antonio, Fort Worth
c. Austin, San Antonio, Fort Worth, Dallas
d. Dallas, San Antonio, Fort Worth, Austin
Answer:
A.
Step-by-step explanation:
85.9 > 85.31 > 85 > 84.52
Dallas, Fort Worth, San Antonio, Austin
10 fracciones que generen decimales exactos 10 fracciones que generen decimales inexactos puros y 10 fraccionarios que generen decimales periódicos mixtos
Answer:
Un número decimal exacto es algo de la forma:
3.27
Para reescribir este número como una fracción, podemos ver que tiene dos dígitos luego del punto.
Entonces podemos multiplicar y dividir por 100 (misma cantidad de ceros que dígitos luego del punto decimal)
así obtenemos:
3.27*(100)/(100) = 327/100
Entonces la fracción 327/100 genera un decimal exacto.
Así, encontrar 10 fracciones es trivial, 10 ejemplos son:
7/10 = 0.7
314/100 = 3.14
27/10 = 2.7
27/100 = 0.27
2/10 = 0.2
25/100 = 0.25
31/10 = 3.1
12/10 = 6/5 = 1.2
131/10 = 13.1
142/100 = 1.42
Ahora, un decimal inexacto puro es algo de la forma:
3.33...
donde el 3 se repite infinitamente.
Tratemos de reescribir este número como una fracción:
primero debemos ver la cantidad de dígitos que se repiten, en este caso es uno solo, el 3, entonces multiplicamos por 10:
3.33*10 = 33.33...
Ahora, podemos restar el numero original:
33.333... - 3.333... = 30
Entonces tenemos que:
3.33*9 = 30
3.33 = 30/9
La fracción:
30/9 nos da in decimal inexacto puro.
Ahora que sabemos construirlas, 10 ejemplos pueden ser:
30/9 = 3.33....
1/3 = 0.33...
40/9 = 4.44...
50/9 = 5.55...
60/9 = 6.66...
70/9 = 7.77...
20/9 = 2.22...
55/9 = 6.11...
544/99 = 5.5959...
10/9 = 1.11...
Finalmente, un periódico mixto es algo de la forma:
1.2343434...
Es decir, el 34 se repite infinitamente, pero también tenemos un 2 luego del punto decimal, por lo que este número no es puramente periódico.
Para construirlos, podemos tomar una fracción exacta, como
1.1 y una periódica, como 1.11...
Si las sumamos, obtenemos:
1.1 + 1.11... = 2.211...
donde el uno se repetirá infinitamente.
Así, simplemente sumando las fracciones del primer caso con las del segundo, obtendremos decimales periódicos mixtos, por ejemplo:
7/10 + 55/9 = 613/90 = 0.7 + 6.11... = 6.8111....
7/10 + 10/9 = 163/90 = 0.7 + 1.11... = 1.811....
31/10 + 10/9 = 379/90 = 3.1 + 1.11... = 4.2111...
31/10 + 20/9 = 479/90 = 3.1 + 2.22... = 5.322...
31/10 + 30/9 = 579/90 = 3.1 + 3.33... = 6.4333...
27/10 + 20/9 = 443/90 = 2.7 + 2.22... = 4.922...
37/10 + 20/9 = 533/90 = 3.7 + 2.22... = 5.922...
4/10 + 10/9 = 136/90 = 0.4 + 1.11... = 1.511....
3/100 + 10/9 = 1027/900 = 0.03 + 1.11... = 1.14111...
4/10 + 20/9 = 236/90 = 0.4 + 2.22... = 2.622....
Solve the equation for x: (4x+38) + (2x-18)=180
Answer:
80/3
Step-by-step explanation:
try mathw4y it helps alot.
Answer:
x = 80/3
Step-by-step explanation:
(4x+38) + (2x-18)=180
Combine like terms
6x +20 = 180
Subtract 20 from each side
6x+20 -20 = 180-20
6x = 160
Divide by 6
6x/6 = 160/6
x = 80/3
help asap no wrong answers----------------------
Answer:
[tex]y=-2(sin(2x))-7[/tex]
Step-by-step explanation:
1. Approach
Given information:
The graph intersects the midline at (0, -7)The graph has a minimum point at ([tex]\frac{\pi}{4}[/tex], 9).What conclusions can be made about this function:
The graph is a sine function, as its y-intercept intersects the midlineThis graph has a negative coefficient, this is because after intersecting the midlines at the y-intercept, the function has a minimum.This graph does not appear to have undergone any horizontal shift, as it intercepts the midlines with its y-interceptTherefore, one has the following information figured out:
[tex]y=-n(sin(ax))+b[/tex]
Now one has to find the following information:
amplitudemidlineperiod2. Midline
The midlines can simply be defined as a line that goes through a sinusoidal function, cutting the function in half. This is represented by the constant (b). One is given that point (0, -7) is where the graph intersects the midline. The (y-coordinate) of this point is the midline. Therefore, the midline is the following:
y = -7
2. Amplitude
The amplitude is represented by the coefficient (n). It can simply be defined by the distance from the midline to point of maximum (the highest part of a sinusoidal function) or point of minimum (lowest point on the function). Since the function reaches a point of minimum after intercepting the (y-axis) at its midlines, the amplitude is a negative coefficient. One can find the absolute value of the amplitude by finding the difference of the (y-coordinate) of the point of minimum (or maximum) and the absolute value of the midline.
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline: [tex]y=-7[/tex]
Amplitude: 9 - |-7| = 9 - 7 = 2
3. Period
The period of a sinusoidal function is the amount of time it takes to reach the same point on the wave. In essence, if one were to select any point on the sinusoidal function, and draw a line going to the right, how long would it take for that line to reach a point on the function that is identical to the point at which it started. This can be found by taking the difference of the (x- coordinate) of the intersection point of the midline, and the (x-coordinate) of the point of minimum, and multiplying it by (4).
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline intersection: [tex](0, -7)[/tex]
Period: [tex]4(\frac{\pi}{4}-0)=4(\frac{\pi}{4})=\pi[/tex]
However, in order to input this into the function in place of the variable (a), one has to divide this number by ([tex]2\pi[/tex]).
[tex]a=\frac{2\pi}{\pi}=2[/tex]
4. Assemble the function
One now has the following solutions to the variables:
[tex]n =-16\\a=2\\b=-7\\[/tex]
Substitute these values into the function:
[tex]y=-2(sin(2x))-7[/tex]