Answer:
* if the spring force is greater than the maximum of the static friction force,
Fe = m (a + μ_k g)
* If the elastic force is less than or equal to the static friction force, the result is with static friction coefficient
Fe =μ_s m g
Explanation:
For this exercise we must apply Newton's second law to the system
X axis
Fe -fr = m a
Fe = m a + fr
Y axis
N-W = 0
N = W = mg
the roe force is given by
fr = μ N
fr = μ mg
we substitute
Fe = m a + μ m g
Ee = m (a + μ g)
Let's analyze the solution. We have several possibilities
* if the spring force is greater than the maximum of the static friction force, the system acquires an acceleration and the result is with the kinetic friction coefficient
Fe = m (a + μ_k g)
* If the elastic force is less than or equal to the static friction force, the result is with static friction coefficient
Fe =μ_s m g
Brandon buys a new seadoo he goes 12 km north from the beach he jumps wakes for 6 km to the east the chases a boat 10 km north what distance did he cover what was his displacement
Answer:
Distance covered 28 km
displacement is 22.8 km North-East
Explanation:
Distance shows how far apart objects or points are from each other. The distance he covered is the sum of all the distance travelled. Therefore:
Distance covered = 12 km + 6 km + 10 km = 28 km
Displacement is a vector quantity (has direction). It is the overall change in position.
The total distance traveled north = 12 km + 10 km = 22 km
The distance traveled east = 6 km
The displacement (d) is:
d² = 22² + 6² = 484 + 36
d² = 520
d = √520 = 22.8 km
Therefore the displacement is 22.8 km North-East
Distance covered 28 km
displacement is 22.8 km North-East
The calculation is as follows:
Distance covered
= 12 km + 6 km + 10 km
= 28 km
Now
The total distance traveled north = 12 km + 10 km = 22 km
And,
The distance traveled east = 6 km
So,
The displacement (d) is:
[tex]d^2 = 22^2 + 6^2\\\\ d^2 = 520\\\\d = \sqrt520[/tex]
= 22.8 km
learn more: https://brainly.com/question/10813422?referrer=searchResults
A high-voltage powerline operates at 500000 V-rms and carries an rms current of 500 A. If the resistance of the cable is 0.050Ω/km, what is the resistive power loss in 200 km of the powerline?
Answer:
2,500,000W or 2.5MW
Explanation:
The power lost due to resistance is given by I^2R. We must first obtain R as follows;
Resistance per kilometer= 0.050Ω/km
Distance covered= 200km
R = 200km x 0.050Ω/km = 10Ω
The lost power as a 500A current passes through the powerline is:
P = I²R
P= 500² x 10
P= 2,500,000 W or 2.5MW
The resistive power loss in 200 km of the powerline is of 2.5 MW.
Given data:
The root mean square voltage is, V' = 500000 V.
The magnitude of current through the power line is, I =500 A.
The magnitude of resistance of cable is, R = 0.050 Ω/km.
The length of powerline is, L = 200 km.
Whenever there is a flow of current through the wire, then there are various losses out of which the power loss is a major factor. The mathematical expression for the power loss is given as
P = I²R
Solving as,
P= 500² x 10
P= 2,500,000 W or 2.5MW
Thus, we can conclude that the resistive power loss in 200 km of the powerline is of 2.5 MW.
Learn more about the resistive power loss here:
https://brainly.com/question/15158529
Students create a standing wave
with three loops on a slinky 3.75 m
long. They time 20 oscillations in
6.73 s. What is the wavelength of
the standing wave?
(Unit = m)
Explanation:
Given that,
Number of loops are 3
Length of slinky is 3.75 m
They time 20 oscillations in 6.73 s.
We need to find the wavelength of the standing wave.
For 3 loops, [tex]L=\dfrac{3\lambda}{2}[/tex]
Here, [tex]\lambda[/tex] is the wavelength of the standing wave
So,
[tex]\lambda=\dfrac{2L}{3}\\\\\lambda=\dfrac{2\times 3.75}{3}\\\\\lambda=2.5\ m[/tex]
So, the wavelength of the standing wave is 2.5 m.
A vertical cylinder with a heavy piston contains air at 300 K. The initial pressure is 2.0 x 105 Pa and the initial volume is 0.35 m3 . Take the molar mass of air as 28.9 g/mol and assume Cv= 5 2R. (A) Find the specific heat of air at constant volume in units of J kg·K . (5 pts) (B) Calculate the mass of air in the cylinder. (5 pts) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K. (5 pts). (D) Assume again the conditions of the initial state and assume the piston is free to move. Find the energy input to raise the temperature to 700 K. (10 pts)
Find answers and explanations in the attachments
Answer:
Explanation:
) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K.
The distance covered by a body along the x axis is given by x=2t^3+5t^2+t where t is measured in seconds and x is in meter. Find average speed in a time interval from t= 0s and t=2s
Explanation:
It is given that,
The distance covered by a body along the x-axis is given by :
[tex]x=2t^3+5t^2+t[/tex]
t is in seconds and x is meters
Speed of the body is given by :
[tex]v=\dfrac{dx}{dt}\\\\v=\dfrac{d(2t^3+5t^2+t)}{dt}\\\\v=6t^2+10t+1[/tex]
At t = 0,
[tex]v=6(0)^2+10(0)+1=1\ m/s[/tex]
At t = 2 s,
[tex]v=6(2)^2+10(2)+1=45\ m/s[/tex]
So, the average speed in a time interval from t= 0s and t=2s is 45 m/s.
How much work is done in moving a body of mass 1.0 kg from an elevation of 2 m to
an elevation of
Answer:
The work done is -176.4 J.
Explanation:
Given that,
Mass = 1.0 kg
An elevation of 2 m to an elevation of 20 m.
Suppose, Find the work done by the gravitational field of the earth?
We need to calculate the force
Using formula of force
[tex]F=mg[/tex]
Put the value into the formula
[tex]F=1.0\times9.8[/tex]
[tex]F=9.8\ N[/tex]
We need to calculate the displacement
Using formula of displacement
[tex]Displacement = s_{2}-s_{1}[/tex]
[tex]s=20-2=18\ m[/tex]
The direction of displacement is upward.
Since gravitational force is downwards and displacement is upwards,
Then the angle is 180°.
We need to calculate the work done
Using formula of work
[tex]W=f\cdos s\cos\theta[/tex]
[tex]W=9.8\times18\cos180[/tex]
[tex]W=-176.4\ J[/tex]
Hence, The work done is -176.4 J.
write down the reading shown on the instrument above in units of the instrument
Answer:
The reading of the vernier calliper is 3.93 mm
Explanation:
The given instrument is a micrometer screw gauge that has a main scale reading and a vernier scale reading
The the question, we have;
The individual divisions of the main scale = 0.5 mm
The reading on the main scale = 3.5 mm
The reading on the vernier scale = 43
The accuracy of the vernier caliper = 0.01
Reading on the vernier scale multiplied by the accuracy of the vernier caliper = 43 × 0.01 = 0.43 mm
The reading of the micrometer screw gauge = The reading on the main scale + Reading on the vernier scale multiplied by the accuracy of the vernier caliper
Therefore, the reading of the micrometer screw gauge = 3.5 + 0.43= 3.93 mm
The reading of the vernier calliper = 3.93 mm.
A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed in the water. What is the final water temperature? State the assumptions you need to make in your calculations.
[Given the value of specific heat capacity of water is 4200 J kg^-1 °C^-1 and that of iron is
450 J kg^-1 °C^-1]
Answer:
The final temperature is 31.94°
Explanation:
The mass of the water in the container m₁ = 200 g = 0.2 kg
The initial temperature of the water, T₁₁ = 30°C
The mass of the iron, m₂ = 200 g = 0.2 kg
The temperature of the iron T₂₁= 50°C is immersed in the water,
The specific heat capacity of the water, c₁ = 4200 J/(kg·°C)
The specific heat capacity of the iron, c₂ = 450 J/(kg·°C)
Heat capacity relation is given by the formula;
Heat capacity Q = Mass, m × Specific heat capacity, c × Temperature change, (T₂ - T₁)
Given that energy can neither be created nor destroyed, and with the assumption that all the heat lost by the nail is gained by the water we have;
Heat lost by iron nail = Heat gained by the water
m₁ × c₁ × (T₂ - T₁₁) = m₂ × c₂ × (T₂₁ - T₂)
Where, T₂ is the final temperature
0.2 kg × 4200 J/(kg·°C) × (T₂ - 30) = 0.2 kg × 450 J/(kg·°C) × (50° - T₂)
840·T₂ - 25200 = 4500 - 90·T₂
4500 + 25200 = 840·T₂ + 90·T₂
29700 = 930·T₂
T₂ = 29700/930 = 31.94°.
The final temperature = 31.94°.
73Ge
32
has
neutrons.
Halley is standing outside on a cloudy day. When she hears thunder, she goes back inside so that she doesn't get caught in
a storm. Is this an example of inference or prediction? Explain
Answer:
Inference
Explanation:
An inference involves the application of logic to progress from a premise to a conclusion or logical consequence on the basis of the evidence or known fact. Inference is a process of thought that be divided into a deduction and an induction aspect.
In the given question Halley, by standing outside was able to deduce the sound of thunder she is then able by inductive reasoning from the fact that storms are usually preceded by and accompany lightening, conclude that there is a storm coming.
How much heat does 25 g of aluminum lose when cooled from 100 ° C to 20 ° C? Express your result in BTU
Answer:
1.7 BTU
Explanation:
q = mCΔT
q = (25 g) (0.9 J/g/°C) (100°C − 20°C)
q = 1800 J
q = 1800 J × (1 BTU / 1055 J)
q = 1.7 BTU
If a car has a speed of 36m/s how long will it take to go 100 m
Bus starts from rest if the acceleration of the bus is 0.5 MS squared what will be the velocity at the end of two minutes and what distance will it cover during that time
Explanation:
Given that,
Initial speed of the bus, u = 0
Acceleration of the bus, a = 0.5 m/s²
Let v is the velocity at the end of 2 minutes. The change in velocity divided by time equals acceleration.
So,
[tex]a=\dfrac{v-u}{t}\\\\v=u+at\\\\v=0+0.5\times 120\\\\v=60\ m/s[/tex]
Let d is the distance cover during that time. So,
[tex]v^2-u^2=2ad\\\\d=\dfrac{v^2-u^2}{2a}\\\\d=\dfrac{(60)^2}{2\times 0.5}\\\\d=3600\ m[/tex]
So, the final speed is 60 m/s and the distance covered during that time is 3600 m.
A screen is separated from a double-slit source by a distance L. When light of wavelength 563 nm is incident on the double slit, the separation distance between adjacent bright fringes on the screen is 0.0290 mm. When instead, 500 nm light is used, what is the separation distance (in mm) between adjacent bright fringes
Answer:
β 2 = 0.02575 mm
Explanation:
given data
wavelength = 563 nm
separation distance between adjacent bright fringes = 0.0290 mm
wavelength = 500 nm
solution
we get here separation distance between adjacent bright fringes that is express as
β = [tex]\frac{\lambda D }{d}[/tex] ..................................1
here D is distance from plane of slit to screen
and d is slit sepation that is constant
so
[tex]\frac{\beta 1}{\beta 2} = \frac{\lambda 1}{\lambda 2}[/tex]
β 2 = [tex]\frac{500}{563} \times 0.0290[/tex]
β 2 = 0.02575 mm
A construction worker uses an electrical device to attract fallen nails and sharp objects
from a construction site. What is causing the attraction of the metal objects?
O An electrical wave oscillating perpendicular to the electrical device.
O An electrical charge radiating perpendicular to the wire
O Amagnetic wave radiating perpendicular to an electrical device
O A magnetic wave and electrical current moving in opposite directions
Answer:
is the last one, a magnetic wave and electrical current moving in opposite directions
Explanation:
opposite directions always attract in magnetic waves and fields
if you drop a rock with a density of 1.73 grams will it float or sink
Answer:
the rock will sink. this is because it is more dense than water
Answer:it will sink
Explanation:
because the density of water is 1g and the rock is heavier the the density of water
the distance between two successive troughs of wave is 0.4m. If the frequency of the source is 825Hz, calculate the speed of the wave
Answer:
speed=330m/s
Explanation:
the speed of wave is given as
speed(meter per second) =frequency(hertz) * wavelength(meters)
so using the above formula we substitute the figures given in the question in the formula we get
speed = 0.4*825
speed =330m/s
note m/s is the si unit for speed which is read as meter per second
therefore speed =330m/s
Identifying Maller
In your own words, describe how matter is identified.
Answer:
Matter can be identified through its properties. One clue to helps us identify matter is magnetism. Magnetism is the ability of a material to be attracted by a magnet. Only certain materials are attracted to magnets, like iron, nickel, and cobalt.
Explanation:
we can identify matter by: physical properties and
chemical properties
What is the Opportunity Cost in textbooks from going from point A to B?
Answer:
60.00
Explanation:
you welcome
Calculate the intensity of current flowing through a computer that consumes 180W and operates at 120 V.
A.)0,66 A
B.)12600 A
C.)1,5 A
D.)60 A
Answer:
C) 1.5 A
Explanation:
P = IV
180 W = I (120 V)
I = 1.5 A
A person holds a 25 kg (250 newton) bag of cement over his head and moves it a distance of 10 m, taking 2 minutes, while another person carries it on a wheelbarrow that same distance, taking 1 minute.Who does more work ? What is the power of each person?
Explanation:
Assuming the 10 m distance is the vertical displacement, the work done by both people is the same.
Work = force × distance
W = (250 N) (10 m)
W = 2500 J
The power of the first person is:
Power = work / time
P = 2500 J / 120 s
P = 20.83 W
The power of the second person is:
P = 2500 J / 60 s
P = 41.67 W
Which statement accurately describes electronic tools? Check all that apply
Answer:
Electronic tools provide more accurate data and this data is more efficient fast and easy to understand
Hope this helps you!!
2 Which invention was crucial to the development of cell theory?
Answer:
I guess i would say the microscope
Explanation:
Because of the microscope, we can see the cells.
An 8.0g bullet, moving at 400 m/s, goes through a stationary block of wood in 4.0 x 10^-4s, emerging at a speed of 100 m/s. (a) what average force did the wood exert on the bullet? (b) how thick is the wood?
Answer:
Explanation:
Initial velocity (u) of the Bullet = 400 m/sec
Final velocity (v) of the Bullet = 100 m/sec
Bullet passed through the block in (t) = 0.0004 sec
Using 1st Equation of motion :
400 m/s = 100 m/s - a (0.0004)
Deceleration of Bullet = 750,000 m/sec^2
(a) F (force exerted by the wooden block on the bullet) = F (force exerted by the bullet on the wooden block)
F = m * a = 0.008 * 750,000 = 6000 N
(b) Using 3rd Equation of motion :
[tex]v^{2} = u^{2} - 2aS[/tex]
10000 = 160000 - 2 * 750,000 * S
Thickness of wood (S) = 0.1 m
The law of conservation of momentum states that the total momentum of interacting objects does not change . This means the total momentum a collision or explosion is equal to the total momentum a collision or explosion.what is momentum
Answer:
The momentum of an object is equal to the product of its mass and its velocity.
Explanation:
Consider an object of mass [tex]m[/tex] travelling at a velocity [tex]\vec{v}[/tex]. The momentum [tex]\vec{p}[/tex] of this object would be:
[tex]\vec{p} = m \cdot \vec{v}[/tex].
For the law of conservation of momentum, consider two objects: object [tex]\rm a[/tex] and object [tex]\rm b[/tex]. Assume that these two objects collided with each other.
Let [tex]m_{\rm a}[/tex] and [tex]m_{\rm b}[/tex] denote the mass of the two objects. Let [tex]\vec{v}_{\rm a}(\text{initial})[/tex] and [tex]\vec{v}_{\rm b}(\text{initial})[/tex] denote the velocity of the two object right before the interaction. Let [tex]\vec{v}_{\rm a}(\text{final})[/tex] and [tex]\vec{v}_{\rm b}(\text{final})[/tex] denote the velocity of the two objects right after the interaction. The momentum of the two objects right before the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex], respectively. The momentum of the two objects right after the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex], respectively.The sum of the momentum of the two objects would be:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex] right before the collision, and[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex] right after the collision.Assume that the system of these two objects is isolated. By the law of conservation of momentum, the sum of the momentum of these two objects should be the same before and after the collision. That is:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) = m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex].
Two 110 kg bumper cars are moving toward each other in opposite directions. Car A is moving at 8 m/s and Car Z at −10 m/s when they collide head–on. If the resulting velocity of Car A after the collision is −10 m/s, what is the velocity of Car Z after the collision? 10 m/s −8 m/s 8 m/s 10 m/s-
Answer:
it will be 8ms-1
Explanation:
MaUa+MbUb=MaVa+MbVb
If you go to a nutrition store and buy a supplement you can count on the fact that it is pure and safe because supplements are regulated controlled and inspected by the FDA
Answer:
The answer is False.
Explanation: The FDA (food and drug administration) is a regulatory agency of the United state Government, they regulate the production and distribution of food and drugs within the United States of America, ensuring that standards are met and followed.
Most of the approvals given to food and drugs by FDA are done based on random sampling of products which may not be able to capture all the defective products in a given lot or batch of supplies, which is why it very necessary to take other measures to verify the wholesomeness, authenticity etc of a given product before purchasing or making use of such products.
Answer:
false
Explanation:
got right on egd
Match the words to the correct blanks in the sentences. Use each choice only once. a. The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by________. b. As a protostar shrinks in size, its central temperature rises along with its________. c. A star that has not yet finished forming is called a_______. d. A forming star spins more rapidly as it collapses because of conservation of________. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a________.A. thermal pressureB. angular momentumC. energy balanceD. degeneracy pressureE. brown dwarfF. gravitational equilibriumG. protostar
Answer:
The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by DEGENERACY PRESSURE. b. As a protostar shrinks in size, its central temperature rises along with its THERMAL PRESSURE. c. A star that has not yet finished forming is called a__PROTOSTAR_____. d. A forming star spins more rapidly as it collapses because of conservation of ANGULAR MOMENTUM. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a____BROWN DWARF____
identify properties of a human body system
Answer:
integumentary, skeletal, muscular, nervous, endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary, and reproductive
Explanation:
and this is biology not physics
In the vertical columns of the periodic table:
Atomic weight increases from top to bottom.
Outer shell electrons increases from top to bottom.
The number of shells increases from top to bottom.
All the physical properties are identical.
Answer:
C. The number of shells increases from top to bottom
Explanation:
There are some trends about the periodic table, one of them is that in the vertical columns of periodic table, the number of shells increases from top to bottom.
From top to bottom in a periodic table, the number of electrons increases, thus more number of shells are needed to fill these electrons and the number of shells increases or we can say the atomic radius increases from top to bottom.
Hence, the correct option is "C".