plsssssss help me here​

Plsssssss Help Me Here

Answers

Answer 1
00 0 0 0 i’m sure it’s that

Related Questions

Problema:

Una nevera de vinos, con un peso bruto de 50 kg., que tiene las siguientes dimensiones: .60 m Largo x .49 m ancho x .50 m altura. Para ser transportadas en un contenedor de 40 pies D.V. responder las siguientes preguntas:

• 1.Cuántas neveras de vinos de acuerdo al volumen caben en un contenedor de 40 pies?

• De acuerdo dimensiones internas (largo, ancho y alto), ¿Cuántas caben en un contenedor de 40 pies?

• De acuerdo al peso que soporta el contenedor. ¿Cuántas neveras de vinos es posible transportar?

Answers

Answer:

I can't understand this language .

what are some quality assurance systems

Answers

Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.

6. When the engine stalls or the power unit fails, on a car with power
brakes, the service brake pedal will
A. Take about the same amount of pressure
B. Take more pressure to stop
C. Take less pressure to stop
D. Become locked in place and no longer help stop the car

Answers

B

But

I think

So yea it prob isn’t

3-71A 20mm diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15 degrees, what must be the length of the bar

Answers

Answer:

The right answer is "1.903 m".

Explanation:

Given that,

[tex]\tau =110 \ MPa[/tex]

[tex]G=80 \ GPa[/tex]

[tex]\Theta=15\times \frac{\pi}{180}[/tex]

   [tex]=\frac{\pi}{12}[/tex]

[tex]d=20 \ mm[/tex]

As we know,

⇒ [tex]\frac{\tau}{r}=\frac{G \Theta}{L}[/tex]

Or,

⇒ [tex]L=\frac{G \theta r}{\tau}[/tex]

       [tex]=\frac{80\times 10^3}{110}\times \frac{\pi}{12}\times 10[/tex]

       [tex]=1903.9 \ mm[/tex]

or,

       [tex]=1.903 \ m[/tex]

Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turbine if the steam is exhausted as a saturated vapor?

Answers

Answer:

[tex]\eta_{turbine} = 0.603 = 60.3\%[/tex]

Explanation:

First, we will find actual properties at given inlet and outlet states by the use of steam tables:

AT INLET:

At 4MPa and 350°C, from the superheated table:

h₁ = 3093.3 KJ/kg

s₁ = 6.5843 KJ/kg.K

AT OUTLET:

At P₂ = 125 KPa and steam is saturated in  vapor state:

h₂ = [tex]h_{g\ at\ 125KPa}[/tex] = 2684.9 KJ/kg

Now, for the isentropic enthalpy, we have:

P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K

Since s₂ is less than [tex]s_g[/tex] and greater than [tex]s_f[/tex] at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

[tex]x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88[/tex]

Now, we will find [tex]h_{2s}[/tex](enthalpy at the outlet for the isentropic process):

[tex]h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg[/tex]

Now, the isentropic efficiency of the turbine can be given as follows:

[tex]\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%[/tex]

A start-up is expanding overseas and spends an excessive amount of time on recruiting and hiring activities, hindering its ability to focus on the core aspects of its business. How can a Human Capital Management (HCM) platform provider benefit this company?

Answers

Answer:

Human Capital Management (HCM) will help the start-up firm manage its recruiting and hiring activities.

Explanation:

Human Capital Management (HCM) Platform will assist the start-up firm manage its main point of access by keeping the employee records and maintaining the wages and salaries, managing the benefits, time, and attendance, and carrying out performance reviews including looking after the most important asset employees.

Use pseudocode. 1) Prompt for and input a saleswoman's sales for the month (in dollars) and her commission rate (percentage). Output her commission for that month. Note that you will need the following Variables: SalesAmount CommissionRate CommissionEarned
You will need the following formula: CommissionEarned= Sales Amount * (commissionrate/100)

Answers

Answer:

The pseudocode is as follows:

Input SalesAmount

Input CommissionRate

CommissionEarned= SalesAmount * (CommissionRate/100)

Print CommissionEarned

Explanation:

This gets input for SalesAmount

Input SalesAmount

This gets input for CommissionRate

Input CommissionRate

This calculates the CommissionEarned

CommissionEarned= SalesAmount * (CommissionRate/100)

This prints the calculated CommissionEarned

Print CommissionEarned

James the Pilot James is a pilot. He is wearing a flight suit. He flies to Paris. He loves flying. 1. James is a a) teacher b) doctor c) pilot. whatisthe 2. He is wearing a a) shirt b) t-shirt c) flight suit. 3. Where does he fly to? a) Italy b) Luxembourg c) Paris http https://whatistheurl.com Please visit our site for worksheets and charts

Answers

Answer:

1.c

2.c

3.c

Explanation:

James is a  pilot, whistle. He is wearing a flight suit. Paris is the palace where does he fly to. Hence, option C, C, and C are correct.

What is the point of a flight suit?

When flying an aircraft, such as a military aircraft, a glider, or a helicopter, one must wear a full-body suit called a flight suit. These outfits are typically meant to keep the user warm and are also functional (they have many of pockets) (including fire ). In most cases, it looks like a jumpsuit.

The G suit, sometimes known as a "anti-G suit," is a one-piece jumpsuit that shields a pilot from the pressure of G forces pressing down on him and causing discomfort or unconsciousness.

The traditional attire for pilots of military and commercial aircraft, helicopters, and even gliders is flight suits or flyers coveralls. In areas where there is a risk of fire, ground personnel—including aircrews—often wear flight suits as well.

Thus, option C, C, and C are correct.

For more information about point of a flight suit, click here:

https://brainly.com/question/12302183

#SPJ2

Define chart name the different types of charts explain any three types of charts

Answers

Answer:

There are several different types of charts and graphs. The four most common are probably line graphs, bar graphs and histograms, pie charts, and Cartesian graphs. They are generally used for, and are best for, quite different things. ... Pie charts to show you how a whole is divided into different parts.

#carryonlearning

(50 POINTS) How many people use pipes in the world? How do you know this?

Answers

Answer:

7.9 billion people

Explanation:

What does Faraday's law of induction states?​

Answers

Explanation:

This relationship, known as Faraday's law of induction (to distinguish it from his laws of electrolysis), states that the magnitude of the emf induced in a circuit is proportional to the rate of change of the magnetic flux that cuts across the circuit.

Technician A says that a graphing multi-meter may be used to verify signals going to and from electrical and electronic components. Technician B says that digital storage oscilloscope may be used to verify signals going to and from electrical and electronic components. Who is correct

Answers

Answer:

Both are correct.

Explanation:

Graphing multi meter is used to verify signals that move from electrical components. Digital oscilloscope is an equipment which stores and analyzes input signals with digital technique.

Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligible changes in kinetic and potential energy. Find the isentropic efficiency of the compressor. Find the exit temperature of the air if the compressor was reversible.

Answers

Answer:

a) 1.9%

b) T2s = 505.5 k = 232.5°C

Explanation:

P1 = 95 kPa

T1 = 27°C  = 300 k

P2 = 600 kPa

T1 = 277°c  = 550 k

Table used : Table ( A - 17 ) Ideal gas properties of air

a) determining the isentropic efficiency of the compressor

Л = ( h2s - h1 ) / ( h2a -  h1 ) ---- ( 1 )

where ; h1 = 300.19 kJ/kg , T1 = 300 K , h2a = 554.74 kJ/kg , T2 = 550 k

To get h2s we have to calculate the the value of Pr2 using Pr1(relative pressure)

 Pr2 = P2/P1 * Pr = ( 600 / 95 ) * 1.306  hence; h2s = 500.72 kJ/kg

back to equation1

Л = 0.019 = 1.9%

b) Calculate the exit temperature of the air if compressor is reversible

if compressor is reversible the corresponding exit temperature

T2s = 505.5 k = 232.5°C

given that h2s = 500.72 kJ/kg

Determine the resolution of a manometer required to measure the velocity of air at 50 m/s using a pitot-static tube and a manometer fluid of mercury (density: 13,600 kg/m3) to achieve uncertainty of 5% (i.e., 2.5 m/s) and 1 % (0.5 m/s).

Answers

Answer:

a)  Δh = 2 cm,  b) Δh = 0.4 cm

Explanation:

Let's start by using Bernoulli's equation for the Pitot tube, we define two points 1 for the small entry point and point 2 for the larger diameter entry point.

            P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

Point 1 is called the stagnation point where the fluid velocity is reduced to zero (v₁ = 0), in general pitot tubes are used  in such a way that the height of point 2 of is the same of point 1

           y₁ = y₂

subtitute

           P₁ = P₂ + ½ ρ v₂²

           P₁ -P₂ = ½ ρ v²

where ρ is the density of fluid  

now we measure the pressure on the included beforehand as a pair of communicating tubes filled with mercury, we set our reference system at the point of the mercury bottom surface

           ΔP =ρ_{Hg} g h - ρ g h

           ΔP =  (ρ_{Hg} - ρ) g h

as the static pressure we can equalize the equations

          ΔP = P₁ - P₂

         (ρ_{Hg} - ρ) g h = ½ ρ v²

         v = [tex]\sqrt{\frac{2 (\rho_{Hg} - \rho) g}{\rho } } \ \sqrt{h}[/tex]

in this expression the densities are constant

        v = A  √h

       A =[tex]\sqrt{\frac{2(\rho_{Hg} - \rho ) g}{\rho } }[/tex]

 

They indicate the density of mercury rhohg = 13600 kg / m³, the density of dry air at 20ºC is rho air = 1.29 kg/m³

we look for the constant

        A = [tex]\sqrt{\frac{2( 13600 - 1.29) \ 9.8}{1.29} }[/tex]

        A = 454.55

we substitute

       v = 454.55 √h

to calculate the uncertainty or error of the velocity

         h = [tex]\frac{1}{454.55^2} \ v^2[/tex]

       Δh = [tex]\frac{dh}{dv}[/tex]   Δv

       [tex]\frac{\Delta h}{h } = 2 \ \frac{\Delta v}{v}[/tex]

Suppose we have a height reading of h = 20 cm = 0.20 m

             

a) uncertainty 2.5 m / s ( 0.05)

        [tex]\frac{\delta v}{v} = 0.05[/tex]

       [tex]\frac{\Delta h}{h}[/tex] = 2 0.05  

       Δh = 0.1 h

       Δh = 0.1  20 cm

       Δh = 2 cm

b) uncertainty 0.5 m / s ( Δv/v= 0.01)

        [tex]\frac{\Delta h}{h}[/tex] =  2 0.01

        Δh = 0.02 h

        Δh = 0.02 20

        Δh = 0.1 20 cm

        Δh = 0.4 cm = 4 mm

Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24 C and exits at 1 bar. If the refrigerant undergoes a throttling process, what is the quality of the refrigerant exiting the expansion valve.

Answers

Answer:

[tex]h_{1} = h_2} = 293.45 KJ/kg[/tex].

The quality of the refrigerant exiting the expansion valve is

[tex]x_{2}=0.193596[/tex].

Explanation:

Fluid given Ammonia.

Inlet 1:-

Temperature [tex]T_{1}[/tex] = [tex]24^{o} C[/tex].

Pressure [tex]P_{1}[/tex] = 10 bar.

Exit 2:-

Pressure [tex]P_{2}[/tex] = 1 bar.

Solution:-

For a steel alloy it has been determined that a carburizing heat treatment of 3-h duration will raise the carbon concentration to 0.38 wt% at a point 2.6 mm from the surface. Estimate the time (in h) necessary to achieve the same concentration at a 6.1 mm position for an identical steel and at the same carburizing temperature.

Answers

Answer:

The right answer is "16.5 hrs".

Explanation:

Given values are:

[tex]x_1=2.6 \ mm[/tex]

[tex]t_1=3 \ hrs[/tex]

[tex]x_2=6.1 \ mm[/tex]

As we know,

⇒ [tex]\frac{x^2}{Dt}=constant[/tex]

or,

⇒ [tex]\frac{x_1^2}{t_1} =\frac{x_2^2}{t_2}[/tex]

⇒ [tex]t_2=(\frac{x_2}{x_1})^2\times t_1[/tex]

By putting the values, we get

       [tex]=(\frac{6.1}{2.6} )^2\times 3[/tex]

       [tex]=5.5\times 3[/tex]

       [tex]=16.5 \ hrs[/tex]      

Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a uniformly distributed load = w, what is the moment present at a length of L/4?

Answers

Answer:

jsow

hfhcffnbxhdhdhdhdhdhdddhdhdgdhdhdhdhdhdhhhdhdjsksmalalaksjdhfgrgubfghhhhhhh

Explanation:

j

grudb

g The inside surface of a 17 mm inner diameter tube with a 2.4 mm thick wall indicates a temperature of 46 deg C. The outside temperature is 43 deg C. The tube is 5 m long. If the tube material has a conductivity of 0.15 W/m/K, estimate the heat transfer rate through the tube wall assuming SS 1D conduction. Indicate the direction of heat transfer with a or - sign ( meaning outward and vice versa). Express your answer using two significant digits in W.

Answers

Answer:

-50 W

Explanation:

The heat transfer rate Q = kA(T₂ - T₁)/d where k = thermal conductivity of material = 0.15 W/m-K, A = surface area of tube = πdL where d = diameter of tube = 17 mm = 0.017 m and L = length of tube = 5 m, T₁ = inside temperature = 46 °C, T₂ = outside temperature = 43 °C and d = thickness of tube = 2.4 mm = 0.0024 m

Since Q = kA(T₂ - T₁)/d ,

Q = kπdL(T₂ - T₁)/d

substituting the values of the variables into the equation, we have

Q = 0.15 W/m-K × π × 0.017 m × 5 m(43 °C  - 46 °C )/0.0024 m

Q = 0.01275π Wm/K(-3 K )/0.0024 m

Q = -0.03825π Wm/0.0024 m

Q = -0.1202 Wm/0.0024 m

Q = -50.07 W

Q = -50 W

So, the heat transfer rate is -50 W meaning heat transfer out of the tube.

The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.

Answers

Answer:

Explanation:

[tex]r_2=[/tex]∞

[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]

[tex]q=2\pi kD.[/tex]ΔT--------(1)

[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]

[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]

By equation (1) and (2)

[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT

[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)

From equation (3) and (4)

So for sphere [tex]R_a[/tex]→0

All of the following safety tips are true EXCEPT Select one: a. It is not acceptable to handle broken glass with your bare hands b. It is acceptable to grasp the electrical cord when removing an electrical plug from its socket c. It is not acceptable to immerse hot glassware in cold water d. It is not acceptable to reuse dirty glassware

Answers

Answer:

Explanation:

B. you would grab the plug closest to the outlet

If you don't have enough experience, it's always best to leave socket changing to the experts. If you make a mistake, you might inflict harm and potentially endanger yourself and other people. Read on if you're interested in learning how to change a socket safely. Thus, option D is correct.

What, removing an electrical plug from its socket?

Grip the plug, not the electrical cable, when taking an electrical plug out of its socket. Before handling an electrical switch, socket, or outlet, hands must be fully dry.

Reduce the extra so that it rests only on top of the existing plasterboard. If necessary, push it back a little by using your finger. Fill the dent with ready-mixed filler or powdered filler, whichever you want, and bring it flush with the surrounding wall. Allow to dry, then sand off any excess.

Therefore, It is acceptable to grasp the electrical cord when removing an electrical plug from its socket

Learn more about electrical plug here:

https://brainly.com/question/28932892

#SPJ5

A multipurpose transformer has a secondary coil with several points at which a voltage can be extracted, giving outputs of 5.60, 12.0, and 480 V. (a) The input voltage is 220 V to a primary coil of 230 turns. What are the numbers of turns in the parts of the secondary used to produce the output voltages

Answers

Answer:

Explanation:

A multipurpose transformer can act as step up as well as step down transformer according to the desired setting by a user.

When the voltage at the output is greater than the voltage at the input of the transformer then it acts as step-up transformer and vice-versa acting is a step down transformer.

Given that:

input (primary) voltage of the transformer, [tex]V_i=220~V[/tex]

no. of turns in the primary coil, [tex]N_i=230[/tex]

When the output voltage is 5.60 V:

[tex]V_o=5.60~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{5.60}{220}[/tex]

[tex]N_o=5.85\approx 6[/tex] turns compensating the losses

When the output voltage is 12.0 V:

[tex]V_o=12.0~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{12.0}{220}[/tex]

[tex]N_o=12.45\approx 13[/tex] turns compensating the losses

When the output voltage is 480 V:

[tex]V_o=480~V[/tex]

[tex]\frac{N_i}{N_o} =\frac{V_i}{V_o}[/tex]

[tex]\frac{N_o}{230}=\frac{480}{220}[/tex]

[tex]N_o=501.8\approx 502[/tex] turns compensating the losses

An industrial load with an operating voltage of 480/0° V is connected to the power system. The load absorbs 120 kW with a lagging power factor of 0.77. Determine the size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging.

Answers

Answer:

[tex]Q=41.33 KVAR\ \\at\\\ 480 Vrms[/tex]

Explanation:

From the question we are told that:

Voltage [tex]V=480/0 \textdegree V[/tex]

Power [tex]P=120kW[/tex]

Initial Power factor [tex]p.f_1=0.77 lagging[/tex]

Final Power factor [tex]p.f_2=0.9 lagging[/tex]

Generally the equation for Reactive Power is mathematically given by

Q=P(tan \theta_2-tan \theta_1)

Since

[tex]p.f_1=0.77[/tex]

[tex]cos \theta_1 =0.77[/tex]

[tex]\theta_1=cos^{-1}0.77[/tex]

[tex]\theta_1=39.65 \textdegree[/tex]

And

[tex]p.f_2=0.9[/tex]

[tex]cos \theta_2 =0.9[/tex]

[tex]\theta_2=cos^{-1}0.9[/tex]

[tex]\theta_2=25.84 \textdegree[/tex]

Therefore

[tex]Q=P(tan 25.84 \textdegree-tan 39.65 \textdegree)[/tex]

[tex]Q=120*10^3(tan 25.84 \textdegree-tan 39.65 \textdegree)[/tex]

[tex]Q=-41.33VAR[/tex]

Therefore

The size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging is

[tex]Q=41.33 KVAR\ \\at\\\ 480 Vrms[/tex]

Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.

Answers

Answer:

(a) the reversible power output of turbine is 5810 kw

(b) The second-law efficiency of he turbine = 86.05%

Explanation:

In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.

h1 = 3658 kJ/kg s1=7.167 kJ/kgK

In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state

h2 = 2682kl/kg S2= 7.694 kJ/kg

Assuming that the energy balance equation given  

Wout=m [h1-h2+(v1²-v2²) /2]

Let

W =5 MW

V1= 80 m/s  V2= 140 m/s

h1 = 3658kJ/kg  h2 = 2682 kJ/kg

∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)

m = 5.158kg/s

Consider the energy balance equation given  

Wrev,out =Wout-mT0(s1-s2)

Substitute Wout =5 MW m = 5.158kg/s 7

s1=  7.167 kJ/kg-K            s2= 7.694kJ/kg-K and 25°C .

Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)

= 5810 kW

(a) Therefore, the reversible power output of turbine is 5810 kw.

The given values of quantities were substituted and the reversible power output are calculated.

(b) Calculating the second law efficiency of the turbine:  

η=Wout/W rev,out

Let Wout =  5 MW and Wrev,out = 5810 kW  

η=(5 MW x 1000 kW)/(1 MW *5810)  

η= 86.05%

Match the test to the property it measures.

a. Rockwell
b. Inston
c. Charpy
d. Fatigue
e. Brinell
f. Izod

1. impact strength
2. stress vs strain
3. hardness
4. Endurance Limit

Answers

Answer:

a. Rockwell              3. hardness

b. Instron                 2. stress vs strain

c. Charpy                 1. impact strength

d. Fatigue                4. Endurance Limit

e. Brinell                  3. hardness

f. Izod                      1. impact strength

Explanation:

Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.

Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.

Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.

Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.

ow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:

Answers

Answer:

H(s) = 20 / [ 1 + s / 10^5 ]^2

Explanation:

Given data:

cutoff frequency = 100 kHz

stopband attenuation rate = 40 dB/decade

nominal passband gain = 20 dB

new nominal passband gain at cutoff = 14 dB

Represent the transfer function H(s)

The attenuation rate show that there are two(2) poles

H(s) = k / [ 1 + s/Wc ]^2  ----- ( 1 )

where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20

Input values into equation 1

H(s) = 20 / [ 1 + s / 10^5 ]^2

If a heat engine has an efficiency of 30% and its power output is 600 W, what is the rate of heat input from the combustion phase

Answers

Answer:

The heat input from the combustion phase is 2000 watts.

Explanation:

The energy efficiency of the heat engine ([tex]\eta[/tex]), no unit, is defined by this formula:

[tex]\eta = \frac{\dot W}{\dot Q}[/tex] (1)

Where:

[tex]\dot Q[/tex] - Heat input, in watts.

[tex]\dot W[/tex] - Power output, in watts.

If we know that [tex]\dot W = 600\,W[/tex] and [tex]\eta = 0.3[/tex], then the heat input from the combustion phase is:

[tex]\eta = \frac{\dot W}{\dot Q}[/tex]

[tex]\dot Q = \frac{\dot W}{\eta}[/tex]

[tex]\dot Q = \frac{600\,W}{0.3}[/tex]

[tex]\dot Q = 2000\,W[/tex]

The heat input from the combustion phase is 2000 watts.

Alice and Bob both have RSA Public-Private key pairs: (PUA, PRA) and (PUB, PRB). They also have cryptographic functions E_AES / D_AES to encrypt / decrypt using AES; and E_RSA and D_RSA to encrypt / decrypt using RSA. Alice wants to sent a high resolution video of a large secret facility to Bob.
A. Show how Alice can securely and efficiently send the video to Bob. You are required to use the cryptographic functions above to get full credit;
B. Does your solutions assure confidentiality? How / Why not?
C. Does your solutions assure non-repudiation? How / Why not?
D. Does your solutions assure integrity? How / Why not?
E. Does your solutions assure replay attacks? How / Why not?

Answers

Solution :

B. yes, the given solution assures confidentiality. The sender Alice encrypting his messages with its own private key PRA which provides authentication. Sender Alice further encrypts his messages with the receiver's public key PUB provides confidentiality.

C. So the given solution provides non repudiation. Alice and Bob who are exchanging messages. In one case, Alice denies sending a messages to Bob that he claims to have received being able to counter Alice's denial is caused non repudiation of origin.

D. The given solution provides integrity. Because it provides authentication and have not been changed.

E. It does not provide replay attacks because it does not captures the traffic. The client does not receive the messages twice.

Lab 5A Problem Input two DWORD values from the keyboard. Determine which number is larger or if they are even. Your program should look like the following: First number larger Enter a number 12 Enter a number 10 12 is the larger number Press any key to close this window... Second number larger Enter a number 10 Enter a number 12 12 is the larger number Press any key to close this window... Numbers Equal Enter a number 12 Enter a number 12 Numbers are equal Press any key to close this window...

Answers

Answer:

Explanation:

#include<iostream>

using namespace std;

int main()

{

int n1,n2;

cout<<"Enter a number:"<<endl; //Entering first number

cin>>n1;

cout<<"Enter a number:"<<endl; //Entering second number

cin>>n2;

if(n1%2==0 && n1%2==0) //Checking whether the two number are even or not

{

if(n1>n2)

{

cout<<n1<<" is the larger number"<<endl;

}

else if(n1==n2)

{

cout<<"Numbers are equal"<<endl;

}

else

{

cout<<n2<<" is the larger number"<<endl;

}

}

else

{

cout<<"The number are not even"<<endl;

}

}

a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive voice rather than any human agents at the request of the instructor.) Student Lab Report Identical tensile test procedures were performed on all test specimens. Each of the metal specimens ____1____ [have] an indentation near the center to ensure that the fracture point would occur in this region. Tension tests ____2____ [conduct] as follows. Two pieces of reflective tape ____3____ [place] approximately 1 inch apart in the center of the specimen where the indentation 4 [locate]. The width and the thickness of the specimen at this location _____5_____ [measure] using a Vernier caliper. Then the specimen _____6____ [secure] in the MTS Load Frame. A laser extensometer _____7_____ [place] into position to measure the deformation of the specimen. The laser extensometer ______8_ __ [use] to measure the original distance between the pieces of reflective tape. The MTS ________9____ [set] to elongate the specimen one tenth of an inch every minute.

Answers

Answer:

Each of the metal specimens HAS an indentation near the center to ensure that the fracture point would occur in this region. Tension tests WERE CONDUCTED as follows. Two pieces of reflective tape WERE PLACED approximately 1 inch apart in the center of the specimen where the indentation 4 WAS LOCATED. The width and the thickness of the specimen at this location WAS MEASURED using a Vernier caliper. Then the specimen WAS SECURED in the MTS Load Frame. A laser extensometer WAS PLACED into position to measure the deformation of the specimen. The laser extensometer WAS USED to measure the original distance between the pieces of reflective tape. The MTS WAS SET to elongate the specimen one tenth of an inch every minute.

A levee will be constructed to provide some flood protection for a residential area. The residences are willing to accept a one-in-five chance that the levee will be overtopped in the next 15 years. Assuming that the annual peak streamflow follows a lognormal distribution with a log10(Q[ft3/s]) mean and standard deviation of 1.835 and 0.65 respectively, what is the design flow in ft3/s?

Answers

Answer:

1709.07 ft^3/s

Explanation:

Annual peak streamflow = Log10(Q [ft^3/s] )

mean = 1.835

standard deviation = 0.65

Probability of levee been overtopped in the next 15 years = 1/5

Determine the design flow ins ft^3/s

P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2

                         ∴  T = 67.72 years

Q₁₅ = 1 - 0.2 = 0.8

Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )

K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )

    = 2.1504

back to equation 1

Zt = 1.835 + ( 2.1504 * 0.65 )  = 3.23276

hence:

Log₁₀ ( Qt(ft^3/s) ) = Zt  = 3.23276

hence ; Qt = 10^3.23276

                  = 1709.07 ft^3/s

Other Questions
Once again, move points C, D, and E on the circle, and complete the table below. This time, youll consider what happens to the lengths of the sides of quadrilateral BCDE. Notice that mB is predetermined, so set that angle measure first. The elevation of any landform is measured by the________ Is x=-2 a solution for the equation below? A cylinder has a height of 16 cm and a radius of 5 cm.A cone has a height of 12 cm and a radius of 4 cm.if the cone is placed inside the cylinder as shown,what is the volume of the air space surrounding the cone inside the cylinder help please ITS OF TRIGONOMETRYPROVE QUESTION 11Which of the following is an important consideration in setting up the proper environment to complete tasks on time? which province of nepal has no area in the terai region? A baseball pitcher throws a 0.14 kg ball toward a batter who is 18 m away.The ball is traveling at 40 m/s when it leaves the pitcher's hand. What is theball's kinetic energy at this point?A. 112 JOB. 224 JC. 12JD. 3 JSUBMIT please help, will give brainliest for correct answer A supervisor records the repair cost for 22 randomly selected VCRs. A sample mean of $75.50 and standard deviation of $18.07 are subsequently computed. Determine the 99% confidence interval for the mean repair cost for the VCRs. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Please help!Which term is best described as a series of ridges and mounds that protect the marshes of Louisiana from hurricanes?A) estuariesB) salt domesC) cheniersD) terraces Which quadrilateral has equal diagonalsSelect one:a. trapezoidb. rectanglec. parallelogramd. rhombus (-4)-(+2)= PLS HELPPP MEEEEEEE A recipe requires 500 mL of milk. You will make the recipe once a month for the next 4 months. You do not use milk other than for cooking. Which container of milk should you buy? (1L=1000 mL) * What is the image of the point (3, 2) after a rotation of 90 counterclockwise about the origin? A firm sells two products, Regular and Ultra. For every unit of Regular sold, two units of Ultra are sold. The firm's total fixed costs are $1,782,000. Selling prices and cost information for both products follow. The contribution margin per composite unit is: what should be done to the people who violate the social rules (3sqrt(3)-2sqrt(2))(sqrt(3)-sqrt(2)) why should we developed good character write any five points Amanda has 1 3/4yds of red ribbon and 7/8yds of greenribbon. What is the total amount of ribbon thatAmanda has? (write answer as a fraction)