Explanation:
[16][tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]
Here,
[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2ΩWe have to find the equivalent resistance of the circuit.
Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,
[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]
[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]
[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]
Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]
Reciprocating both sides,
[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]
Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]
Henceforth, Option A is correct.
_________________________________[17][tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]
Here, we have to find the amount of flow of current in the circuit. By using ohm's law,
[tex] \longrightarrow [/tex] V = IR
[tex] \longrightarrow [/tex] 3 = I × 3.33
[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I
[tex] \longrightarrow [/tex] 0.90 Ampere = I
Henceforth, Option B is correct.
____________________________[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]
ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??
Answer:
Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)
A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction
Answer:
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.
Explanation:
By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:
[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)
[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)
Where:
[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.
[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.
[tex]f_{s}[/tex] - Static friction force, in newtons.
[tex]f_{k}[/tex] - Kinetic friction force, in newtons.
[tex]m[/tex] - Mass, in kilograms.
[tex]g[/tex] - Gravitational constant, in meters per square second.
If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:
[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{s} = 0.273[/tex]
[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{k} = 0.181[/tex]
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.