Answer:
a) 71
b) an = a1 + (n-1)×7
c) the 37th term
Step-by-step explanation:
clearly, an+1 = an + 7
so, any new term is the previous term plus 7.
a1 = 8
and then the sequence goes on. starting with a2 we add 7 every time.
so, for an we added 7 n-1 times to a1. n-1 because for a1 we did not have to add 7.
therefore, the building function of this sequence to calculate the nth term is
an = a1 + (n-1)×7
a10 = a1 + 9×7 = 8 + 63 = 71
and
ax = 260 = a1 + (x-1)×7 = 8 + 7x - 7 = 1 + 7x
259 = 7x
x = 37
=> the 37th term of the sequence is 260
Evaluate f-g+(-2) where f = -3.005 and g = 4.7
Answer:
-9.705
Step-by-step explanation:
f-g+(-2)
Let f = -3.005 and g = 4.7
-3.005 -4.7 -2
-9.705
Which equation represents a parabola that has a focus of (0,0) and a directix of y = 2?
Answer: D
Step-by-step explanation:
[tex]a=0,\ b=0,\ k=2\\equation\ of\ the\ parabola:\\\\y=\dfrac{(x-a)^2}{2(b-k)} +\dfrac{b+k}{2} \\\\\\y=-\dfrac{x^2}{4}+1 \\\\x^2=-4(y-1)\\\\Answer\ D[/tex]
Simplify for me please
please solve this please
Answer:
2/(a-4b) is the required ans
check the attachment for help
can i get some help please
The sum of the interior angles in a triangle is 180 degrees.
72 + 35 + <1 = 180
107 + <1 = 180
<1 = 73 degrees
Hope this helps!
Answer:
<1 = 73
Step-by-step explanation:
The sum of the angles of a triangle is 180 degrees
72+ 35+ <1 = 180
Combine like terms
107 + <1 =180
Subtract 107 from each side
<1 = 180-107
<1 = 73
Write these sums as decimals:
2/100 + 3/1,000 =
1/10 + 4/10,000 =
Answer:
1 ) 0.023
2 ) 0.1004
Step-by-step explanation:
2 / 100 + 3 / 1000
= 0.02 + 0.003
= 0.020 + 0.003
= 0.023
1 / 10 + 4 / 10,000
= 0.1 + 0.0004
= 0.1000 + 0.0004
= 0.1004
A rectangular drawing is enlarged by 30%. The original dimensions of this drawing are 16cm x 24cm.
Determine the scale factor, as a fraction that represents this enlargement. What are the new, enlarged
dimensions?
Answer:
Step-by-step explanation: Scale [tex]\frac{130}{100} = \frac{13}{10}[/tex]
New dimensions [tex]16 * 1.3 --- 24*1.3 =20.8 cm * 31.2 cm[/tex]
Find the length of the third side. If necessary, write in simplest radical form
Answer:
5
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
a^2 + 10^2 = (5 sqrt(5))^2
a^2 +100 = 25(5)
a^2 +100 = 125
a^2 = 125-100
a^2 = 25
Taking the square root of each side
sqrt(a^2) = sqrt(25)
a = 5
Please help!!!.......thx
Step-by-step explanation:
sin and tan are the only ones with p positive valued
Convert 1 Iinto an improper fraction.
Answer:
only mixed number can be changed into improper fraction according to my khowlage of grade7
Step-by-step explanation:
thank you
Is student is reading a book about 370 words per minute convert this rate to words per hour
Answer: 22,200 words per hour.
Step-by-step explanation:
You can set up a proportion for this: 370 words/per 1 min= x words/ per 60 mins. Cross multiply and you get 22,200=1x which basically equals to 22,200 words per hour or 60 mins.
find the HCF of the following number by listing the set of factors class 6 questions is 27 and 36
Answer:
The factors of 27 are 1,3,9,27.
The factors of 36 are 1,2,3,4,6,9,12,36.
HCF=1,3,9
Julie had 2730 cards and Kim had 3570 cards at first.
Julie gave some of her cards to Kim. In the end, Kim had thrice as many cards as Julie.
How many cards did Julie give Kim.
Answer:
1155
Step-by-step explanation:
Total number of cards is 2730+3570=6300
Since Kim now has 3 times the card of Julie so Julie must have 6300/4=1575.
So, Julie gave 2730-1575=1155
Answer:
1155 cards
Step-by-step explanation:
3(2730-x)=3570+x
8190 - 3x = 3570 + x
4620 - 3x = x
4620 = 4x
1155 = x
Helpppp and explain pls and ty
Step-by-step explanation:
2 gallons are needed for 10 galloms of lemonade
find the 10 degree value can u help me on it
Solution:-10
As <AGQ and <EQG are corresponding interior angles
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow 60°+a=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow a=180-60[/tex]
[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow a=120}[/tex]
<AGQ=<PQR=60°<BHF=<PRQ=75°[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow b=75°}[/tex]
According to angle sum property
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow b+c+<PQR=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c+75+60=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c+135=180[/tex]
[tex]\\ \qquad\quad\sf{:}\twoheadrightarrow c=180-135[/tex]
[tex]\\ \qquad\quad\boxed{\sf{:}\twoheadrightarrow c=45°}[/tex]
if the cost of 2:dozen copies is Rs 720 , find the cost of 72 copies .
Answer:
Rs 2160
Step-by-step explanation:
1 dozen = 12 copies
2 dozen = 24 copies ( 2*12)
72÷12 = 6 dozen
72 copies = 6 dozen
1 dozen = Rs 720÷2
1 dozen Rs 360
6 dozen = 360*6
6 dozen = 72 copies = Rs 2160
Manish writes the functions g(x) = ^3 sqrt - x - 72 and h(x) = -(x+72)^3
Which pair of expressions could Manish use to show that g(x) and h(x) are inverse functions?
Here we want to find the expressions we need to use to see if the functions g(x) and h(x) are inverses of each other.
The correct option is the last one, counting from the top.
∛((x + 72)^3) - 72 and -(∛(-x) - 72 + 72)^3
Two functions f(x) and g(x) are inverses if:
f( g(x) ) = x
g( f(x) ) = x
In this case, we have the functions:
g(x) = ∛(-x) - 72
h(x) = -(x + 72)^3
Then the expressions we need to check are:
g( h(x) ) = ∛(-h(x)) - 72 = ∛(+(x + 72)^3) - 72 = (x + 72) - 72 = x
h( g(x) ) = -(g(x) + 72)^3 = -(∛(-x) - 72 + 72)^3 = -(∛(-x) )^3 = x
So we found that the two expressions needed are:
∛((x + 72)^3) - 72 and -(∛(-x) - 72 + 72)^3
Then the correct option is the last one, counting from the top.
If you want to learn more, you can read:
https://brainly.com/question/10300045
Answer:
GUYS ITS C THAT IS THE ANSWER
Chocolate beans are packed in 250 g and 750 g packages. The number of 250 g packages and 750 g packages are in the ratio 1 : 2. If two of the 750 g packages are replaced into 250 g packages, then the ratio becomes 5 : 3. Find
a) the original number of 250 g packages,
b) the total mass of the chocolate beans.
Answer:
a) 4 packages
b) 7000 g or 7 kg
Step-by-step explanation:
x is the number of 250g packages and y is the number of 750g packages.
2x = y
3(x + 2 x (750 : 250)) = 5(y - 2)
3(x + 6) = 5(y - 2)
3(x + 6) = 5(2x - 2)
3(x + 6) = 5(2(x - 1))
3(x + 6) = 5 * 2 * (x - 1)
3(x + 6) = 10(x - 1)
3x + 18 = 10x - 10
(3x + 18) + 10 = (10x - 10) + 10
3x + 28 = 10x
28 = 10x - 3x
28 = 7x
x = 28/7
x = 4
y = 2 * 4 = 8
(250 * 4) + (750 * 8) = 7000 g
solve for x *show work*
Answer:
x = 14
Step-by-step explanation:
The sum of the interior angles of a six sided figure is 720
10x + 8x-16+12x-8 +7x+2 +9x+4 +6x+10 = 720
Combine like terms
52x-8=720
Add 8 to each side
52x-8+8 = 720+8
52x = 728
Divide by 52
52x/52 = 728/52
x = 14
Step-by-step explanation:
here's the answer for thy question
Based on the graph of the trigonometric function,
what is the period?
Answer:
[tex]\displaystyle 4[/tex]
Explanation:
[tex]\displaystyle y = 3sin\:(\frac{\pi}{2}x + \frac{\pi}{2}) \\ y = 3cos\:\frac{\pi}{2}x[/tex]
[tex]\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{4} \hookrightarrow \frac{2}{\frac{\pi}{2}}\pi[/tex]
OR
[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{4} \hookrightarrow \frac{2}{\frac{\pi}{2}}\pi[/tex]
You will need the above information to help you interpret the graph. So, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph hits [tex]\displaystyle [-5, 0],[/tex] from there to [tex]\displaystyle [-1, 0],[/tex] they are obviously [tex]\displaystyle 4\:units[/tex] apart, telling you that the period of the graph is [tex]\displaystyle 4.[/tex] Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the midline. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at [tex]\displaystyle y = 0,[/tex] in which each crest is extended three units beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.
I am delighted to assist you at any time.
dilations geometry!
Answer:
A' (0,20)
B' (30,-20)
C' (-10,-40)
Answered by GAUTHMATH
tìm kiếm x y z
x-1/y =1
y-1/z =1
z-1/x =1
y - 1/z = 1 ==> y = 1 + 1/z
z - 1/x = 1 ==> z = 1 + 1/x
==> y = 1 + 1/(1 + 1/x) = 1 + x/(x + 1) = (2x + 1)/(x + 1)
x - 1/y = x - (x + 1)/(2x + 1) = (2x ² - 1)/(2x + 1) = 1
==> 2x ² - 1 = 2x + 1
==> 2x ² - 2x - 2 = 0
==> x ² - x - 1 = 0
==> x = (1 ± √5)/2
If you start solving for z, then for x, then for y, you would get the same equation as above (with y in place of x), and the same thing happens if you solve for x, then y, then z. So it turns out that x = y = z.
A boy is flying a kite from the terrace of his house. The kite is 175 m above the terrace. If the terrace is 80 m from the ground floor, findthe distance between the kite and the basement which is 8 m below the ground level.
175 m above the terrace + 80 m from terrace to ground + 8m from ground to basement:
175 + 80 + 8 = 263 meters
Chloe rolled 2 dice. Given that one die showed a 6, what is the probability that she rolled double 6? (Hint: Conditional Probability)
Answer:
1/6
Step-by-step explanation:
since they already tells us six has been rolled already, we depend on the second which can only show 1-6. There are six numbers so the answer is 1/6
PLEASE HELP! URGENT. the law of cosines is a2+b2-2abcosC=c2. Find the value of 2abccosC.
Answer:
D
Step-by-step explanation:
2ab*cos(C)=a^2+b^2-c^2
2ab*cos(C)=5^2+4^2-2^2=25+12=37
Answer:
The answer is 37
Step-by-step explanation:
If f(1) = 4 and f(n) = f(n − 1) + 5 then find the value of f(5).
Answer:
25
Step-by-step explanation:
f(5)=5(5-1)+5
f(5)=5(4)+5
f(5)=20+5
f(5)=25
Answer:
f(5) = 24
Step-by-step explanation:
f(1) = 4
f(n) = f(n − 1) + 5
Let n = 2
f(2) = f(2 − 1) + 5 = 4+5 = 9
Let n = 3
f(3) = f(3 − 1) + 5 = f(2)+5 = 9+5 = 14
Let n = 4
f(4) = f(4 − 1) + 5 = f(3)+5 = 14+5 = 19
Let n = 5
f(5) = f(5 − 1) + 5 = f(4)+5 = 19+5 = 24
what is the equation of the line that is parallel to the given line and passes through the point (-3,2)? no links.
Answer:
D) 4x +3y = -6
Step-by-step explanation:
paralell lines so m1 and m2 are equal
m = (3 +1 )/ (0 - 3 )
m = -4/ 3
y -2 = -4/3 (x +3)
y =-4x/3 -2
3y = -4x -6
4x +3y = -6
The table below shows the results from a study that compared speed (in miles per hour) and average fuel economy (in miler per gallon) for cars. Find a quadratic model for the data.
0.008
y=13.472x
2
+0.746x−0.008
y
=
25.836
x
+
0.049
y=25.836x+0.049
y
=
−
.
008
x
2
+
0.746
x
+
13.472
y=−.008x
2
+0.746x+13.472
y
=
0.049
x
+
25.836
y=0.049x+25.836
Note that the quadratic model for the data is y = -0.008x² + 0.75x + 13.47.
How is this so ?
Here are the steps on how to find a quadratic model for the data.
Make a scatter plot of the data. The points should form an inverted U-shape. This suggests a quadratic model.Use the quadratic regression feature on your graphing calculator to find an equation of the model.Here is the output of the quadratic regression feature on my graphing calculator
y = -0.008x² + 0.75x + 13.47.
where -
x is the speed in miles per hour
y is the fuel economy in miles per gallon.
Learn more about Quadratic equation at:
https://brainly.com/question/1214333
#SPJ1
the area of a parallelogram shape land is on the square and length of its two adjacent sides are 25 m and 17 M find its diagonal
Step-by-step explanation:
Draw diagonal AC
The triangle ABC has sides 17 and 25
Say AB is 17, BC is 25
Draw altitude on side BC from A , say h
h = 17 sin B
Area = 25*17 sin B = 408
sin B = 24/25
In ∆ ABC
Cos B = +- 7/25
= 625 + 289 — b^2 / 2*25*17
b^2 = 914 — 14*17 = 676
b = 26
h = 17*24/25 = 408/25 = 16.32
Draw the second diagonal BD
In ∆ BCD, draw altitude from D, say DE =h
BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2
BD^2 = 16.32^2 + (25 + 4.76)^2
= 885.6576 + 266.3424
BD = √ 1152 = 33.94 m
solve
f(x)=4x5−8x4+8x2−4x
Given:
The function is:
[tex]f(x)=4x^5-8x^4+8x^2-4x[/tex]
To find:
The roots of the given equation.
Solution:
We have,
[tex]f(x)=4x^5-8x^4+8x^2-4x[/tex]
For roots, [tex]f(x)=0[/tex].
[tex]4x^5-8x^4+8x^2-4x=0[/tex]
[tex]4x(x^4-2x^3+2x-1)=0[/tex]
[tex]4x((x^4-1)+(-2x^3+2x))=0[/tex]
[tex]4x((x^2+1)(x^2-1)-2x(x^2-1))=0[/tex]
On further simplification, we get
[tex]4x(x^2+1-2x)(x^2-1)=0[/tex]
[tex]4x(x-1)^2(x+1)(x-1)=0[/tex]
[tex]4x(x+1)(x-1)^3=0[/tex]
Using zero product property, we get
[tex]4x=0[/tex]
[tex]x=0[/tex]
Similarly,
[tex]x+1=0[/tex]
[tex]x=-1[/tex]
And,
[tex](x-1)^3=0[/tex]
[tex]x=1[/tex]
Therefore, the zeroes of the given function are [tex]-1,0,1[/tex] and the factor form of the given function is [tex]f(x)=4x(x+1)(x-1)^3[/tex].