Answer:
36.53 cm²
Step-by-step explanation:
Picture this repeated four times to make a circle. The circle would have a radius of 8. [tex]\pi[/tex]r² would give us 201.06. One quarter of that would be 50.265.
The area of the square is length times width, or 8X8=64.
64-50.265=13.735. That would be ONE of the non shaded sections of the square. If you take that away twice, the leftover part would be the shaded area.
64-13.735-13.735=36.53 cm²
A line is an undefined termi because it
Answer:
Goes on forever.
Step-by-step explanation:
Find the 50th term in the sequence 16, 7, -2, …
This is an arithmetic sequence because the difference
between the terms in the sequence remain constant.
In other words, we subtract 9 from one term to get the next.
So we start off with the explicit formula, shown below in yellow.
"n" will be the number of terms in the sequence,
a1 will be the first term in the sequence,
and d will be the common difference.
Now substitute these in like I have below.
You will get -425 as an answer.
The management of a department store is interested in estimating the difference between the mean credit purchases of customers using the store's credit card versus those customers using a national major credit card. You are given the following information.
Store's Card Major Credit Card
Sample size 64 49
Sample mean $140 $125
Population standard deviation $10 $8
A point estimate for the difference between the means is:________
a. 18
b. 265
c. 15
d. 2
A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with mean 100 lb and 5 lb and standard deviation 1 lb and 0.5 lb, respectively. What percent of filled boxes weighing between 104 lb and 106 lb are to be expected?
a. 67%
b. None
c. 37%
d. 57%
Answer:
Option b. None is the correct option.
The Answer is 63%
Step-by-step explanation:
To solve for this question, we would be using the z score formula
The formula for calculating a z-score is given as:
z = (x-μ)/σ,
where
x is the raw score
μ is the population mean
σ is the population standard deviation.
We have boxes X and Y. So we will be combining both boxes
Mean of X = 100 lb
Mean of Y = 5 lb
Total mean = 100 + 5 = 105lb
Standard deviation for X = 1 lb
Standard deviation for Y = 0.5 lb
Remember Variance = Standard deviation ²
Variance for X = 1lb² = 1
Variance for Y = 0.5² = 0.25
Total variance = 1 + 0.25 = 1.25
Total standard deviation = √Total variance
= √1.25
Solving our question, we were asked to find the percent of filled boxes weighing between 104 lb and 106 lb are to be expected. Hence,
For 104lb
z = (x-μ)/σ,
z = 104 - 105 / √25
z = -0.89443
Using z score table ,
P( x = z)
P ( x = 104) = P( z = -0.89443) = 0.18555
For 1061b
z = (x-μ)/σ,
z = 106 - 105 / √25
z = 0.89443
Using z score table ,
P( x = z)
P ( x = 106) = P( z = 0.89443) = 0.81445
P(104 ≤ Z ≤ 106) = 0.81445 - 0.18555
= 0.6289
Converting to percentage, we have :
0.6289 × 100 = 62.89%
Approximately = 63 %
Therefore, the percent of filled boxes weighing between 104 lb and 106 lb that are to be expected is 63%
Since there is no 63% in the option, the correct answer is Option b. None.
The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be 63%.
What is a normal distribution?It is also called the Gaussian Distribution. It is the most important continuous probability distribution. The curve looks like a bell, so it is also called a bell curve.
The z-score is a numerical measurement used in statistics of the value's relationship to the mean of a group of values, measured in terms of standards from the mean.
A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with a mean of 100 lb and 5 lb and standard deviation of 1 lb and 0.5 lb, respectively.
The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be
Then the Variance will be
[tex]Var = \sigma ^2[/tex]
Then for X, we have
[tex]Var (X) = 1^2 = 1[/tex]
Then for Y, we have
[tex]Var (Y) = 0.5^2 = 0.25[/tex]
Then the total variance will be
[tex]Total \ Var (X+Y) = 1 + 0.25 = 1.25[/tex]
The total standard deviation will be
[tex]\sigma _T = \sqrt{Var(X+Y)}\\\\\sigma _T = \sqrt{1.25}[/tex]
For 104 lb, then
[tex]z = \dfrac{104-105}{\sqrt{25}} = -0.89443\\\\P(x = 104) = 0.18555[/tex]
For 106 lb, then
[tex]z = \dfrac{106-105}{\sqrt{25}} = 0.89443\\\\P(x = 106) = 0.81445[/tex]
Then
[tex]P(104 \leq Z \leq 106) = 0.81445 - 0.18555 = 0.6289 \ or \ 62.89\%[/tex]
Approximately, 63%.
More about the normal distribution link is given below.
https://brainly.com/question/12421652
Find the value of the test statistic z using . The claim is that the proportion of adults who smoked a cigarette in the past week is less than , and the sample statistics include n subjects with saying that they smoked a cigarette in the past week.
Correct question is;
The claim is that the proportion of adults who smoked a cigarette in the past week is less than 0.35, and the sample statistics include n = 1168 subjects with 385 saying that they smoked a cigarette in the past week. Find the value of the test statistic
Answer:
Test statistic is z = -1.46
Step-by-step explanation:
Let's first of all define the hypotheses:
Null hypothesis:
H0: p = 0.35, i.e 35% in the sample of 1,168 adults have smoked cigarettes in the previous week.
Alternative hypothesis:
Ha: p < 0.35, i.e less than 35% in the sample of 1,168 adults have smoked cigarette in the previous week.
The sample size is, n = 1,168 while the number of adults who smoked in the previous week would be; x = 385
Therefore, the sample proportion of adults who smoked in the previous week would be calculated as;
p^ = x/n = 385/1168 ≈ 0.3296
Now, from Central Limit Theorem for large samples, The sampling distribution of the sample proportion p^, will have a mean of μ = p = 0.35
Formula for standard deviation is;
σ = √[p (1 – p)/n]
σ = √(0.35 × (1 – 0.35)/1168)
σ = √0.0001947774
σ = 0.014
Formula for test statistic is;
z = (p^ - p)/σ
z = (0.3296 - 0.35)/0.014
z = - 1.46
if y = 2√x÷ 1–x', show that dy÷dx = x+1 ÷ √x(1–x)²
Answer: see proof below
Step-by-step explanation:
Use the Quotient rule for derivatives:
[tex]\text{If}\ y=\dfrac{a}{b}\quad \text{then}\ y'=\dfrac{a'b-ab'}{b^2}[/tex]
Given: [tex]y=\dfrac{2\sqrtx}{1-x}[/tex]
[tex]\sqrtx[/tex][tex]a=2\sqrt x\qquad \rightarrow \qquad a'=\dfrac{1}{\sqrt x}\\\\b=1-x\qquad \rightarrow \qquad b'=-1[/tex]
[tex]y'=\dfrac{\dfrac{1-x}{\sqrt x}-(-2\sqrt x)}{(1-x)^2}\\\\\\.\quad =\dfrac{\dfrac{1-x}{\sqrt x}-(-2\sqrt x)\bigg(\dfrac{\sqrt x}{\sqrt x}\bigg)}{(1-x)^2}\\\\\\.\quad =\dfrac{1-x+2x}{\sqrt x(1-x)^2}\\\\\\.\quad =\dfrac{x+1}{\sqrt x(1-x)^2}[/tex]
LHS = RHS: [tex]\dfrac{x+1}{\sqrt x(1-x)^2}=\dfrac{x+1}{\sqrt x(1-x)^2}\qquad \checkmark[/tex]
Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0):
Answer:
It rotated 180 degrees
Step-by-step explanation:
If you use this image and paste in on to google docs you will be able to rotate the image. Use this tool so that your can identify the amount of degrees.
If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees
What is Quadrilateral?
In geometry a quadrilateral is a four-sided polygon, having four edges and four corners
What is Angle of rotation?The angle of rotation is a measurement of the amount, of namely angle, that a figure is rotated about a fixed point, often the center of a circle.
Given,
Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0)
Consider the coordinates of D and D'
D(2,3) and D'(-2,-3)
Connect D and D'
∠D0D' = 180 Degrees
Hence, If the Quadrilateral A'B'C'D' is the image of quadrilateral ABCD under a rotation about the origin, (0,0) then the angle of rotation is option (c) 180 degrees
Learn more about Quadrilateral and Angle of rotation here
https://brainly.com/question/17106452
#SPJ2
Simplify 3 x times the fraction 1 over x to the power of negative 4 times x to the power of negative 3.
Answer:
3x^2
Step-by-step explanation:
3 x times the fraction 1 over x to the power of negative 4 => 3x * 1/x^-4
= 3x *x^4 = 3x^5
times x to the power of negative 3 => x^-3
3x^5 * x^-3 = 3x^2
Answer:
3x^2
Step-by-step explanation:
i got it right on the test on god!
If mL DOC = 44º and m2 COB = 80°,
find the measure of the indicated arc
in circle o.
С
o
B.
mDEB = ?
Answer:
236°
Step-by-step explanation:
The circumference of a circle is 360° since <DOC is given as 44° and <COB is given as 80° and the center angles are equal to the arc it sees the the measure of arc DEB would be 360 - 44 - 80 = 236°
Compute each matrix sum or product if it is defined. If an expression is undefined. Explain why. Let A = (3 4 0 -4 -1 4), B = (8 1 -4 -5 2 -4), C = (1 -1 3 1) and D = (3 -2 4 5).
- 2A, B - 2A, AC, CD
Compute the matrix product -2A.
A. -2A =
B. The expression-2A is undefined because A is not a square matrix.
C. The expression-2A is undefined because matrices cannot be multiplied by numbers.
D. The expression 2A is undefined because matrices cannot have negative coefficients.
Answer:
-2A = (-6, -8, 0, 8, 2, -8)
B - 2A = (2, -7, -4, 3, 4, -12)
AC is undefined.
CD = (3, 2, 12, 5)
Step-by-step explanation:
Given the matrices:
A = (3 4 0 -4 -1 4)
B = (8 1 -4 -5 2 -4)
C = (1 -1 3 1)
D = (3 -2 4 5)
We are required to compute the following
-2A, B - 2A, AC, CD
For -2A:
-2(3 4 0 -4 -1 4)
= (-6, -8, 0, 8, 2, -8)
For B - 2A:
Because B - 2A = B + (-2A), we have:
(8 1 -4 -5 2 -4) + (-6, -8, 0, 8, 2, -8)
(2, -7, -4, 3, 4, -12)
For AC:
(3 4 0 -4 -1 4)(1 -1 3 1)
This is undefined.
For CD:
(1 -1 3 1)(3 -2 4 5)
= (3, 2, 12, 5)
20,000 is 10 times as much as
Answer:
2000
Step-by-step explanation:
20,000 is 2000 times the number 10.
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given numbers are 20000 and 10. The number 20000 is how many times the number 10 will be calculated by dividing the number 20000 by 10.
E = 20000 / 10 = 2000
Therefore, the number 20,000 is 2000 times the number 10.
To know more about an expression follow
https://brainly.com/question/20066515
#SPJ2
3. Simplify the following
a)[(116)3 x 114]x 1212
Answer:
48082464 is the answer
Step-by-step explanation:
=[(116)3×114] × 1212
=[348×114] × 1212
=39672 × 1212
=48082464 is the answer
hope it will help :)
Hey There!!
All you really need To do is: Divide [(116)] 3 x 114] x 1212) ( 20 + 51 + 43) ÷ 7
Hope It Helped!~ ♡
ItsNobody~ ☆
Ben and Cam are scuba diving. Ben is 15.8 meters below the
surface of the water. Cam is 4.2 meters above Ben. What is Cam's
position relative to the surface of the water?
=======================================================
Explanation:
Check out the diagram below.
Draw a vertical number line with 0 at the center. The positive values are above it, while the negative values are below it.
Between -15 and -16, closer to -16, plot the value -15.8 to indicate Ben's position. I have done so as the point B.
We move 4.2 units up to arrive at Cam's position
-15.8 + 4.2 = -11.6
So Cam is 11.6 meters below the surface of the water.
Evaluate x^2 − 4x + 5, when x = − 3
Answer:
[tex]\huge\boxed{26}[/tex]
Step-by-step explanation:
[tex]\sf x^2-4x+5\\Given \ that \ x = -3\\(-3)^2-4(-3)+5\\9+12+5\\26[/tex]
Answer:
[tex] \boxed{26}[/tex]
Step-by-step explanation:
[tex] \mathsf{ {x}^{2} - 4x + 5}[/tex]
[tex] \mathrm{Plug \: the \: value \: of \: x}[/tex]
⇒[tex] {( - 3)}^{2} - 4 \times(- 3 )+ 5[/tex]
[tex] \mathrm{Evaluate \: the \: power}[/tex]
⇒[tex] \mathsf{9 - 4 \times(- 3 ) + 5}[/tex]
[tex] \mathrm{Multiply \: the \: numbers}[/tex]
⇒[tex] \mathsf{9 + 12 + 5}[/tex]
[tex] \mathrm{Add the numbers}[/tex]
⇒[tex] \mathsf{26}[/tex]
Hope I helped!
Best regards!
What is the solution to this system of linear equations?
y-x = 6
y + x = -10
(-2,-8)
(-8.-2)
(6.-10)
(-10.6)
Answer:
The correct answer is A
Step-by-step explanation:
Answer:
(-8, -2)
Step-by-step explanation:
y-x = 6
y + x = -10
Add the two equations together to eliminate x
y-x = 6
y + x = -10
--------------------
2y = -4
Divide by 2
2y/2 = -4/2
y = -2
Now find x
y+x = -10
-2+x = -10
x = -8
Find the slope of the line that passes through the points (1, -4) and (3,-1)
Hi there! :)
Answer:
[tex]\huge\boxed{m = \frac{3}{2}}[/tex]
Find the slope using the slope formula:
[tex]m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Plug in the coordinates of each point:
[tex]m = \frac{-1 - (-4)}{3 - 1}[/tex]
Simplify:
[tex]m = \frac{3}{2}[/tex]
Therefore, the slope of the line is 3/2.
Answer:
3/2
Step-by-step explanation:
The slope is given by
m = (y2-y1)/(x2-x1)
= ( -1 - -4)/(3-1)
= ( -1+4)/(2)
= ( 3/2)
The radar system beeps once every second. How many times will it beep in 3 days?
Answer:
259200
Step-by-step explanation:
so there are 86400 in one day. multiply by 3.
Answer:
259200
Step-by-step explanation:
60x24x3x60=
Graph the function f(x) = 18(0.8)
[tex]f(x)=18(0.8)=14.4[/tex]
is a constant function, so it will be a straight line parallel to x axis and passing through y axis at $14.4$
An amusement park is open 7 days a week. The park has 8 ticket booths, and each booth has a ticket seller from 10am to 6pm. On average, ticket sellers work 30 hours per week. Write and equation that can be used to find "t", the minimum number of ticket sellers the park needs. show work if possible.
Answer:
t = (448 hrs/ week) / (30 hrs / week)
Step-by-step explanation:
Number of times park opens in a week = 7
Number of ticket booth = 8
Opening hours = 10am - 6pm = 8 hours per day
Max working hours per ticket seller per week = 30 hours
Therefore each booth works for 8 hours per day,
Then ( 8 * 7) = 56 hours per week.
All 8 booths work for (56 * 8) = 448 hours per week
If Max working hours per ticket seller per week = 30 hours,
Then muninim number of workers required (t) :
Total working hours of all booth / maximum number of working hours per worker per week
t = (448 hrs/ week) / (30 hrs / week)
The length and width of a rectangle are measured as 58 cm and 45 cm, respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.
Answer:
Error in calculated area = [tex]\pm 10.3 cm^2[/tex]
Step-by-step explanation:
x = 58 cm
y = 45 cm
A = x*y
delta A
= delta (x*y)
= y delta x + x delta y (neglecting small qty delta x * delta y = 0.01)
= 45(0.1) + 58(0.1)
= 103(0.1)
= 10.3 cm^2
22 tons is equivalent to ______ kilograms.
Answer:
20000 kg
Step-by-step explanation:
Recall that 1 kg = 2.2 lb approximately. Then:
22 tons 1 kg 2000 lb
------------ * ------------ * -------------- = 20000 kg
1 2.2 lb 1 ton
Which expression is equivalent to 2(5)^4
Answer:
2·5·5·5·5
Step-by-step explanation:
2(5)^4 is equivalent to 2·5·5·5·5; 2 is used as a multiplicand just once, but 5 is used four times.
Need Assistance
Please Show Work
Answer:
3 years
Step-by-step explanation:
Use the formula I = prt, where I is the interest money made, p is the starting amount of money, r is the interest rate as a decimal, and t is the time the money was borrowed.
Plug in the values and solve for t:
108 = (1200)(0.03)(t)
108 = 36t
3 = t
= 3 years
Cybil flips a coin and rolls a fair number cube at the same time. What is the probability that she will toss tails and roll a number less than 3? A. 1/6 B. 1/3 C. 2/5 D. 1/2 Please include ALL work! <3
[tex]|\Omega|=2\cdot6=12\\|A|=1\cdot2=2\\\\P(A)=\dfrac{2}{12}=\dfrac{1}{6}[/tex]
In an examination, 40% of the candidates failed. The number candidates who failed was 160. How many candidates passed the examination?
Answer:
240 candidates
Step-by-step explanation:
40% candidates failed, i. e. out of every 100 candidates 40 failed.
40 failed ----------------------------- 100 total students
1 failed --------------------------------100/40 total students, given 160 failed therefore
160 failed ----------------------------(100/40) x 160 total students
Total students = (100/40) x 160 = 400
Number of candidates passed = (total candidates) - (total candidates failed)
= 400 - 160 = 240 candidates
Hello there are two questions in the link's if both were solved that would be awesome.
Answer:
[tex]\frac{x^{\frac{5}{6}} }{x^{\frac{1}{6}} } = x^{(\frac{5}{6} -\frac{1}{6}) }= x^{\frac{4}{6} }\\\sqrt{x} . \sqrt[4]{x} = x^{\frac{1}{2} } . x^{\frac{1}{4} } = x^{(\frac{1}{2} +\frac{1}{4}) } = x^{\frac{3}{4}[/tex]
What number is equivalent to 9 1/2?
Answer:
the answer is going to be 2/4
Define “constant value”
A fixed value. In Algebra, a constant is a number on its own, or sometimes a letter such as a, b or c to stand for a fixed number. Example: in "x + 5 = 9", 5 and 9 are constants.
Perimeter =68 Length (L) is 4 less than twice the width (W)
Answer:
Length = 21.3333333333; Width: 12.6666666667
Step-by-step explanation:
Perimeter = 68
Perimeter of a rectangle:
2 (L +W)
Length (L) = 2W - 4
Width = W
2 ( 2W -4 +W) = 68
=> 2 (3W - 4) = 68
=> 6w -8 = 68
=> 6w = 76
=> w = 12.6666666667
Length = (12.6666666667 X 2) - 4
=> 21.3333333333
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]