Answer:
-4
Step-by-step explanation:
f(-1) = 2(-1) - 2 = -4
Find the slope and Y-Intercept of the line. 6X plus 2Y equals -88
Answer:
That’s ez pz
Step-by-step explanation:
Answer:
The slope is -3 and the y intercept is -44
Step-by-step explanation:
6X+ 2Y= -88
The slope intercept form of a line is y= mx+b where m is the slope and b is the y intercept
Solve for y
6X-6x+ 2Y= -88-6x
2y = -6x-88
Divide by 2
y = -3x -44
The slope is -3 and the y intercept is -44
Determine the slope of a line which contains the points (2, 4) and (-6, 9). Write your answer in simplest form.
Answer:
-5/8
Step-by-step explanation:
(2,4) (-6.9)
m= y2-y1/x2-x1
= 9-4/-6-2
=5/-8
=-5/8
plz help ASAP! thank u
Answer: Choice B)
The relation is a function because there are no vertical lines that can be drawn on the graph that pass through more than one point.
This graph passes the vertical line test. Any input (x) leads to one and only one output (y). An example of a graph failing the vertical line test would be a graph that is a sideways parabola.
♡Easy Brainliest♡ Which statement BEST explains why the sine of an acute angle is equal to the cosine of the angle's complement? A Both sinA and cosB are equal to ab. B Both sinA and cosB are equal to ac. C For sinA to equal cosB, a and c must be equal. D For sinA to equal cosB, a and b must be equal.
Answer:
Answer is A
Step-by-step explanation:
Hope it helps
Which ppint is the center of the circle?
O point w
O point X
O point Y
O point z
Answer:
??????????????????????????????????????????????????????????????
Step-by-step explanation:
Answer:
where is Point or picture
i need help please :(
Answer:
-(1/3 · 1/3 · 1/3 · 1/3 )
Step-by-step explanation:
-(3)^-4= -1/3 ^4 = -1/81
-(1/3 · 1/3 · 1/3 · 1/3 )= -1/81
Answer:
Answer:
[tex] = - ( \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} )[/tex]
Step-by-step explanation:
[tex] - {(3)}^{ - 4} = \\ - ( { 3}^{ - 4} )= \\ - (\frac{1}{ {3}^{4} } )[/tex][tex] = - ( \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} )[/tex][tex] = - \frac{1}{81} [/tex]
Jeania's parents have given her a interest-free loan of $100 to buy a new pair of running shoes She has to
pay back the loan with monthly payments of $20 each.
Write a function rule for the balance of the function (p), where p represents the number of
payments Jeania has made.
Answer:
The balance on the loan f(p) = $100 - $20 × p
Step-by-step explanation:
The parameters of the question are;
The loan amount = $100
The amount of monthly payment for the loan = $20
The function rule for the balance of the function f(p) where p is the number of payments is given as follows;
The balance on the loan, f(p) = The loan amount less the total amount paid
The total amount payment Jeania has made = Amount of monthly payment × Number of months paid, p
The total amount payment Jeania has made = $20 × p
∴ The balance on the loan, f(p) = $100 - $20 × p
Which gives;
f(p) = $100 - $20 × p.
NEEDDD HELPPPP ASAPPPPPPPPPP !!
Answer:
42 = 8x + 13x
42 = 21x
x = 2
8 = 8c -4(c + 8)
8 = 8c - 4c - 32
8 = 4c - 32
40 = 4c
c = 10
Answer:
42 = 8x + 13x42 = 21x
42/21 = x
x = 2
check:
42 = 8*2 + 13*2
42 = 16 + 26
8 = 8c - 4(c+8)8 = 8c -4*c -4*8
8 = 8c - 4c - 32
8 + 32 = 4c
40 = 4c
40/4 = c
c = 10
Check:
8 = 8*10 - 4(10+8)
8 = 80 - 4*18
8 = 80 - 72
A finite geometric series is the sum of a sequence of numbers. Take the sequence 1, 2, 4, 8, … , for example. Notice that each number is twice the value of the previous number. So, a number in the sequence can be represented by the function f(n) = 2n–1. One way to write the sum of the sequence through the 5th number in the sequence is ∑5n-12n-1. This equation can also be written as S5 = 20 + 21 + 22 + 23 + 24. If we multiply this equation by 2, the equation becomes 2(S5) = 21 + 22 + 23 + 24 + 25. What happens if you subtract the two equations and solve for S5? Can you use this information to come up with a way to find any geometric series Sn in the form ∑an-1bn-1?
hope this helps you alot
Between which two integers on a number line does -√120 lie on?
Answer:
-11 and -10
Step-by-step explanation:
● -√120 = -1 × √120
● -√120 = -1 × 2√30
● 30 is close to 25 so √30 is close to five but greater than it.
Multiplying 5 by -2 gives -10
Multipluing √30 by -2 gives you a number that is close to -10 but smaller than it.
So -√120 lies between -11 and -10
Over what axis was the square reflected in the first example?
The x-axis
The y-axis
Answer:
The x-axis!
Step-by-step explanation:
DUE NOW PLEASE HELP!!!
Factor completely x2 − 10x + 25.
(x − 5)(x − 5)
(x + 5)(x + 5)
(x + 5)(x − 5)
(x − 25)(x − 1)
Answer:
(x - 5)(x - 5)
Step-by-step explanation:
[tex] {x}^{2} - 10x + 25 \: is \: the \: expansion \\ of \: {(x - 5)}^{2} \\ {(x - 5)}^{2} = (x - 5)(x - 5)[/tex]
The complete factorization of the quadratic expression x² - 10x + 25 is (x - 5)(x - 5). Hence the first option is the right choice.
How to factor a quadratic expression?A quadratic expression of the form ax² + bx + c is factored by using the mid-term factorization method, which suggests that b should be broken in such two components that their product = ac. After this, we can factorize using the grouping method.
How to solve the given question?In the question, we are asked to factor the quadratic expression x² - 10x + 25 completely.
Comparing x² - 10x + 25 to ax² + bx + c, we get a = 1, b = -10, and c = 25.
To factor the expression we will use the mid-term factorization method, and try to break b in such two numbers whose product = ac.
Now, ac = 1 * 25 = 25. b = -10, which can be broken as -5, and -5.
Therefore, we can write the given expression as:
x² - 10x + 25
= x² - 5x - 5x + 25, mid-term factorization
= x(x - 5) -5(x - 5), grouping
= (x - 5)(x - 5), grouping.
Therefore, the complete factorization of the quadratic expression x² - 10x + 25 is (x - 5)(x - 5). Hence the first option is the right choice.
Learn more about mid-term factorization at
https://brainly.com/question/25829061
#SPJ2
what is the range and domian of y=(x-4)
Please please please please help
Answer:
[tex]x^2 +4x +3 [/tex]
Step-by-step explanation:
f(x)=x²-1
g(x)= x+2
f(g(x)) =f(x+2)
=(x+2)²-1
=x²+4x+4-1
=x²+4x+3
Find the GFC of 20 and 16
AB = 3.2 cm
BC= 8.4 cm
The area of triangle ABC is 10 cm²
Calculate the perimeter of triangle ABC.
Give your answer correct to three significant figures.
Answer:
Therefore, perimeter of the given triangle is 18.300 cm.
Step-by-step explanation:
Area of the triangle ABC = [tex]\frac{1}{2}(\text{AB})(\text{BC})(\text{SinB})[/tex]
10 = [tex]\frac{1}{2}(3.2)(8.4)(\text{SinB})[/tex]
Sin(B) = [tex]\frac{10}{3.2\times 4.2}[/tex]
B = [tex]\text{Sin}^{-1}(0.74405)[/tex]
B = 48.08°
By applying Cosine rule in the given triangle,
(AC)² = (AB)² + (BC)²-2(AB)(BC)CosB
(AC)² = (3.2)² + (8.4)² - 2(3.2)(8.4)Cos(48.08)°
(AC)² = 10.24 + 70.56 - 35.9166
(AC)² = 44.88
AC = [tex]\sqrt{44.8833}[/tex]
AC = 6.6995 cm
Perimeter of the ΔABC = m(AB) + m(BC) + m(AC)
= 3.200 + 8.400 + 6.6995
= 18.2995
≈ 18.300 cm
Therefore, perimeter of the given triangle is 18.300 cm
somebody please help me on this geometry!! it’s urgent i’ll mark you the brainliest
Answer:
XN = 6
Step-by-step explanation:
Given XY is an angle bisector then the ratio of the sides is equal to the corresponding ratio of the base, that is
[tex]\frac{AX}{XN}[/tex] = [tex]\frac{AY}{YN}[/tex] , substitute values
[tex]\frac{18}{XN}[/tex] = [tex]\frac{12}{4}[/tex] ( cross- multiply )
12XN = 72 ( divide both sides by 12 )
XN = 6
Solve (s)(-3st)(-1/3)
Answer:
Step-by-step explanation
The surface area, A, of a cylinder of radius, r, and height, h, can be found with the equation above. Which of the following correctly shows the cylinder's height in terms of its radius and surface area?
Step-by-step explanation:
If r and h are the radius and height of the cylinder, then its surface area A is given by :
[tex]A=2\pi r^2+2\pi rh[/tex] ....(1)
We need to find the cylinder's height in terms of its radius and surface area. Subtracting [tex]2\pi rh[/tex] on both sides, we get :
[tex]A-2\pi r^2=2\pi rh+2\pi r^2-2\pi r^2\\\\A-2\pi r^2=2\pi rh[/tex]
Dividing both sides by [tex]2\pi r[/tex]. So,
[tex]\dfrac{A-2\pi r^2}{2\pi r}=\dfrac{2\pi rh}{2\pi r}\\\\h=\dfrac{A-2\pi r^2}{2\pi r}[/tex]
Hence, this is the required solution.
Can someone tell me if this is correct? I said neither is correct.
Answer:
Neither is correct
Answer:
You are right.
Step-by-step explanation:
Neither transformation gives the triangle FGE.
Please answer answer question
Answer:
The correct answer is
Step-by-step explanation:
11 square centimeters.
Hope this helps....
Have a nice day!!!!
multiply this decimals 1.02 x 0.286
We can calculate EEE, the amount of euros that has the same value as DDD U.S. Dollars, using the equation E=\dfrac{17}{20}DE= 20 17 DE, equals, start fraction, 17, divided by, 20, end fraction, D. How many euros have the same value as 111 U.S. Dollar? euros How many U.S. Dollars have the same value as 111 euro? dollars
Answer: 1 U.S.dollar = 0.85 euro.
1 euro = 1.18 dollars.
Step-by-step explanation:
The given equation: [tex]E=\dfrac{17}{20}D[/tex]
, where 'E' is the amount of euros that has the same value as 'D' U.S. Dollars.
At D= 1,
[tex]E=\dfrac{17}{20}=0.85\text{ euro}[/tex]
i.e. 1 U.S.dollar = 0.85 euro.
At E= 1 , we have
[tex]1=\dfrac{17}{20}D\\\\\Rightarrow\ D= 20/17\approx1.18\text{ dollars}[/tex]
Hence, 1 euro = 1.18 dollars.
Shelly and Terrence earned points in a game by completing various tasks. Shelly completed x tasks and scored 90 points on each one. The expression below shows Terrence's total points in the game: 90x − 20 What does the constant term of the expression represent? (2 points)
Answer:
the constant term of the expression represents the difference between Shelly and Terrence points.
URGENT PLS HELP ASAP! THANK YOU :)
Answer:
box 1 and box2 are correct.
round your answer to the nearest hundredth. Find angle A=?
Answer:
A=48.81
Step-by-step explanation:
it is a right angle triangle find the hypotenuse c using Pythagorean theorem:
c²=a²+b²
c²=8²+7²
c=√64+49
c=10.63
sin A =opp/hyp
sin A=8/10.63
A= 48.81
another way :
tan A=opp/adj
tan A=8/7
A=48.81
Solve for a. Worth 10 pts!
[tex] \frac{1}{5} a - 5 = 20[/tex]
Answer:
Step-by-step explanation:
1/5 a-5=20 addition properties
1/5 a -5+5=20+5
1/5=25 multiply both sides by 5
5/5 a=25*5
a=125
check the answer:
125/5 -5=20
25-5=20
20=20 correct
The radius of the circle is increasing at a rate of 1 meter per day and the sides of the square are increasing at a rate of 3 meters per day. When the radius is 3 meters, and the sides are 20 meters, then how fast is the AREA outside the circle but inside the square changing
Answer:
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
Step-by-step explanation:
According to the statement of the problem, the circle is inside the square and the area inside the square but outside the circle, measured in square meters, is represented by the following formula. It is worth to notice that radius ([tex]r[/tex]) is less than side ([tex]l[/tex]), both measured in meters:
[tex]A_{T} = A_{\square} -A_{\circ}[/tex]
[tex]A_{T} = l^{2}-\pi\cdot r^{2}[/tex]
Now, the rate of change of the total area is calculated after deriving previous expression in time:
[tex]\frac{dA_{T}}{dt} = 2\cdot l\cdot \frac{dl}{dt} -2\pi\cdot r\cdot \frac{dr}{dt}[/tex]
Where [tex]\frac{dl}{dt}[/tex] and [tex]\frac{dr}{dt}[/tex] are the rates of change of side and radius, measured in meters per day.
Given that [tex]l = 20\,m[/tex], [tex]r = 3\,m[/tex], [tex]\frac{dl}{dt} = 3\,\frac{m}{day}[/tex] and [tex]\frac{dr}{dt} = 1\,\frac{m}{day}[/tex], the rate of change of the total area is:
[tex]\frac{dA_{T}}{dt} = 2\cdot (20\,m)\cdot \left(3\,\frac{m}{day} \right)-2\pi\cdot (3\,m)\cdot \left(1\,\frac{m}{day} \right)[/tex]
[tex]\frac{dA_{T}}{dt} \approx 101.150\,\frac{m^{2}}{day}[/tex]
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
i'm doing domain and range, and I'm kinda having a hard time with this... can someone help?
Answer:
Domain : any real number
Range : y ≥0
Step-by-step explanation:
The domain is the values that x can be
X can be any real number
The range is the values the y can be
Y can be zero or any positive value since y = x^2
Domain : any real number
Range : y ≥0
Answer:
[tex]\boxed{\sf Option \ A}[/tex]
Step-by-step explanation:
[tex]y=x^2[/tex]
[tex]\sf The \ domain \ of \ a \ function \ is \ all \ possible \ values \ for \ x.[/tex]
[tex]\sf There \ are \ no \ restrictions \ on \ the \ value \ of \ x.[/tex]
[tex]\sf The \ domain \ is \ all \ real \ numbers.[/tex]
[tex]\sf The \ range \ of \ a \ function \ is \ all \ possible \ values \ for \ y.[/tex]
[tex]\sf When \ a \ number \ is \ squared \ the \ result \ is \ always \ greater \ than \ or \ equal \ to \ 0.[/tex]
[tex]\sf The \ range \ is \ \{y:y\geq 0\}[/tex]
Help, Answer ASAP; will give brainliest
Answer:
a = 2, b = 3
Step-by-step explanation:
The diagonals of a rectangle bisect each other, thus
5a² = 4a² + 4 ( subtract 4a² from both sides )
a² = 4 ( take the square root of both sides )
a = [tex]\sqrt{4}[/tex] = 2
Also
6b - 8 = 4b - 2 ( subtract 4b from both sides )
2b - 8 = - 2 ( add 8 to both sides )
2b = 6 ( divide both sides by 2 )
b = 3