Answer:
15,300 units
Step-by-step explanation:
First, find how many units of Product B were sold:
34,000(0.3)
= 10,200
Find how many units of Product A were sold:
10,200(1.5)
= 15,300
So, 15,300 units of Product A were sold.
Product A sold 15,300 units that is 1.5 times more than product B
Given :
Product A sells 1.5 times more than Product B. Product B sells 70% less than Product C.
Product C sold 34,000 units this month
Product C sold = 34000
Product B is 70% less than product C
So, product B is 100-70% =30% of product C
[tex]Product B=\frac{30}{100} \cdot 34000\\Product B \; sold = 10200[/tex]
Lets find out product A sold
Product A sold = 1.5 times more than product B
[tex]Product A= 1.5 \cdot product B\\Product A=1.5 \cdot 10200=15300[/tex]
15,300 units of product A were sold.
Learn more : brainly.com/question/18958901
Jack’s backpack weighs 15 pounds. Fernando’s backpack weighs less than Jack’s. Which graph shows how much Fernando’s backpack can weigh?
Answer:
A
Step-by-step explanation:
c and d out of the question
b has its circle filled in meaning it could be 15lbs, which it's not
A correct answer by default
Answer:b
Step-by-step explanation: it has a filled in diamond which mean it's that...
please helpppp i need it by tonight its very important
Answer:
m<1=145
m<2=35
m<3=35
Step-by-step explanation:
measure one is supplementary(the angles add to 180) to measure four.
so we do 180-35=145
measure 2 is congruent to measure four because they are corresponding angles
so measure 2=35
and measure 3 is also congruent to measure 4 because the are corresponding angles
so m<3=35
Venn diagrams: unions, intersections, and complements
Attached is the photo reference
Answer:
a) 0
b) 2,3,4,5,6,7
c)3,4,6,7
Step-by-step explanation:
Shawn has 4 times as many candies as Jason, who has a third as many candies as
lan. If Shawn has 64 candies, how many candies does Ian have?
five brothers of 4, 9, 11, 13 and 16 years respectively, receive an inheritance of 1,500,000, the will stipulated that that amount must be shared by the heirs so that, placed the shares in a bank, they would result in equal capitalized amounts, when each one reached 21, could raise his share. Knowing that the bank charges an interest rate of 9% per year, what is the amount of each share?
9514 1404 393
Answer:
Youngest to oldest:
160,406.86246,805.83293,230.01348,386.58451,170.72Step-by-step explanation:
At 9% interest per year, the present value of 1 at age 20 is ...
p(a) = 1.09^(a-20)
Adding the present values for the different ages, we get a total of about 2.35528984846. Dividing the inheritance by that amount gives the multiplier for each of the present value numbers. The result is the list of shares shown above. At age 20, each brother will inherit about 636,864.29.
__
Additional comment
This is the sort of question that suggests the use of a graphing calculator or spreadsheet for doing the tedious number crunching.
(We assume the bank pays 9% per year, rather than charges 9% per year.)
look at the image below
Answer:
201.1 km²
Step-by-step explanation:
Surface area of a sphere= 4πr², where r = radius
so,
4πr²
= 4×π×4²
= 64π
= 201.1 km² (rounded to the nearest tenth)
Triangle ABL is an isosceles triangle in circle A with a radius of 11, PL = 16, and ∠PAL = 93°. Find the area of the circle enclosed by line PL and arc PL. Show all work and round your answer to two decimal places.
The area bounded by a chord and arc it intercepts is known as a segment of a circle segment of a circle
The area of the circle enclosed by line PL and arc PL is approximately 37.62 square units
The reason the above value is correct is as follows:
The given parameters in the question are;
The radius of the circle, r = 11
The length of the chord PL = 16
The measure of angle ∠PAL = 93°
Required:
The area of part of the circle enclosed by chord PL and arc PL
Solution:
The shaded area of the given circle is the minor segment of the circle enclosed by line PL and arc PL
The area of a segment of a circle is given by the following formula;
Area of segment = Area of the sector - Area of the triangle
Area of segment = Area of minor sector APL - Area of triangle APL
Area of minor sector APL:
Area of a sector = (θ/360)×π·r²
Where;
r = The radius of the circle
θ = The angle of the sector of the circle
Plugging in the the values of r and θ, we get;
Area of the minor sector APL = (93°/360°) × π × 11² ≈ 98.2 square units
Area of Triangle APL:
Area of a triangle = (1/2) × Base length × Height
Therefore;
The area of ΔAPL = (1/2) × 16 × 11 × cos(93°/2) ≈ 60.58 square units
Required shaded area enclosed by line PL and arc PL:
Therefore, the area of shaded segment enclosed by line PL and arc PL is found as follows;
Area of the required segment PL ≈ (98.2 - 60.58) square units = 37.62 square units
The area of the circle enclosed by line PL and arc PL ≈ 37.62 square units
Learn more about the finding the area of a segment can be found here:
https://brainly.com/question/22599425
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
The calculation of the area between line segment PL and circle arc PL is described below:
1) Calculation of the area of the circle arc.
2) Calculation of the area of the triangle.
3) Subtracting the area found in 2) from the area found in 1).
Step 1:
The area of a circle arc is determined by the following formula:
[tex]A_{ca} = \frac{\alpha\cdot \pi\cdot r^{2}}{360}[/tex] (1)
Where:
[tex]A_{ca}[/tex] - Area of the circle arc.
[tex]\alpha[/tex] - Arc angle, in sexagesimal degrees.
[tex]r[/tex] - Radius.
If we know that [tex]\alpha = 93^{\circ}[/tex] and [tex]r = 11[/tex], then the area of the circle arc is:
[tex]A_{ca} = \frac{93\cdot \pi\cdot 11^{2}}{360}[/tex]
[tex]A_{ca} \approx 98.201[/tex]
Step 2:
The area of the triangle is determined by Heron's formula:
[tex]A_{t} = \sqrt{s\cdot (s-l)\cdot (s-r)^{2}}[/tex] (2)
[tex]s = \frac{l + 2\cdot r}{2}[/tex]
Where:
[tex]A_{t}[/tex] - Area of the triangle.
[tex]r[/tex] - Radius.
[tex]l[/tex] - Length of the line segment PL.
If we know that [tex]l = 16[/tex] and [tex]r = 11[/tex], then the area of the triangle is:
[tex]s = \frac{16+2\cdot (11)}{2}[/tex]
[tex]s = 19[/tex]
[tex]A_{t} = \sqrt{19\cdot (19-16)\cdot (19-11)^{2}}[/tex]
[tex]A_{t} \approx 60.399[/tex]
Step 3:
And the area between the line segment PL and the circle arc PL is:
[tex]A_{s} = A_{ca}-A_{t}[/tex]
[tex]A_{s} = 98.201 - 60.399[/tex]
[tex]A_{s} = 37.802[/tex]
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
A popular beach erodes 4 inches per year on average.
An eroding beach.
A. How many years will it take for the coastline to erode one foot?
Answer:
3 years
Step-by-step explanation:
4 inches per year on average
1 foot = 12 inches
12 divided by 4 equals 3
therefore it is 3 years
Please help explanation if possible
Answer:
18.84 feet. let me know if you have ay other questions.
Step-by-step explanation:
The way to find the formula for circumference is kinda complicated so it is best to ust memorize the formula, which is 2πr. or 2 times pi times the radius.
Your problem gives you the formula, but instead of 2 and r in it you have d, which is the diameter.
The diameter of the circle is 2 times the radius, so that's why it is replaced.
the radius is the distance from the center fo the circle to one edge, and the diameter is the distance through the circle passing through its center. so it's the center to one end plus the center to another end. or r+r which is also 2r.
So d = 2r, so in this problem d =6 feet.
So now the formula πd = 3.14*6 feet = 18.84 feet
HELP PLEASE!!!
Oak wilt is a fungal disease that infects oak trees. Scientists have discovered that a single tree in a small forest is infected with oak wilt. They determined that they can use this exponential model to predict the number of trees that will be infected after t years.
f(t)=e^0.4t
Question:
Rewrite the exponential model as a logarithmic model that calculates the # of years, g(x) for the number of infected trees to reach a value of x.
The logarithmic model is:
[tex]g(x) = \frac{\ln{x}}{0.4}[/tex]
-------------
We are given an exponential function, for the amount of infected trees f(x) after x years.To find the amount years needed for the number of infected trees to reach x, we find the inverse function, applying the natural logarithm.-------------
The original function is:
[tex]y = f(x) = e^{0.4x}[/tex]
To find the inverse function, first, we exchange y and x, so:
[tex]e^{0.4y} = x[/tex]
Now, we have to isolate y, and we start applying the natural logarithm to both sides of the equality. So
[tex]\ln{e^{0.4y}} = \ln{x}[/tex]
[tex]0.4y = \ln{x}[/tex]
[tex]y = \frac{\ln{x}}{0.4}[/tex]
Thus, the logarithmic model is:
[tex]g(x) = \frac{\ln{x}}{0.4}[/tex]
A similar question is given at https://brainly.com/question/24290183
Convert 0.450 to a proper fraction
Answer:
9/20
Step-by-step explanation:
450/1000
this is not the answer, because it is not simplified
so here we have to find common factor and simplifying
________________________________________________
450/1000 is simplified to 9/20, and it can no longer be simplified.
Starting with a fresh bar of soap, you weigh the bar each day after you take a shower. Then you find the regression line for predicting weight from number of days elapsed. The slope of this line will be:__________.
Answer:
The slope will be negative
Step-by-step explanation:
The slope of the regression line tells us about the relationship or behavior of the dependent and independent variables. In the scenario above, where the weight is being compared with the number of days elapsed. What is expected of the weight and quantity of a bar soap each time it is used for a shower is that it will decrease in weight. Therefore, as the number of days increases, and hence, number of showers rise, the weight of soap will decrease. Hence, we'll obtain a negative slope, one in which the increase in a variable leads to decrease in the other.
please help me with both questions
Answer:
(b) 829 seconds
(c) 13.8 minutes
Step-by-step explanation:
(b) 2.48×10⁸/2.99×10⁵ = 829 seconds
(c) 829/60 = 13.8 minutes
prove that 2^n+1>(n+2).sin(n)
Step-by-step explanation:
F(n)=|sin(n)|+|sin(n+1)|
then
F(n+π)=|sin(n+π)|+|sin(n+π+1)|=|sin(n)|+|sin(n+1)|=F(n)
and
F(π−n)=|sin(π−n)|+|sin(π−n+1)|=|sinn|+|sin(n−1)|≠F(n)
so we must prove when n∈(0,π), have
F(n)>2sin12
when n∈(0,π−1),then
F(n)=sinn+sin(n+1)=sinn(1+cos1)+sin1cosn
and n∈(π−1,π),then
F(n)=sinn−sin(n+1)
How prove it this two case have F(n)>2sin12? Thank you
and I know this well know inequality
|sinx|+|sin(x+1)|+|sin(x−1)|≥2sin1,x∈R
write your answer as an integer or as a decimal rounded to the nearest tenth
Answer:
FH ≈ 6.0
Step-by-step explanation:
Using the sine ratio in the right triangle
sin49° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{FH}{FG}[/tex] = [tex]\frac{FH}{8}[/tex] ( multiply both sides by 8 )
8 × sin49° = FH , then
FH ≈ 6.0 ( to the nearest tenth )
Answer:
6
Step-by-step explanation:
sin = opposite/hypotenuse
opposite = sin * hypotenuse
sin (49) = 0,75471
opposite = 0,75471 * 8 = 6,037677 = 6
After how many years, to the nearest whole year, will an investment of $100,000 compounded quarterly at 4% be worth
$213,022?
Provide your answer below:
9514 1404 393
Answer:
19 years
Step-by-step explanation:
The compound interest formula tells you the future value of principal P invested at annual rate r compounded n times per year for t years is ...
A = P(1 +r/n)^(nt)
Solving for t, we get ...
t = log(A/P)/(n·log(1 +r/n))
Using the given values, we find t to be ...
t = log(2.13022)/(4·log(1 +0.04/4)) ≈ 19.000
The investment will be worth $213,022 after 19 years.
factorize : ( p- q ) cube
Answer:
[tex]( {p - q}^{3} ) \\ = {p}^{2} - 3 {p}^{2} q + 3p {q}^{2} - {q}^{3} [/tex]
PLSS HELPPPP WILL GIVE BRAINLESSS A 22-foot ladder is resting against the side of a building. The bottom of the ladder is 3 feet from the building. Find the measure of the angle the ladder makes with the ground. Round your answer to the nearest tenth of a degree.
Answer:
The answer is 82.2
Step-by-step explanation
hope this helps
Factors and rewrite the expression 25x-15
Answer:
5(5x-3)
Step-by-step explanation:
The common factor in this expression is 5 so divide 5 to all the values
25/5=5
-15/5= -3
Put these values into parenthesis and leave the 5 on the left side and out of the parenthesis
5(5x-3)
Answer:
5(5x - 3)
Step-by-step explanation:
The greatest common factor here is 5. Divide each term by 5 and simplify.
25x/5 = 5x
15/5 = 3
Therefore, the answer is 5(5x - 3).
kabura bought a piece of cloth 3 metres long. The material shrunk by 1% after washing. What was the new length of the cloth
Answer:
2.97m
Step-by-step explanation:
1% of 3m =1/100×3=0.03
0.03m of cloth was shrunk,
So, New lenght : 3-0.03=2.97m
What is the simplified form of the following expression? Assume x > 0.
3
2x
16x
2x
4/24x²
2x
4/2443
16x4
124²
Answer:
fourth root of 24 x cubed/16x to the power four
Round 5,821 to the nearest thousands place:
Answer:
6000 hope this helps
if the question is 5,422 then the round figure is 5000
but the question is 5,821 its above 5500 will be 6000
You measure 49 turtles' weights, and find they have a mean weight of 80 ounces. Assume the population standard deviation is 6.1 ounces. Based on this, construct a 99% confidence interval for the true population mean turtle weight. Round your answers to 2 decimal places.
Answer:
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575\frac{6.1}{\sqrt{49}} = 2.24[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 80 - 2.24 = 77.76 ounces.
The upper end of the interval is the sample mean added to M. So it is 80 + 2.24 = 82.24 ounces.
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
Police estimate that 25% of drivers drive without their seat belts. If they stop 6 drivers at random, find theprobability that more than 4 are wearing their seat belts.
Answer:
%17.80
Step-by-step explanation:
17.8% is the probability that more than 4 are wearing their seat belts.
What is Probability?It is a branch of mathematics that deals with the occurrence of a random event.
Given that Police estimate that 25% of drivers drive without their seat belts.
If they stop 6 drivers at random we need to find the probability that more than 4 are wearing their seat belts.
For each driver stopped, there are only two possible outcomes. Either they are wearing their seatbelts, or they are not.
he drivers are chosen at random, which mean that the probability of a driver wearing their seatbelts is independent from other drivers.
Police estimate that 25% of drivers drive without their seat belts.
This means that 75% wear their seatbelts, so P=0.75
If they stop 6 drivers at random, find the probability that all of them are wearing their seat belts.
[tex]P(X=x)=C_{n,x} p^{x} (1-p)^{n-x}[/tex]
[tex]P(X=6)=C_{6,6} 0.75^{6} (1-0.75)^{0} =0.1780[/tex]
Hence, 17.8% is the probability that more than 4 are wearing their seat belts.
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ5
Give example to verify if the given statement is true or false
1) if two numbers are co-primes , at least one of them should be prime number.
Answer:
no
Step-by-step explanation:
if two numbers are co-prime that is not necessary that one of them must be a prime number
Helpp me plzzz im being timed
A car insurance company has determined that6% of all drivers were involved in a car accident last year. If14drivers are randomly selected, what is the probability of getting at most 3 who were involved in a car accidentlast year
Answer:
[tex]P(x \le 3) = 0.9920[/tex]
Step-by-step explanation:
Given
[tex]p = 6\%[/tex] --- proportion of drivers that had accident
[tex]n = 14[/tex] -- selected drivers
Required
[tex]P(x \le 3)[/tex]
The question is an illustration of binomial probability, and it is calculated using:
[tex]P(x ) = ^nC_x * p^x * (1 - p)^{n-x}[/tex]
So, we have:
[tex]P(x \le 3) = P(x = 0) +P(x = 1) +P(x = 2) +P(x = 3)[/tex]
[tex]P(x=0 ) = ^{14}C_0 * (6\%)^0 * (1 - 6\%)^{14-0} = 0.42052319017[/tex]
[tex]P(x=1 ) = ^{14}C_1 * (6\%)^1 * (1 - 6\%)^{14-1} = 0.37578668057[/tex]
[tex]P(x=2 ) = ^{14}C_2 * (6\%)^2 * (1 - 6\%)^{14-2} = 0.15591149513[/tex]
[tex]P(x=3 ) = ^{14}C_3 * (6\%)^3 * (1 - 6\%)^{14-3} = 0.03980719024[/tex]
So, we have:
[tex]P(x \le 3) = 0.42052319017+0.37578668057+0.15591149513+0.03980719024[/tex]
[tex]P(x \le 3) = 0.99202855611[/tex]
[tex]P(x \le 3) = 0.9920[/tex] -- approximated
The half-life of a radioactive substance is 20 years. If you start with some amount of this substance, what fraction will remain in 180 years?
Answer:
1/512
Step-by-step explanation:
Let staring fraction = x
Half-life = 20 years ; this is the time taken for an element to decrease to half of its original size
Hence,
After 20 years - - - > x/2
After 40 years - - - - > x/2 ÷ 2 = x/2 * 1/2 = x /4
After 60 years - - - - > x/4 ÷ 2 = x/4 * 1/2 = x/8
After 80 years - - - - -> x/8 ÷ 2 = x/8 * 1/2 = x / 16
After 100 years - - - > x/16 * 1/2 = x/32
After 120 years - - - - > x/32 * 1/2 = x/64
After 140 years - - - - -> x / 64 * 1/2 = x / 128
After 160 years - - - - - > x / 128 * 1/2 = x/256
After 180 years - - - - > x/256 * 1/2 = x / 512
Hence, the fraction after 180 years = 1/512
The polygons in each pair are similar. Find the missing side length.
Let missing side be x
If both polygons are similar
[tex]\\ \sf\longmapsto \dfrac{3}{4}=\dfrac{18}{x}[/tex]
[tex]\\ \sf\longmapsto 3x=4(18)[/tex]
[tex]\\ \sf\longmapsto 3x=72[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{72}{3}[/tex]
[tex]\\ \sf\longmapsto x=24[/tex]
The segments shown below could form a triangle.
A
C
7
9
12
B
А
a
A. True
B. False
Answer:
TRUE
Step-by-step explanation:
I SEEN SOME ONE ELSE WIT 5 STARS SAY SO(:
The given segment can form triangle. Therefore, the given statement is true.
What is triangle?A polygon has three edges as well as three vertices is called a triangle. It's one of the fundamental geometric shapes. In Euclidean geometry, each and every three points that are not collinear produce a distinct triangle and a distinct plane. In other words, every triangle was contained in a plane, and there is only single plane that encompasses that triangle.
All triangles are enclosed in a single plane if all of geometry is the Euclidean plane, however this is no longer true in higher-dimensional Euclidean spaces. Unless when otherwise specified, this article discusses triangles within Euclidean geometry, namely the Euclidean plane. The given segment can form triangle.
Therefore, the given statement is true.
To know more about triangle, here:
https://brainly.com/question/14712269
#SPJ7