The final velocity of the given mass having a 7kg weight will be 6.21 m/s.
Force is a physical phenomenon that modulates or tends to modulate the resting or moving state of an object as well as its shape. Newton is the SI unit of force.
Inertia is the ability of matter to remain stationary or move in the same direction without being affected by external forces.
It is a property of the body by which it resists any agent that attempts to cause it to move or, if moving, to alter the size or velocity of its motion. It is a non-active property and allows the body to do nothing except resist agents that are active, such as forces and torque.
Given, F(t) = 6t² - 3t + 1, mass = 7 kg, time = 3 seconds
[tex]\rm F(t) = 6t^{2} - 3t +1\\\rm m \frac{dv}{dt} = 6t^{2} - 3t +1\\\rm m\int\limits^v_0 {dv} \, = \int\limits^t_0 (6t^{2} - 3t +1) dt\\\rm mv = 6t^{3}/3 - 3 t^{2} /2 + t\\\rm m = 7 kg, t = 3 sec[/tex]
[tex]\rm mv= 2t^{3}- 3t^{2}/2 +t\\\rm v= 1/7[2\times 3^{3} - 3/2\times 3^{2} + 3\\\rm v= 1/7[54 - 13.5 + 3]\\\rm v= 6.21 m/s[/tex]
To learn more about velocity, refer to the link:
https://brainly.com/question/18084516
#SPJ4
what is the magnitude of the magnetic field in the shaded region
The magnitude of the magnetic field in the shaded region is determined as 1.3 T.
What is magnetic field?A magnetic field is a picture that we use as a tool to describe how the magnetic force is distributed in the space around and within something magnetic.
Also, a magnetic field is a vector field in the neighborhood of a magnet, electric current, or changing electric field in which magnetic forces are observable.
From the given question, if the magnitude of the magnetic field is uniform, then, the value of the magnetic field in the shaded region will remain the same.
The magnitude of the magnetic field in the shaded region is calculated as follows;
B = B₀ x d₀/d₁
where;
B₀ is the initial magnetic fieldd is the distance of the chargeB = 1.3T x 8 cm / 8 cm
B = 1.3 T
Learn more about magnitude of magnetic field here: https://brainly.com/question/30880745
#SPJ4
(0)
If investors are enthusiastic about the future, the spread between yields on high-grade and low-grade bonds
Multiple Choice
1-stays the same.
2-increases.
3-None of these options are true.
4-decreases.
The answer is option 2 - increases. When investors are optimistic about the future, the demand for low-grade bonds falls, and the demand for high-grade bonds increases.
As a result, the price of high-grade bonds increases, causing the yield to decrease, and the price of low-grade bonds decreases, causing the yield to increase. The difference between the yields on high-grade and low-grade bonds, also known as the spread, increases as a result of this.
The spread is a measure of the risk associated with investing in a bond. When investors are optimistic, they are willing to take on more risk, resulting in a wider spread. Conversely, when investors are pessimistic, they are risk-averse, resulting in a narrower spread. Therefore, option 2 - increases is the correct answer.
To know more about Investors visit :
https://brainly.com/question/31483087
#SPJ11
what would be a car's mpg at average values of the inputs? (upto two decimal points)
To provide an estimate of a car's MPG (miles per gallon) at average values of the inputs, we need specific information regarding the car's fuel efficiency, driving conditions, and engine specifications.
The MPG value can vary significantly based on factors such as the car's make, model, engine type, transmission, weight, aerodynamics, driving style, and road conditions.
However, as a rough approximation, the average MPG for a typical gasoline-powered car is around 25-30 MPG in mixed driving conditions. For a hybrid vehicle, the average MPG can range from 40-50 MPG. Electric vehicles (EVs) do not use MPG as a metric since they are powered by electricity and typically measured in terms of miles per kilowatt-hour (miles/kWh).
It's important to note that the actual MPG a car achieves can vary from these average values based on various factors. For a more accurate estimate, specific details about the car's make, model, and any additional parameters would be necessary.
To know more about average MPG, click here:
https://brainly.com/question/30051025
#SPJ11
Label reactants and products
Energy (from Sun) + 6CO2 + 6H2O → 6O2 + C6H12O6
The given chemical reaction represents photosynthesis, which is the process of converting light energy into chemical energy. The reactants of this reaction are energy from the sun, six carbon dioxide molecules, and six water molecules. These reactants undergo a complex series of reactions that ultimately result in the production of oxygen gas and glucose.
The energy from the sun is absorbed by pigments in the chloroplasts of plant cells, including chlorophyll. This energy is used to power a series of redox reactions, during which the carbon dioxide is reduced to form glucose.
The oxygen gas produced during photosynthesis is a byproduct of the oxidation of water, which is split into hydrogen ions and oxygen molecules. This process, known as photolysis, requires energy from the sun.
The glucose produced during photosynthesis is an important source of energy for the plant. It is used in cellular respiration to produce ATP, which is used to power the metabolic processes of the cell. Overall, photosynthesis is a complex and essential process that plays a critical role in the biosphere.
For more such questions on, click on:
https://brainly.com/question/19160081
#SPJ8
A +13 nC charge is located at the origin.
A)What is the electric field at the position (x1,y1)=(5.0 cm, 0 cm)? Write electric field vector in component form.Enter the x and y components of the electric field separated by a comma. B)What is the electric field at the position (x2,y2)=(-5.0 cm, 5.0 cm)? Write electric field vector in component form.Enter the x and y components of the electric field separated by a comma.
Therefore, the electric field at the position (5.0 cm, 0 cm) is 1.144 N/C in the x-direction and the electric field at the position (-5.0 cm, 5.0 cm) is 0.468 N/C in both x and y directions.
A +13 nC charge is located at the origin. The expression to find the electric field at a given position is
E=KQ / r²,
where K is Coulomb's constant, Q is the charge and r is the distance between the charge and the point where we want to find the electric field.
So, A) The position at which electric field is to be calculated is
(x1,y1)= (5.0 cm, 0 cm).
Hence, distance
r = [tex]\sqrt{((5.0 cm)^{2} + (0 cm)^{2})}[/tex]
= 5.0 cm (as the point lies on x-axis).
Now, Electric field vector E = KQ / r²
= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (5.0 * 10{-2} m)^{2}[/tex]
= 1.144 N/C
In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively.
Therefore, E = Exi
= 1.144 N/C (as the electric field is only in the x-direction and there is no component of electric field in the y-direction)Hence, the main answer is: 1.144, 0
Electric field vector E = KQ / r²
= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (5.0 * 10{-2} m)^{2}[/tex]
= 1.144 N/C
In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively. Therefore,
E = Exi = 1.144 N/C (as the electric field is only in the x-direction and there is no component of electric field in the y-direction)B) The position at which electric field is to be calculated is (x2,y2)=(-5.0 cm, 5.0 cm).
Hence, distance
r = [tex]\sqrt{((-5.0 cm)^{2}+ (5.0 cm)^{2})}
= 7.07 cm.
Now, Electric field vector
E = KQ / r²
= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (7.07 * 10{-2} m)^{2}[/tex]
= 0.659 N/C
In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively.
Therefore, E = 0.468i + 0.468j (as the electric field makes an angle of 45° with both the x-axis and y-axis) answer is: 0.468
Therefore, the electric field at the position (5.0 cm, 0 cm) is 1.144 N/C in the x-direction and the electric field at the position (-5.0 cm, 5.0 cm) is 0.468 N/C in both x and y directions.
For more information on electric field kindly visit to
https://brainly.com/question/14300841
#SPJ11
The 300 gram billiard ball of 30 mm radius is struck by a cue stick that exerts an average force of 600 N horizontally over a 0.005 s interval. Immediately after being hit, the billiard ball rolls without slipping. Determine (a) the height h for the cue stick, and (b) the velocity of the ball after the impact.
If the 300 gram billiard ball of 30 mm radius is struck by a cue stick that exerts an average force of 600 N horizontally over a 0.005 s interval. Immediately after being hit, the billiard ball rolls without slipping. Then the height and velocity is 2.85 m & 7.5 m/s.
Given data:The mass of the billiard ball, m = 300 g = 0.3 kgRadius of the billiard ball, r = 30 mm = 0.03 mAverage force exerted by the cue stick, F = 600 N
Duration of the collision, t = 0.005 s Let's determine the height of the cue stick using the principle of conservation of energy.According to the principle of conservation of energy, the initial energy of the ball and the cue stick system should be equal to the final energy of the system.
Energy of the system before collision = Potential energy = mghEnergy of the system after the collision = Kinetic energy = (1/2)mv²
Now, equating both the energies, we get:mgh = (1/2)mv²... (1)
where h is the height of the cue stick and v is the velocity of the ball after the impact.Let's determine the velocity of the ball using the principle of impulse and momentum.
According to the principle of impulse and momentum, the impulse experienced by the ball is equal to the change in momentum of the ball.Impulse = F × t Change in momentum = mv - 0... (2
)Here, v is the velocity of the ball after the impact.Now, equating both the equations (1) and (2), we get:
mgh = (1/2)mv²⇒ v² = 2gh... (3)And,F × t = mv... (4)
Squaring both sides of equation (4), we get:(Ft)² = m²v² ⇒ v² = (Ft)²/m²... (5)Substituting the value of v² from equation (5) into equation (3), we get:
(Ft)²/m² = 2gh⇒ h = (Ft)²/2mg... (6)Substituting the given values into equation (6), we get:h = [(600 N × 0.005 s)²/(2 × 0.3 kg × 9.8 m/s²)] = 2.85 m
Therefore, the height of the cue stick is 2.85 m.Now, substituting the value of h into equation (3), we get:v² = 2gh⇒ v² = 2 × 9.8 m/s² × 2.85 m = 56.28 m²/s²⇒ v = √56.28 = 7.5 m/s Therefore, the velocity of the ball after the impact is 7.5 m/s.
To know more about velocity visit :
https://brainly.com/question/23855996
#SPJ11
Calculate the work (kJ) done during a reaction in which the internal volume expands from 19 L to 48 L againts an outside pressure of 2.5 atm. W=-PdeltaV and atm.L= 101.235J
A) -7.3 kJ
B) 17 kJ
C) 7.3 kJ
D) -17 kJ
E) 0 kJ; No work is done
The work done during the reaction is approximately -7.3 kJ.
Hence, the correct option is A.
To calculate the work done during the reaction, we can use the formula:
W = -P * ΔV
Where:
W is the work done (in joules),
P is the external pressure (in atmospheres),
ΔV is the change in volume (in liters).
Given:
ΔV = 48 L - 19 L = 29 L
P = 2.5 atm
Substituting the values into the formula:
W = -2.5 atm * 29 L
Since 1 atm·L = 101.235 J, we can convert the units
W = -2.5 atm * 29 L * 101.235 J/(atmL)
W = -7365.08375 J
To convert the result to kilojoules, we divide by 1000:
W = -7.3 kJ
Therefore, the work done during the reaction is approximately -7.3 kJ. Hence, the correct option is A.
To know more about work done here
https://brainly.com/question/17032152
#SPJ4
what is the approximate boiling pressure of refrigerant oil in a system?
Refrigerant oil boiling pressure The boiling pressure of refrigerant oil is determined by the temperature of the system. This temperature varies depending on the pressure exerted on the oil. The refrigerant oil will boil at a different temperature for each refrigerant.
The boiling point of refrigerant oil can be estimated by determining the boiling pressure at a certain temperature of the system. The approximate boiling pressure of refrigerant oil in a system ranges from 20 to 30 psig. However, this value may vary depending on the type of refrigerant used in the system. The refrigerant oil can also be changed depending on the type of refrigerant used in the system.The type of refrigerant used in the system will also affect the boiling pressure of refrigerant oil. A refrigerant is a substance that changes from a liquid state to a gaseous state at a specific temperature. It is used in refrigeration systems to transfer heat from one location to another. The refrigerant oil is added to the system to ensure that all parts of the system are lubricated. This prevents the parts from grinding together and causing damage.
To know more about boiling pressure visit :
brainly.com/question/30512444
#SPJ11
the following appear on a physician's intake form. identify the level of measurement: (a) happiness on a scale of 0 to 10 (b) family history of illness (c) age (d) temperature
(a) The level of measurement for "happiness on a scale of 0 to 10" is an interval.
The happiness scale from 0 to 10 represents an interval measurement. The scale has equal intervals between the numbers, but it does not have a true zero point. The absence of happiness (0) does not indicate the complete absence of the attribute being measured. Therefore, it is an interval level of measurement.
(b) The level of measurement for "family history of illness" is nominal.
Family history of illness is a qualitative variable that represents categories or groups. It does not have a numerical order or magnitude. It is simply a classification of whether or not there is a family history of illness. Hence, it is a nominal level of measurement.
(c) The level of measurement for "age" is a ratio.
Age is a quantitative variable that has a meaningful zero point and a numerical order. Ratios between values are also meaningful. For example, someone who is 20 years old is half the age of someone who is 40 years old. Age satisfies all the properties of a ratio level of measurement.
(d) The level of measurement for "temperature" is an interval.
Temperature is a quantitative variable that can be measured on a scale such as Celsius or Fahrenheit. While temperature has equal intervals between the values, it does not have a true zero point (absolute absence of temperature). Therefore, it is an interval level of measurement.
To learn more about magnitude click here
https://brainly.com/question/29766788
#SPJ11
what is the highest order dark fringe, , that is found in the diffraction pattern for light that has a wavelength of 629 nm and is incident on a single slit that is 1480 nm wide?
The highest order dark fringe, n is approximately equal to 2 for light that has a wavelength of 629 nm and is incident on a single slit that is 1480 nm wide.
The highest order dark fringe, n can be determined using the equation:
n λ = a sin θ
where,λ = 629 nma = 1480 nm
Given data:
wavelength (λ) = 629 nmsingle slit width (a) = 1480 nm
The highest order dark fringe, n can be determined using the equation:n λ = a sin θThe first dark fringe corresponds to n = 1, second dark fringe corresponds to n = 2, and so on.
For the highest order dark fringe, we need to find the largest value of n which gives a valid value of
sin θ.n λ = a sin θ ⇒ sin θ = (n λ) / a
For the highest order dark fringe, sin θ = 1 which gives:
n λ = a sin θ⇒ n λ = a⇒ n = a / λ
We have,a = 1480 nmλ = 629 nm
Substituting the values in the equation, we get:
n = a / λ= 1480 nm / 629 nm= 2.35 or 2 (approx)Therefore, the highest order dark fringe, n is approximately equal to 2
The highest order dark fringe, n is approximately equal to 2 for light that has a wavelength of 629 nm and is incident on a single slit that is 1480 nm wide.
To know more about dark fringe, visit:
https://brainly.com/question/31576174
#SPJ11
how deep is the shipwreck if echoes were detected 0.36 s after the sound waves were emitted?
If echoes were detected 0.36 s after the sound waves were emitted, the depth of the shipwreck is 65.52 meters. This can be calculated using the formula:distance = speed × timeWhere speed is the speed of sound in water, which is approximately 1481 meters per second.
The time is 0.36 seconds, as given in the problem.Therefore:
distance = speed × time
distance = 1481 × 0.36
distance = 532.56 meters
However, this distance is the total distance traveled by the sound wave, which includes both the distance from the ship to the bottom and the distance from the bottom to the surface. Since the sound wave travels twice this distance (down to the bottom and back up to the surface), we need to divide by 2 to find the depth of the shipwreck. So, the depth of the shipwreck is:
depth = distance / 2
depth = 532.56 / 2
depth = 265.28 meters
This means that the shipwreck is 265.28 meters deep.
For more information on shipwreck visit:
brainly.com/question/30244941
#SPJ11
What is the work done to slow a 1.8 x 10^5 kg train car from 60 m/s to 20 m/s? O-2.9 x 10^8 J O-1.3 x 10^3 J O 3.1 x 10^5 J O 6.1 x 10^4 J 2.9 x 10^6 J
The work done to slow the 1.8 x 10^5 kg train car from 60 m/s to 20 m/s is approximately -2.88 x 10^8 J = -2.9 x 10^8J
The work done to slow down a train car can be calculated using the formula:
Work = (1/2) * mass * (final velocity^2 - initial velocity^2)
Mass of the train car (m) = 1.8 x 10^5 kg
Initial velocity (u) = 60 m/s
Final velocity (v) = 20 m/s
Using the formula, we can calculate the work done:
Work = (1/2) * (1.8 x 10^5 kg) * [(20 m/s)^2 - (60 m/s)^2]
= (1/2) * (1.8 x 10^5 kg) * (400 m^2/s^2 - 3600 m^2/s^2)
= (1/2) * (1.8 x 10^5 kg) * (-3200 m^2/s^2)
= -2.88 x 10^8 J
Therefore, the work done to slow down the train car from 60 m/s to 20 m/s is approximately -2.88 x 10^8 J.
The correct option from the given choices is: O-2.9 x 10^8 J
When the train car slows down, the work done on the car is negative because the force applied is in the opposite direction to the displacement. The work done is equal to the change in kinetic energy of the car. In this case, the initial kinetic energy is higher than the final kinetic energy, hence the negative sign.
The work done to slow the 1.8 x 10^5 kg train car from 60 m/s to 20 m/s is approximately -2.88 x 10^8 J = -2.9 x 10^8J
To know more about work visit:
https://brainly.com/question/28356414
#SPJ11
determine the magnitude of the velocity of the ball when t = 1.3 s .
[tex]6t^{1/\\2}[/tex] radian is the angular velocity of the ball when t = 1.3 s. The change in angular position in a given time by a rotating body is called angular velocity.
Given information,
Time = 1.3 seconds
The radial position of the ball = 0.1 t³
Now,
The radial velocity of the ball,
dr/dt = d(0.1 t³)/dt
r' = 0.1 ×3t²
= 0.3t²
dr'/dt = 0.3 dt² /t = 0.3 × 2t
r" = 0.6t
At t=0.3sec.
r' = 0.3 × (1.3)² = 0.507 m/s²
r" = 0.6 × 1.3 = 0.78 m/s²
r = 0.1 × t³ = 0.21697 m/s²
The angular position of the ball (θ) = 4t³/² rad
The angular velocity = dθ/dt
= 4 d/dt t^3/2
=4 × 3/2 t^1/2
= [tex]6t^{1/2}[/tex] radian.
Therefore, the velocity of the ball when t = 1.3s is [tex]6t^{1/2}[/tex] radian.
Learn more about velocity, here:
https://brainly.com/question/30559316
#SPJ4
Your question is incomplete, most probably the full question is this:
determine the magnitude of the velocity of the ball when t = 1.3 s .
the lines 593-620 that show the reaction to beowulf's return to herot:
The lines 593-620 of Beowulf show the reaction of people in Herot upon Beowulf's return. The poet uses vivid imagery and figurative language to highlight the emotions of the people in Herot and to convey the significance of the moment.
In Beowulf, the lines 593-620 illustrate the crowd's reaction when Beowulf returned to Herot. Hrothgar delivers a touching speech and declares Beowulf the greatest hero of all time. Hrothgar is happy to see Beowulf alive and well, and he praises Beowulf for his bravery, claiming that he is now a noble man.After the speech, everyone in the hall lifts their cups, and they all drink to Beowulf's health. Everyone in Herot is overjoyed by Beowulf's success, and they celebrate the moment with joy and happiness. The poet emphasizes the significance of social drinking in medieval society by using the phrase "drank with delight," which highlights the importance of communal bonding in society. It also highlights the theme of fellowship and loyalty, which is essential in medieval society.
Beowulf is the oldest surviving epic poem in English literature and provides a valuable insight into Anglo-Saxon society. The lines 593-620 in Beowulf describe the reaction of the people in Herot upon Beowulf's return. Hrothgar, the king of the Danes, delivers a moving speech in which he praises Beowulf for his bravery and declares him the greatest hero of all time. Hrothgar expresses his delight in seeing Beowulf alive and well, and he elevates Beowulf's status to that of a nobleman in society.In the hall, everyone is filled with happiness and joy, and they all raise their cups to drink to Beowulf's health. This scene also illustrates the importance of the lord and vassal relationship in Anglo-Saxon society. The people in Herot recognize Beowulf as their lord and pledge their loyalty to him, which is a significant aspect of the culture.The lines 593-620 in Beowulf are significant in understanding the social and cultural norms of Anglo-Saxon society. The scene describes the reaction of people in Herot upon Beowulf's return and illustrates the importance of communal bonding, fellowship, and loyalty in medieval society.
To know more about imagery visit :-
https://brainly.com/question/32354003
#SPJ11
find a vector equation and parametric equations for the line. (use the parameter t.) the line through the point (0, 12, −12) and parallel to the line x = −1 3t, y = 6 − 3t, z = 3 7t
The parametric equations for the line are:Hence, the vector equation and parametric equations for the line are: The vector equation for the line can be written as: Comparing the above equation with [tex]x = −1 3t, y = 6 − 3t, z = 3 7t[/tex]
The vector equation and parametric equations for the line that goes through the point (0, 12, −12) and is parallel to the line x = −1 3t,
y = 6 − 3t,
z = 3 7t are as follows.
Vector equation for the line:
We know that the given line is parallel to x = −1 3t, y = 6 − 3t, z = 3 7t. Hence, the direction vector of the given line will be the same as the direction vector of x = −1 3t,
y = 6 − 3t,
z = 3 7t.
Direction vector of x = −1 3t, y = 6 − 3t, z = 3 7t is given by the following vector:
Therefore, the vector equation of the line that passes through (0, 12, −12) and is parallel to x = −1 3t, y = 6 − 3t, z = 3 7t is:
Parametric equations for the line:
The vector equation for the line can be written as:
Comparing the above equation with x = −1 3t, y = 6 − 3t, z = 3 7t,
Therefore, the parametric equations for the line are:
Hence, the vector equation and parametric equations for the line are:
To learn more about parametric visit;
https://brainly.com/question/31461459
#SPJ11
If the air in a carton of milk was allowed to warm up, what would happen to it?
a. It would freeze.
b. It would evaporate.
c. It would expand. d. It would solidify.
If the air in a carton of milk was allowed to warm up, it would expand. The air in the carton of milk would warm up and expand. option c
If the carton wasn't ventilated and wasn't designed to accommodate this, it might burst open, resulting in a mess to clean up. When air warms up, it expands since the molecules in the air become more active and move around more quickly, taking up more space. This is true for any gas, not just air. When the milk inside the carton warms up, it might spoil or go sour if it reaches a high enough temperature. This is because warmth promotes the development of bacteria and other organisms that can make the milk unsafe to consume, as well as change the flavor and odor of the milk. If it's left in a hot area for an extended period of time, it might also curdle, making it unsuitable for drinking.
In the answer explains that the air in the carton of milk would expand if allowed to warm up. The warming air's molecules become more active and move around more quickly, taking up more space, and if the carton is not designed to accommodate this, it might burst open, resulting in a mess. When milk warms up, it might spoil or become sour if it reaches a high enough temperature, and if left in a hot area for an extended period, it might curdle.
to know more about temperature visit:
https://brainly.com/question/11464844
#SPJ11
_______ increases when air faces greater resistance against an object with a larger surface area. (4 letters)
The term that increases when air faces greater resistance against an object with a larger surface area is drag.
The drag force is created when a solid object moves through a fluid (liquid or gas), such as air, and experiences resistance to its motion.Drag can be affected by various factors, including the object's shape and surface area. In general, objects with larger surface areas will experience more drag than those with smaller surface areas because they create more friction with the surrounding fluid. For example, a flat, wide object like a barn door will experience more drag than a narrow object like a pencil because it has a larger surface area. Similarly, a parachute will experience a large amount of drag because of its large surface area, which creates a significant amount of friction with the air molecules around it.In order to minimize drag and increase efficiency, engineers and designers often try to create streamlined objects with minimal surface area. This can be seen in the design of cars, airplanes, and even swimsuits used by competitive swimmers. By minimizing drag, these objects are able to move more quickly and with less effort through their respective fluids.
for such more questions on resistance
https://brainly.com/question/28135236
#SPJ8
An electric field component of a polarized ray is expressed
as:
Ez=(8 V/m)cos[(2×10^6 m^(-1) )x+ ωt]
(a) Write down the shape of the magnetic field component of this
ray, including the value of �
The electric field component of a polarized ray is expressed as the equation E = E_0 sinθ.
When a ray is polarized, it means that it vibrates in only one direction. In other words, the electric field of the light wave moves in only one direction, perpendicular to the direction the wave is moving.
This electric field component of a polarized ray is given by the equation E = E_0 sinθ, where E is the magnitude of the electric field vector at any point along the path of the wave, E_0 is the maximum value of the electric field vector, and θ is the angle between the direction of polarization and the direction of the electric field.
Thus, the value of θ ranges from 0 to 180 degrees. The electric field vector oscillates back and forth as the wave propagates, with the magnitude of the vector being maximum when the wave is at its peak and zero when the wave is at its trough.
This equation is an important tool in describing the properties of polarized light waves in various optical systems.
Polarized lenses protect your eyes from the sun's UVA and UVB rays while also reducing glare for improved contrast and clarity. Bring the world around you to life with our collection of iconic sunglasses for men and fashionable sunglasses for women with Polarized lenses.
Know more about polarized ray, here:
https://brainly.com/question/32242228
#SPJ11
Our Sun, a type G star, has a surface temperature of 5800 K. We know, therefore, that it is cooler than a type O star and hotter than a type M star Othersportta coos tracking id: ST-630-45-4466-38345. In accordance with Expert TA's Terms of Service copying this information t 50% Part (a) How many times hotter than our Sun is the hottest type O star, which has a surface temperature of about 40,000 K? Number of times hotter sin() cos() tan() asin() acos() B12 SOAL atan() acotan() sinh() cotanh() tanh) Degrees O Radians cotan() cosh() (1) 7 4 1 Hint 8 9 5 6 2 3 + 0 VO CONCE . CLEAK Submit I give up! Hints: 0% deduction per hint. Hints remaining: 1 Feedback: 1% deduction per feedback. 50% Part (b) How many times hotter is our Sun than the coolest type M star, which has a surface temperature of 2400 K?
(a) The hottest type O star is approximately 6.90 times hotter than our Sun.
(b) Our Sun is approximately 2.42 times hotter than the coolest type M star.
How many times hotter than our Sun is the hottest type O star with a surface temperature of about 40,000 K, and how many times hotter is our Sun than the coolest type M star with a surface temperature of 2400 K?Part (a) To determine how many times hotter the hottest type O star is compared to our Sun, we can calculate the temperature ratio as follows:
Temperature ratio = Temperature of the type O star / Temperature of our Sun
= 40,000 K / 5,800 K
≈ 6.90
Therefore, the hottest type O star is approximately 6.90 times hotter than our Sun.
Part (b) To determine how many times hotter our Sun is compared to the coolest type M star, we can calculate the temperature ratio as follows:
Temperature ratio = Temperature of our Sun / Temperature of the type M star
= 5,800 K / 2,400 K
≈ 2.42
Therefore, our Sun is approximately 2.42 times hotter than the coolest type M star.
Learn more about hottest type
brainly.com/question/30049280
#SPJ11
how does an atom of sulfur-36 become a sulfide ion with a -2 charge?
To understand how an atom of sulfur-36 becomes a sulfide ion with a -2 charge, because it has two more electrons than protons.
An atom of sulfur-36 has 16 electrons, 16 protons, and 20 neutrons. In order for the atom to become a sulfide ion with a -2 charge, it needs to gain two electrons. This is because when an atom gains or loses electrons, it becomes an ion with a positive or negative charge.
The atom of sulfur-36 becomes a sulfide ion with a -2 charge by gaining two electrons. These electrons come from another element, such as oxygen, which can give up two electrons to form an ionic bond with sulfur. The resulting compound is called sulfide, and it has a -2 charge because it now has two more electrons than protons.
An atom of sulfur-36 can become a sulfide ion with a -2 charge by gaining two electrons. This happens through an ionic bond with another element, such as oxygen, which gives up two electrons to form the compound. The resulting sulfide ion has a -2 charge because it has two more electrons than protons.
For more information on electrons kindly visit to
https://brainly.com/question/32031925
#SPJ11
A fisherman notices that wave crests pass the bow of his anchored boat every 2.0 s. He measures the distance between the two crests to be 6.5 m. How fast are the waves travelling?
The speed of the waves is 3.25 m/s when a fisherman notices that wave crests pass the bow of his anchored boat every 2.0 s.
We are given: the time period (T) of waves passing by the bow of the boat is 2.0 seconds, and the distance between two successive crests (wavelength) (λ) is 6.5 m, and we are supposed to calculate the speed (v) of the waves.
We know that the velocity of a wave is given by the formula: v = λ/T
Using the values provided in the question, we can find the speed of the waves:
v = λ/Tv = 6.5 m/2.0 sv = 3.25 m/s
Therefore, the speed of the waves is 3.25 m/s. Hence, the conclusion is that the speed of the waves is 3.25 m/s.
For more information on speed of waves kindly visit to
https://brainly.com/question/29481084
#SPJ11
A 2000 Hz sound wave passes through a wall with two narrow openings 30 cm apart. If sound travels on average 334 m/s, find the following. (a) What is the angle of the first order maximum? ° (b) Find the slit separation when you replace the sound wave with a 2.25 cm microwave, and the angle of the first order maximum remains unchanged. m (c) If the slit separation is 1.00 µm, what frequency of light gives the same first order maximum angle? Hz
We have f = v/λ = 3 × 10⁸ / (1 × 10⁻⁶) = 3 × 10¹⁴ Hz (c)The frequency of light that gives the same first order maximum angle is 3 × 10¹⁴ Hz.
Given,Speed of sound, v = 334 m/sFrequency of sound wave, f = 2000 HzDistance between the two narrow openings, d = 30 cm = 0.3 Let us calculate the angle of the first order maximum angle of the sound wave. The formula used to find the angle of the first order maximum is given by sinθ = λ/d Where λ is the wavelength of the wave.We know that the velocity of sound wave, v = fλ⇒ λ = v/f = 334/2000 = 0.167 m
Using the above values in the formula, we have sinθ = λ/d⇒ θ = sin⁻¹(λ/d) = sin⁻¹(0.167/0.3) = 31.87° (a)The angle of the first order maximum is 31.87°.Now, we need to find the slit separation when we replace the sound wave with a 2.25 cm microwave, and the angle of the first order maximum remains unchanged.The formula used to find the slit separation is given by d = λ/ sinθLet λ1 be the wavelength of the microwave after replacing the sound wave.
We know that the angle of the first order maximum remains unchanged. Therefore,d/sinθ = d1/sinθ1⇒ d1 = d(sinθ1/sinθ)Let λ1 = 2.25 cm = 0.0225 m.Using the above values, we have d = λ/ sinθ⇒ d1 = d(sinθ1/sinθ) = (0.167/ sin31.87°) (sin31.87°) / (0.0225) = 4.67 m (b)The slit separation is 4.67 m.Now, we need to calculate the frequency of light that gives the same first order maximum angle. The formula used to calculate the frequency of light is given by f = v/λWe know that the wavelength of light = 1.00 µm = 1 × 10⁻⁶ m.
Using the above values, we have f = v/λ = 3 × 10⁸ / (1 × 10⁻⁶) = 3 × 10¹⁴ Hz (c)The frequency of light that gives the same first order maximum angle is 3 × 10¹⁴ Hz.
To learn more about frequency visit;
https://brainly.com/question/31992754
#SPJ11
A 6.70-C charge of mass 4.10 x 10-12 kg is moving with a speed of 1.60 x 105 m/s in a 0.400-T uniform magnetic field. Y Part A - Determine the magnitude of the magnetic force on the charge if it is mo
The magnitude of the magnetic force on the charge is 4.97 x 10^-4 N. This calculation is based on the charge of 6.70 C, the velocity of 1.60 x 10^5 m/s, and the magnetic field of 0.400 T.
The magnetic force on a charged particle moving in a magnetic field can be calculated using the equation:
Force = Charge × Velocity × Magnetic Field
Given that the charge is 6.70 C, the velocity is 1.60 x 10^5 m/s, and the magnetic field is 0.400 T, we can calculate the magnitude of the magnetic force:
Force = (6.70 C) × (1.60 x 10^5 m/s) × (0.400 T)
= 4.97 x 10^-4 N
The magnetic force is perpendicular to both the velocity of the charge and the magnetic field direction, following the right-hand rule.
The magnitude of the magnetic force on the charge is 4.97 x 10^-4 N. This calculation is based on the charge of 6.70 C, the velocity of 1.60 x 10^5 m/s, and the magnetic field of 0.400 T. The force is determined using the equation that relates charge, velocity, and magnetic field strength. The magnetic force acts perpendicular to both the velocity of the charge and the direction of the magnetic field.
To know more about magnetic visit:
https://brainly.com/question/26257705
#SPJ11
Q3: Please show your complete solution and explanation. Thank
you!
3. One mole of an ideal gas is expanded isothermally to twice its initial volume a) calculate AS. b) What would be the value of AS if five moles of an ideal gas were doubled in volume isothermally?
One mole of an ideal gas is expanded isothermally to twice its initial volume a) ΔS is equal to (8.314 J/K) ln(2). b) The value of ΔS would be approximately 41.57 ln(2) J/K if five moles of an ideal gas were doubled in volume isothermally.
a) The change in entropy (ΔS) for the isothermal expansion of one mole of an ideal gas, we can use the equation:
ΔS = nR ln(Vf/Vi)
Where:
ΔS is the change in entropy,
n is the number of moles of gas (1 mole in this case),
R is the ideal gas constant (8.314 J/(mol·K)),
Vf is the final volume,
Vi is the initial volume.
Since the volume is expanded to twice its initial value, we have Vf = 2Vi.
Plugging these values into the equation, we get:
ΔS = (1 mole)(8.314 J/(mol·K)) ln(2Vi/Vi)
= (8.314 J/K) ln(2)
b) If five moles of an ideal gas were doubled in volume isothermally, we can calculate the change in entropy (ΔS) using the same equation as above, but with n = 5:
ΔS = (5 moles)(8.314 J/(mol·K)) ln(2Vi/Vi)
= (41.57 J/K) ln(2)
Therefore, the value of ΔS would be approximately 41.57 ln(2) J/K for five moles of an ideal gas when doubled in volume isothermally.
To learn more about isothermally refer here:
https://brainly.com/question/31828834#
#SPJ11
Consider a vertical pipe through which humid air flows. The pipe is kept at 5 oC, which is cooler than
the air and, importantly, below the 8 oC dew point of the air. As a result, water condenses on the
inner walls to maintain a thin layer of liquid water. Though the water layer would eventually get
thick enough that it would fall due to gravity, you can neglect that here.
a. Draw a picture of the physical system, select the coordinate system that best describes the
transfer process, and state at least five reasonable assumptions of the mass-transfer aspects of
the process.
b. What is the simplified form of the general differential equation for mass transfer in terms of the
flux of water vapor, NA?
c. What is the simplified differential form of Fick’s flux equation for water vapor?
d. What is the simplified form of the general differential equation for mass transfer in terms of the
molar concentration of water vapor, cA?
Assumptions: Assumptions are an important part of the process of modeling since they allow you to focus on the essential physics of the problem.
Correct option is a. Picture of the physical system:
Below are some of the assumptions made for the given system:It can be assumed that the flow of air is laminar.
The concentration of water vapor in the gas stream does not change as a result of the transfer process. The temperature at any location in the system is uniform and constant. The air does not undergo any significant change in pressure.
The only mass transfer process that occurs is evaporation and condensation.
b. The simplified form of the general differential equation for mass transfer in terms of the flux of water vapor, NA is,
c) The simplified differential form of Fick’s flux equation for water vapor is given by
d) The simplified form of the general differential equation for mass transfer in terms of the molar concentration of water vapor, cA is given by [tex]$\frac{\partial \frac{N_{A}}{\rho_{g}}}{\partial t}[/tex]
=[tex]\frac{\partial}{\partial z}\left[\frac{D_{AB}}{\rho_{g}}\frac{\partial c_{A}}{\partial z}\right]$[/tex]
To know more about laminar flow, visit:
https://brainly.com/question/23008935
#SPJ11
(20%) (a) (4%) Explain the coherence of wave and state its importance for interference. (b) (4 %) How to improve the interference result if you use a white-light bulb as the light source in Young's double slit experiment? (c) (4%) Explain why the degree of coherence of a laser is better than a light bulb. (d) (4%) A thin film of ZnS (n=2.37) is used to coat a camera lens (ng-1.53) so that it is antireflecting at a wavelength of 550 nm under normal incidence. Find the minimum thickness of the thin film. (e) (4%) A thin film of MgF2 (n= 1.38) is used to coat a camera lens (ng-1.53) so that it is antireflecting at a wavelength of 580 nm under normal incidence. What wavelength is minimally reflected when the light is incident instead at 45⁰?
A wave's ability to produce stationary interference is known as coherence.
Thus, Coherence is explained through several different ideas. Although these phenomena are uncommon in reality, they provide a basic grasp of waves. It has developed into a crucial idea in quantum physics and wave.
Thus, The term "coherence" refers to the characteristics of the correlation between the physical parameters of a single wave, a group of waves, or a wave packet.
For example, two parallel slits that are illuminated by a single laser beam can be categorized as two coherent sources. The photons of coherent light are in perfect time with one another. The phase shift for the light beam happens simultaneously.
Thus, A wave's ability to produce stationary interference is known as coherence.
Learn more about Wave, refer to the link:
https://brainly.com/question/3639648
#SPJ4
if two equal masses are suspended from either end of a string passing over a light pulley (an atwood’s machine), what kind of motion do you expect to occur? why?
If two equal masses are suspended from either end of a string passing over a light pulley (an Atwood’s machine), the kind of motion that is expected to occur is SHM (Simple Harmonic Motion).
According to the given condition, the two masses are equal and there is no net force acting on the system. Thus, the two masses move towards each other, and the string becomes taut. Hence, the system can be assumed as a simple harmonic oscillator because it satisfies the following conditions:-The period of oscillation of the system is given as: \[T=2\pi \sqrt{\frac{m}{M+2m}}\] where m is the mass of each particle, and M is the mass of the pulley. The amplitude of the system is given as: \[A=\frac{m}{M+2m}\] Therefore, the kind of motion that is expected to occur is SHM (Simple Harmonic Motion) because the given system satisfies the above-mentioned conditions.
In this Atwood’s machine, two equal masses are connected by an inextensible light string that passes over a frictionless pulley. The mass is assumed to be very large in comparison to the masses of the particles. The system is initially released from rest, and the particles start moving towards each other. Hence, the acceleration of the system can be written as: a = (m1 - m2)g / (m1 + m2)The above equation represents that the acceleration of the system is directly proportional to the difference in masses of the particles. If the masses are equal, then the acceleration of the system is zero. Hence, the system will not have any motion. However, in reality, it is not possible to have two exactly equal masses. Therefore, there will always be some difference in masses, and hence, the system will always show some kind of motion, i.e., SHM. Therefore, the kind of motion that is expected to occur is SHM (Simple Harmonic Motion) because the given system satisfies the above-mentioned conditions.
To know more about light pulley visit :
https://brainly.com/question/31426020
#SPJ11
determine the angular velocity of link bc at the instant shown. take ωab = 18 rad/s
According to the question we have the angular velocity of link BC at the instant shown is 0.06 rad/s.
Given, Angular velocity of link AB, ωAB = 18 rad/s Angular velocity of link BC, ωBC = ?We know that,For link AB:ωAB = θ˙1For link BC:ωBC = θ˙2For link CD:ωCD = θ˙3 .
We know that, Velocity analysis by instantaneous center method for mechanism given below: Velocity of link AB = Velocity of link BC Relative velocity of links AB and BC is given by:VAB/BC = NCWhere, NC is the perpendicular from the instantaneous center to the path of link BC.
VAB/BC = rA/RBC∴ rAωAB = RBCωBCrA/RBC = L1/L2 = 75/150 = 0.5 ∴ rA = 0.5RBCThe link BC moves downwards. Therefore, the perpendicular to the link BC will be in the upward direction and the perpendicular to link AB will be in the downward direction. Angular velocity of link BC = ωBC= rAωAB/RBC= 0.5×18/150= 0.06 rad/s
Therefore, the angular velocity of link BC at the instant shown is 0.06 rad/s.
To know more about Velocity visit :
https://brainly.com/question/30559316
#SPJ11
5. In order to free electrons from nickel whose work function is 5.22 eV, what threshold frequency of light is needed? [K3]
In order to free electrons from nickel whose work function is 5.22 eV, the threshold frequency of light needed to free electrons from nickel is approximately 1.26 × [tex]10^1^5[/tex] Hz.
To calculate the threshold frequency of light needed to free electrons from nickel, we can use the equation:
E = hf
Where:
E is the energy required to free an electron (also known as the work function),
h is Planck's constant (6.626 × [tex]10^-^3^4[/tex] J·s),
f is the frequency of the light.
First, we need to convert the work function from electron volts (eV) to joules (J). Since 1 eV is equal to 1.602 ×[tex]10^-^1^9[/tex] J, the work function can be calculated as follows:
Work function (ϕ) = 5.22 eV * (1.602 × [tex]10^-^1^9[/tex] J/eV) ≈ 8.35 × [tex]10^-^1^9[/tex]J
Now, we can rearrange the equation to solve for the threshold frequency (f):
f = E / h
Substituting the values:
f = (8.35 ×[tex]10^-^1^9[/tex] J) / (6.626 × [tex]10^-^3^4[/tex] J·s) ≈ 1.26 × [tex]10^1^5[/tex] Hz
It's important to note that this calculation assumes a simplified model and neglects factors such as the band structure of the material and the presence of an electric field. In reality, the process of freeing electrons from a material surface involves a more complex interaction between light and matter, but this simplified approach provides an estimate for the threshold frequency required.
For more such information on: frequency
https://brainly.com/question/254161
#SPJ8
what outcomes are in the event e, that the number of batteries examined is an even number?
The set of outcomes that is included in the event E, that the number of batteries examined is an even number, are as follows: {0, 2, 4, 6, 8, 10}.An event refers to a subset of the entire sample space of a random experiment that constitutes the collection of all possible outcomes. In this case, n(E) = 6 and n(S) = 11. Therefore, P(E) = 6 / 11
The event E indicates that the number of batteries examined is an even number. Therefore, only even numbers that are less than or equal to ten and greater than or equal to zero are a part of the event E, which includes 0, 2, 4, 6, 8, and 10. The sample space of this random experiment is the set of all possible outcomes.
If we assume that a total of 10 batteries are tested, the sample space is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
So, the event E is a proper subset of the sample space, and the probability of E can be computed as:
P(E) = n(E) / n(S)
where n(E) is the number of outcomes in E, and n(S) is the number of outcomes in the sample space.
In this case, n(E) = 6 and n(S) = 11.
to know more about probability visit:
https://brainly.com/question/32117953
#SPJ11