prove mathematically :
1. v = u + at
2. s = ut+1*2 at ​

Answers

Answer 1

Answer:

a.v=u+v/2

a.v=s/t

combining two equation we get,

u+v/2=s/t

(u+v)t/2=s

(u+v)t/2=s

{u+(u+at)}t/2=s

(u+u+at)t/2=s

(2u+at)t/2=s

2ut+at^2/2=s

2ut/2+at^2/2=s

UT +1/2at^2=s

proved

a=v-u/t

at=v-u

u+at=v


Related Questions

it is easier to drag a stone than to kick it?why.​

Answers

Answer:

you are going to expend energy to give a lot of velocity (and momentum) to your foot in order to transfer it the stone air drag this time the kicking speed is for superior to walking speed.

 

                                                  Thank You

A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.

a) Draw a sankey diagram for a roller coaster's climb.

Answers

A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.

What is mechanical energy?

Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.

The expression for total mechanical energy is as follows

ME= KE+PE

As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,

Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.

Learn more about mechanical energy from here brainly.com/question/12319302

#SPJ2

how will be electric lines of force where intensity of electric field is maximum ?
a. wider
b. +ve to -ve
c. narrow
d. -ve to +ve

Answers

i'm pretty sure the answer is A wider

Electric lines of force where intensity of electric field is maximum when its wider.

What is Electric field?

The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field. It can also refer to a system of charged particles' physical field.

Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.

Electrical technology makes use of electric fields, which are significant in many branches of physics. For instance, in atomic physics and chemistry, the electric field acts as an attracting force to hold atoms' atomic nuclei and electrons together.

Therefore, Electric lines of force where intensity of electric field is maximum when its wider.

To learn more about electric field, refer to the link:

https://brainly.com/question/1443103

#SPJ2

Why do we use semiconductor instead of metal in thermopile?

Answers

Answer:

Metal or conductors , what they do is that they allow full flow of current that is conduction is due to free electrons only and there is literally no gap between valence and conduction band,so free electrons can easily jump into conduction band from valence band.

And now lets talk about insulators,what they do is that they don’t allow any current to flow i.e they act as strong dielectric,and gap between valence band and conduction band is so big that free electron can never come into conduction band from valence band ever if they try is for eternity…

But semiconductors can act both as an insulator as well as a conductor based on the voltage input. Hence, there is a possibility to control the current flow in semiconductors , so they don’t just relax and let the current pass by, they can control it, and that is why you can design logic circuits with it.

But as the temperature increases free electrons from valence band of insulators can jump to conduction band and can cause a little conductivity, and then the insulator will act as a semi-conductor.

An airplane which intends to fly due south at 250 km/hr experiences a wind blowing westward at 40 km/hr. What is the actual speed of the airplane relative to the ground? ​

Answers

Answer:

simple is rumple a daily ok I'll be

With respect to a right handed Cartesian coordinate system and given that . A = 4i + k and B = 2i + j _ 3k find A cross B

Answers

Using the left-hand rule,

[tex](4\,\vec\imath+\vec k)\times(2\,\vec\imath+\vec\jmath-3\,\vec k) = \begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\4&0&1\\2&1&-3\end{vmatrix} = -\vec\imath+14\,\vec\jmath+4\,\vec k[/tex]

Then in the right-handed rectangular coordinates, the cross product is the negative of this,

[tex]\boxed{\vec\imath-14\,\vec\jmath-4\,\vec k}[/tex]

As a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight (the normal force) is the same magnitude as the car's weight. What is the car's speed at the top?

Answers

Answer:

40 because if it is the same weight then there is no weight to make the ride slower so it 40

Explanation:

A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 25 times as great as the momentum change of the heavier fragment. B) The same as the momentum change of the heavier fragment. C) 1/25 as great as the momentum change of the heavier fragment. D) 5 times as great as the momentum change of the heavier fragment. E) 1/4 as great as the momentum change of the heavier fragment.

Answers

Answer:

B) The same as the momentum change of the heavier fragment.

Explanation:

Since the initial momentum of the system is zero, we have

0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.

0 = p + p'

p = -p'

Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0  = p

The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'

Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'

So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment.  

So, option B is the answer

Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

Answers

The question is incomplete, the complete question is;

Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.

Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

K/2.

K.

2K.

greater than 2K.

Answer:

2K

Explanation:

Given that the kinetic energy of photo electrons is given by;

K= E -Wo

Where;

K = kinetic energy

E= energy of incident photon

Wo = work function

But;

E= hf

Wo = fo

h= Plank's constant

f= frequency of incident photon

fo= Threshold frequency

So:

K= hf - hfo

Where the frequency of incident light is doubled;

K= 2hf - hfo

Hence, maximum kinetic energy of the emitted electrons in this case will be 2K

When you shine a beam of light, which is composed of just two different colors, red and green, onto a diffraction grating which color gets diffracted more

Answers

Answer:

The diffraction grating separates light into colors as the light passes through the many fine slits of the grating. This is a transmission grating. ... The prism separates light into colors because each color passes through the prism at a different speed and angle.

What can light and sound both vary in which one of these ?

Volume
Intensity
Number or prespective?

Answers

Answer:

intensity

Explanation:

b. example, The sun is very bright and intense. and sounds can be very loud.

A particle moves along the x axis. In order to calculate the torque on the particle, you need to know:

a. the rotational inertia of the particle
b. the velocity of the particle
c. the mass of the particle
d. the kinetic energy of the particle
e. the point about which the torque is to be calculated

Answers

Answer:

e. the point about which the torque is to be calculated

Explanation:

torque is the product of a force and a distance

the point about which the torque is calculated is required to know the distance.

None of the other terms are relevant as they refer to mass or its equivalent, and velocity. Force is not mentioned in any of them.

A particle moves along the x-axis. In order to calculate the torque on the particle, you need to know the point about which the torque is to be calculated. Therefore, option E is correct.

What is torque ?

The rotating equivalent of force is torque. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.

Ancient Romans gave these necklaces the term "torque" by describing them as twisted and spiral screw-shaped using the Latin word "torquere," which also means "twisting" and "turning."

It's critical to realize that torque, which has to do with your motor's power in terms of rotational force, is not the same thing as speed. Find a motor with a top speed if you require more motor speed, and a motor with a motor torque that is maximized if you need more rotational force.

Thus, option E is correct.

To learn more about torque, follow the link;

https://brainly.com/question/9270821

#SPJ2

What distance do I cover if I travel at 10 m/s E for 10s?

Answers

Answer:

100m

Explanation:

i think this is the answer because the formula for distance is

d=speed×time in this case the speed is 10m/s and the time is 10s therefore the distance will be

10m/s×10s

=100m

I hope this helps

Answer:

100 m

Explanation: this is when you need to find velocity and the formula for velocity is displacement by time taken.

Convierta 164 decimetros a hectometros

Answers

Answer:

sinco

Explanation:

Read the following sentence from the article. Life can evolve into complex and specialized forms that exploit every possible niche in their surroundings. What is the definition of "exploit" as it is used in this sentence? A to turn to advantage B to invent a new application C to draw on an earlier experience D to narrow down options​

Answers

Answer:

C. To draw on an earlier experience.

A sports car accelerates uniformly from rest to 24 m/s in 6 seconds. Calculate the acceleration of the car

Answers

Answer:

a = 4m/s^2

Explanation:

Velocity(V) = uniform = 24m/s

time(t) = 6sec

Acceleration(a) = V/t

= 24/6

= 4m/s^2

When a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car would be 4 m/s²

What are the three equations of motion?

There are three equations of motion given by  Newton

The first equation is given as follows

v = u + at

the second equation is given as follows

S = ut + 1/2×a×t²

the third equation is given as follows

v² - u² = 2×a×s

Note that these equations are only valid for a uniform acceleration.


As given problem sport car accelerates uniformly from rest to 24 m/s in 6 seconds then the acceleration of the car can be calculated by using the first equation of motion

v = u + at

As given the initial velocity u= 0

The final velocity v = 24 m/s

The time taken is t= 6 seconds

By substituting the respective values of velocity and  time

24 = 0+ a*6

a = 24/6

a = 4 m/s²

Thus, when a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car comes out to be 4 m/s²

Learn more about  equations of motion from here

brainly.com/question/5955789

#SPJ2

A roller coaster has a mass of 1200.0kg. The coaster is going 22.0 m/s at the bottom
of the third loop-the-loop that is 2.5m above the ground. Determine the height of
the first hill that is required, assuming the cart is stationary at the top of the first hill
before it falls.

Answers

Answer:

h = 27.17 m

Explanation:

First, we will calculate the total mechanical energy of the system at the bottom point of the third loop:

Mechanical Energy = Kinetic Energy + Potential Energy

[tex]E = \frac{1}{2}mv^2 + mgh[/tex]

where,

E = Total Mechanical Energy = ?

m = mass of the roller coaster = 1200 kg

v = velocity of the roller coaster = 22 m/s

g = acceleration due to gravity = 9.81 m/s²

h = height of roller coaster = 2.5 m

Therefore,

[tex]E = \frac{1}{2}(1200\ kg)(22\ m/s)^2+(1200\ kg)(9.81\ m/s^2)(2.5\ m)\\\\E = 290400 J +29430\ J\\\\E = 319830\ J = 319.83\ KJ[/tex]

Now, the total mechanical energy at the top position of the first hill must also be the same:

[tex]E = \frac{1}{2}mv^2 + mgh[/tex]

where,

v = 0 m/s

h = ?

Therefore,

[tex]319830\ J = \frac{1}{2}(1200\ kg)(0\ m/s)^2+(1200\ kg)(9.81\ m/s^2)(h)\\\\h = \frac{319830\ J}{11772\ N}\\\\[/tex]

h = 27.17 m

What about Iceland's location makes it particularly well-suited to produce electricity from geothermal energy

Answers

The volcanoes in Iceland generate geothermal energy, heating & help with the making of electricity

Answer:

Iceland lies on a boundary where two plates are moving away from each other. Heat from Earth’s interior rises through this plate boundary at a fast rate. This fact makes Iceland well-suited to producing electricity using its abundance of geothermal energy.

Explanation:

Edmentum sample answer.

describe four energy changes that happen in the process.

Answers

Driving a motor........

chemical energy is converted into kinetic energy.

Falling off of cliff

.........gravitational potential energy is converted into kinetic energy.

Hydroelectric energy generation

.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.

Nuclear power generation

.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.

In the following experiments, identify the independent and dependent variable.

Answers

Answer:

in what experements

Explanation:

A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m

Answers

Answer:

It will travel Vx * t = 30 m/s * 2 s = 60 m

Distance = velocity x time
= 30m/s x 2 sec
= 60 m/s

why is nut-cracker 2nd class lever?​

Answers

2nd class leaver refers to such leaver in which load lies between effort and fulcrum.In a nut cracker too load is in between effort and fulcrum.Thus, nut cracker is a 2nd class leaver.......

Consider a piston filled with 3 mols of an ideal gas, kept at a constant temperature 290 K. We slowly compress the gas starting at 2 m3 and ending at 1 m3. How much work do we need to do on the gas to perform this operation

Answers

Answer: [tex]-5013.65\ J[/tex]

Explanation:

Given

No of moles [tex]n=3[/tex]

Temperature [tex]T=290\ K[/tex]

Initial volume [tex]V_1=2\ m^3[/tex]

Final volume [tex]V_2=1\ m^3[/tex]

Work done in constant temperature process is

[tex]W=nRT\ln \left(\dfrac{V_2}{V_1}\right)[/tex]

Insert the values

[tex]\Rightarrow W=3\times 8.314\times 290\ln \left (\dfrac{1}{2}\right)\\\\\Rightarrow W=-870\times 8.314\times \ln (2)\\\Rightarrow W=-5013.65\ J[/tex]

A man is driving a car at speed 25m/s. calculate the distance covered by it in one hour.​

Answers

Answer:

6.94 km/hr

Explanation:

m/s to km/hr -> Multiply by 18/5

25/(18/5)

=> 25 x 5/18

=> 125/18 km/hr

=> 6.94 km/hr

Answer: 90,000 m = 90 km

Explanation:

Given information

Time = 1 hour

Speed = 25 m/s

Given expression deducted from the given information

Distance = speed × time

Convert units of time

1 hour = 60 minutes

1 minute = 60 seconds

1 hour = 60 × 60 = 3600 seconds

Substitute values into the expression

Distance = 25 × 3600

Simplify by multiplication

Distance = [tex]\boxed{90,000 m=90km}[/tex]

Hope this helps!! :)

Please let me know if you have any questions

1. A sequence of potential differences v is applied accross a wire (diameter =0.32 mm length = 11 cm and the resulting current I are measured as follows: V 0.1 0.2 0.3 0.4 0.5 I (MA) 72 144 216 288 360 2) a) plot a graph of v against I.
b) determine the wire's resistence , R.
c) State ohm's law and try to relate it . your results.​

Answers

Answer:

a. Find the graph in the attachment

b. 720 kΩ

c. The ratio V/I gives us our resistance which is 720 kΩ

Explanation:

a) plot a graph of V against I.

To plot the graph of V against I, we plot the corresponding points against each other. With the voltage V measured in volts and the current I measured in mA, the plotted graph is in the attachment.

b) Determine the wire's resistance , R.

The resistance of the wire is determined as the gradient of the graph.

R = ΔV/ΔI = (V₂ - V₁)/(I₂ - I₁)

Taking the first two corresponding measurements. V₁ = 72 V, I₁ = 0.1 mA, V₂ = 144 V and I₂ = 0.2 mA

R = (144 V - 72 V)/(0.2 - 0.1) mA

R = 72 V/0.1 mA

R = 72 V/(0.1 × 10⁻³ A)

R = 720 × 10³ V/A

R = 720 kΩ

c) State ohm's law and try to relate it your results.​

Ohm's law states that the current flowing through a conductor is directly proportional to the voltage across it provided the temperature and all other physical conditions remain constant.

Mathematically, V ∝ I

V = kI

V/I = k = R

Since the ratio V/I = constant, from our results, the ratio of V/I for each reading gives us the resistance. Since we have a linear relationship between V and I, the gradient of the graph is constant and for each value of V and I, the ratio V/I is constant. So, the ratio V/I gives us our resistance which is 720 kΩ.

Since V/I is constant, we thus verify Ohm's law.

A mass weighing 4 lb stretches a spring 4in. Suppose the mass is given an additional in displacement downwards and then released. Assuming no friction and no external force, the natural frequency W (measured in radians per unit time) for the system is? (Recall that the acceleration due to gravity is 32ft/sec2).
a) None of the other alternatives is correct.
b) W = v2 3
c)w=212
d) w = 4/6
e) w=213

Answers

Answer:

4√6 rad/s

Explanation:

Since the spring is initially stretched a length of x = 4 in when the 4 lb mass is placed on it, since it is in equilibrium, the spring force, F = kx equals the weight of the mass W = mg.

So, W = F

mg = kx where m = mass = 4lb, g = acceleration due to gravity = 32 ft/s², k = spring constant and x = equilibrium displacement of spring = 4 in = 4 in × 1ft /12 in = 1/3 ft

making k the spring constant subject of the formula, we have

k = mg/x

substituting the values of the variables into the equation, we have

k = mg/x  

k = 4 lb × 32 ft/s² ÷ 1/3 ft

k = 32 × 4 × 3

k = 384 lbft²/s²

Now, assuming there is no friction and no external force, we have an undamped system.

So, the natural frequency for an undamped system, ω = √(k/m) where k = spring constant = 384 lbft²/s² and m = mass = 4 lb

So, substituting the values of the variables into the equation, we have

ω = √(k/m)

ω = √(384 lbft²/s² ÷ 4 lb)

ω = √96

ω = √(16 × 6)

ω = √16 × √6

ω = 4√6 rad/s

A wire, 0.60 m in length, is carrying a current of 2.0 A and is placed at a certain angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field

Answers

Answer:

[tex]\theta=30 \textdegree[/tex]

Explanation:

From the question we are told that:

Current [tex]I=2.0A[/tex]

Length [tex]L=0.60m[/tex]

Magnetic field [tex]B=0.30T[/tex]

Force [tex]F=0.18N[/tex]

Generally the equation for Force is mathematically given by

[tex]F = BIL sin\theta[/tex]

[tex]sin\theta=\frac{F}{BIL}[/tex]

[tex]\theta=sin^{-1}\frac{0.18}{0.3*2*0.6}[/tex]

[tex]\theta=30 \textdegree[/tex]

A 2.5 kg block slides along a frictionless surface at 1.5 m/s.A second block, sliding at a faster 4.1 m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.5 m/s. What was the mass of the second block?

Answers

Answer:

1.5kg

Explanation:

Given data

mass m1= 2.5kg

mass m2=??

velocity of mass one v1= 1.5m/s

velocity of mass two v2= 4.1m/s

common velocity after impact v= 2.5m/s

Let us apply the formula for the conservation of linear momentum for inelastic collision

The expression is given as

m1v1+ m2v2= v(m1+m2)

substitute

2.5*1.5+ m2*4.1= 2.5(2.5+m2)

3.75+4.1m2= 6.25+2.5m2

collect like terms

3.75-6.25= 2.5m2-4.1m2

-2.5= -1.6m2

divide both sides by -1.6

m2= -2.5/-1.6

m2= 1.5 kg

Hence the second mass is 1.5kg

what is the energy of an electromagnetic wave that has a frequency of 8.0 x 10^15 Hz? Use the equation...

Answers

(C)

Explanation:

[tex]E = hf = (6.626×10^{-34}\:\text{J•s})(8.0×10^{15}\:\text{Hz})[/tex]

[tex]= 5.3×10^{-18}\:\text{J}[/tex]

Answer:

It's D

Explanation:

It's from alvs

) The velocity function is v(t)=−t2+3t−2v(t)=−t2+3t−2 for a particle moving along a line. Find the displacement (net distance covered) of the particle during the time interval [−2,5][−2,5].

Answers

Answer:

89.87m/s

Explanation:

Given the velocity function

v(t)=−t²+3t−2

In order to get the displacement function, we will integrate the velocity function as shown:

[tex]\int\limits^5_{-2} {v(t)} \, dt \\d(t)= \int\limits^5_{-2}{(-t^2+3t+2)} \, dt \\\\d(t)=[\frac{-t^3}{3}+\frac{3t^2}{2}+2t ]^5_{-2}\\[/tex]

at t = 5

[tex]d(5)=[\frac{-5^3}{3}+\frac{3(5)^2}{2}+2(5) ]\\d(5)=[\frac{-125}{3}+\frac{75}{2}+10 ]\\d(5)=-41.7+37.5+10\\d(5)=89.2m/s[/tex]

at t = -2

[tex]d(-2)=[\frac{-(-2)^3}{3}+\frac{3(-2)^2}{2}+2(-2) ]\\d(-2)=[\frac{-8}{3}+\frac{12}{2}+(-4) ]\\d(-2)=-2.67+6-4\\d(-2)=-0.67m/s[/tex]

Required displacement = d(5) - d(-2)

Required displacement = 89.2 - (-0.67)

Required displacement = 89.2 + 0.67

Required displacement = 89.87m/s

Other Questions
Henry Ford had accurate ideas about how the Great Depression in the U.S. could be ended quickly - by people working harder and practicing thrift.A. TrueB. False About 6% of the population has a particular genetic mutation. 100 people are randomly selected. Find the standard deviation for the number of people with the genetic mutation in such groups of 100. A rectangular prism is 3 feet long, 4 feet wide, and 4 feet high. What is it's surface area? A chemistry student needs 90.0mL of carbon tetrachloride for an experiment. By consulting the CRC Handbook of Chemistry and Physics, the student discovers that the density of carbon tetrachloride is 1.59g*cm3- Calculate the mass of carbon tetrachloride the student should weigh out. Be sure your answer has the correct number of significant digits. To test for the significance of a regression model involving 3 independent variables and 51 observations, the numerator and denominator degrees of freedom (respectively) for the critical value of F are _____. Mo will receive a perpetuity of $27,000 per year forever, while Curly will receive the same annual payment for the next 40 years. If the interest rate is 7.1 percent, how much more are Mo's payments worth GIVING 15 POINTS PLS HELP!!!Part A: factor 2x^2b^2 + 5xb^2 + 2b^2. Show your work.Part B: factor x^2 - 8x + 16. Show your work.Part C: factor x^2 - 49. Show your work. It is known that oxygen contains 1 percent of the air. If 50 liters of wind, how much oxygen is needed? I WILL MARK THE ANSWER AS BRAINLIEST BE CORRECT BEFORE YOU ANSWER PLEASELOOK AT THE PROBLEM A study of performance in business organizations found that workers with higher ____ were rated as more effective leaders, as well as being more responsible for others, by their co-workers, supervisors, and subordinates.a. external locus of control b. guilt-proneness c. need to achieve d. narcissism What makes you a better choice over other people applying ?**Application* What is the inverse of function f? f(x)=10/9+11 Question 1. Devonia hits her head with a closed fist when her one-on-one teaching assistant leaves her side to interact with another student. Usually, when Devonia does this, her teaching assistant returns to her side, asks her to stop hitting herself, and soothes her. She rarely engages in head hitting when her assistant works directly with her. What is the most likely function of Devonia's problem behavior? Read the speech "Voluntourism: An Opportunity Too Good to be True" and consider the advertisement "The Opportunity of a Lifetime." Then, answer the question.Voluntourism: An Opportunity Too Good to be TrueA Speech to the Student Body of Evergreen High[1] Picture this: It's Spring Break, and you fly off to some country where there's lush rainforests and beautiful, blue coastlines to explore. There's also people in need, so you decide to blend your vacation with volunteering. Volunteering as a tourist, or voluntourism, seems like a great way to explore new regions and help people at the same time. However, this "volunteer plus travel" experience can actually harm local communities. While many teens might view traveling and volunteering abroad as a worthwhile adventure, there are more genuine and effective ways to make a difference.[2] Most would agree that volunteering in general is a worthy use of time. However, what if you found out the children you are "helping" are actually being kept in poor conditions so voluntourists will spend money to come to the local area? Dale Rolfe, a supporter of ethical voluntourism, explains the shocking reality that "Animal sanctuaries and orphanages are often manufactured for the voluntourist...encouraging a cycle of exploiting the very animals and children the volunteers are trying to help."[3] Proponents of the "volunteer plus travel" experience also argue that traveling to new places builds character and is a valuable way to learn about different cultures. With voluntourism, however, participants often pursue experiences that are all about them. For example, they sign up to build a school for a gold star on their resume, but they have no real building skills and take jobs away from local construction workers (Schulten). Or, they arrive to teach English but instead take selfies with the locals. One world traveler and ethical voluntourist believes voluntourism "can perpetuate small minded views of the world by taking insulated, fake, and structured experiences and selling them as unabridged and eye opening" (Carlos). The voluntour experience is a mirage. The voluntourist's eyes are not opened to real life at the destination, and lasting change is not achieved.[4] If you want a genuine experience where you can see a lasting impact, there are better options than voluntourism. You can volunteer in your local community. Give an hour every week to your town's animal rescue. Serve monthly dinners to the homeless. Be a reliable, positive influence on a child who needs a mentor. Studies show that volunteering and forming lasting relationships with those you help has a positive impact on your physical and emotional health. In fact, blood pressure is reduced, memory is improved, and rates of depression are reduced (Michaels).[5] There is another reason to look into alternatives to voluntourism. Did you know the average "voluntour" travel package costs $3,400 (Rolfe)? Could that travel money be better spent? If the world's citizens are your passion, it could go to an international organization. If you care about education, your funds can be used to buy books for students in faraway lands. If you want villagers to have clean water, contribute funds to local efforts to dig wells. If you want to experience a different culture, travel to the country as a guest, and learn from the locals how you can best help them after you've returned home. But do not voluntour.[6] In reality, there are better ways to make a difference. Voluntourism might appear to be an adventure that blends travel and helping others, but it does little except provide a costly, superficial experience that might actually do more harm than good. So, volunteer where you are most needed-at home, where you can stay to see the job through and form genuine, lasting relationships. Choose a beautiful coastline closer to home and send the travel money you saved to an international organization that will put it to good use. Whatever you do, don't turn someone else's hardship into your vacation."The Opportunity of a Lifetime"A magazine advertisement with the title Both texts (the speech and the advertisement) address voluntourism. However, each text has a different purpose, which is reflected by the details each writer chose to include. Consider the words and images used.In a paragraph of 6-8 sentences, identify what each text emphasizes and explain how that emphasis reveals each author's position on voluntourism. Be sure to state each author's position and include evidence from both texts to support your analysis. Create and configure databases in oracle database management system operation administration 3 coins are flipped. where does the CSI unit transport evidence to be tested The following paragraph is an incomplete part of a personal essay. Choosethe answer that (a) correctly identifies the type of paragraph and (b) providesan adequate completing sentence:When I reached the finish line, seeing four other people infront of me finally made me realize what competition is allabout. All the time and energy I had invested in improvingmy body's performance was not for the benefit of hearingmy name called as a prize winner what mattered wasthat I finished, and the place number was secondary toknowing I had put forth my full effort. find the estimates for the following: What is the winter caused by?A) indirect sunlight striking EarthB) Earth's far distance from the sunC) Earth's closeness to the sunD) direct sunlight striking Earth