Answer:
The length of BC is 14 units.Step-by-step explanation:
[tex]hope \: \: it \: \: helps} \beta \alpha \infty [/tex]
The length of B'C' is 0 units.
What is translation?It is the movement of the shape in left, right, up, and down direction.
The translated shape will have the same shape and shape.
There is a positive value when translated to the right and up.
There is a negative value when translated to the left and down.
We have,
The length of AD = 5 units.
Since the rectangle translates down by 4 units,
The length of A'D' =5 units.
The width of the original rectangle is AB, which is 3 units.
Since the rectangle translates to the right by 2 units,
The width of the new rectangle = 3 units.
Now,
The length of B'C' is the same as the length of AD', which is 5 units.
Subtracting 5 units from 5 units gives us a length of 0 units.
Thus,
The length of B'C' is 0 units.
Learn more about translation here:
https://brainly.com/question/12463306
#SPJ7
Based on the Pythagorean theorem , find the missing length for each of the given right triangles
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete, as the right trianglea are not given. The general explanation is as follows.
Using Pythagoras Theorem, we have:
a² = b² + c²
Where:
a => hypotenuse
Assume that the opposite and the adjacent sides are given as 3 and 4, respectively.
The hypotension becomes
a² = 3² + 4²
a² = 9 + 16.
a² = 25
Take square roots.
a = 5
If any of the other side lengths is missing; you make that side the subject and then solve.
x( 3x - 2y + 4z)x = -2, y = 4, and z = -3
Find the Value of x
Answer:
42
Step-by-step explanation:
(adjacent straight angles sum up to 180)
3x+54=180
x=42
Neglecting air resistance and the weight of the propellant, determine the work done in propelling a five-ton satellite to a height of (a) 100 miles above Earth and (b) 300 miles above Earth.
Answer:
a) the work done in propelling a five-ton satellite to a height of 100 miles above Earth is 487.8 mile-tons
b) the work done in propelling a five-ton satellite to a height of 300 miles above Earth is 1395.3 mile-tons
Step-by-step explanation:
Given the data in the question;
We know that the weight of a body varies inversely as the square of its distance from the center of the earth.
⇒F(x) = c / x²
given that; F(x) = five-ton = 5 tons
we know that the radius of earth is approximately 4000 miles
so we substitute
5 = c / (4000)²
c = 5 × ( 4000 )²
c = 8 × 10⁷
∴ Increment of work is;
Δw = [ ( 8 × 10⁷ ) / x² ] Δx
a) For 100 miles above Earth;
W = ₄₀₀₀∫⁴¹⁰⁰ [ ( 8 × 10⁷ ) / x² ] Δx
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{x}[/tex] [tex]]^{4100}_{4000[/tex]
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{4100}[/tex] [tex]+\frac{1}{4000}[/tex] [tex]][/tex]
= (8 × 10⁷ ) [ 6.09756 × 10⁻⁶ ]
= 487.8 mile-tons
Therefore, the work done in propelling a five-ton satellite to a height of 100 miles above Earth is 487.8 mile-tons
b) For 300 miles above Earth.
W = ₄₀₀₀∫⁴³⁰⁰ [ ( 8 × 10⁷ ) / x² ] Δx
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{x}[/tex] [tex]]^{4300}_{4000[/tex]
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{4300}[/tex] [tex]+\frac{1}{4000}[/tex] [tex]][/tex]
= (8 × 10⁷ ) [ 1.744186 × 10⁻⁵ ]
= 1395.3 mile-tons
Therefore, the work done in propelling a five-ton satellite to a height of 300 miles above Earth is 1395.3 mile-tons
Someone help please!!
Answer:
9 (a) [tex]d = \frac{\sqrt{e}}{\sqrt{3}}[/tex]
9 (b) [tex]d = \frac{\sqrt{7k}}{\sqrt{2}}[/tex]
Step-by-step explanation:
Hope this helped!
The senior classes at High School A and High School B planned separate trips to Yellowstone National Park. The senior class at High School A rented and filled 9 vans and 14 buses with 710 students. High School B rented and filled 13 vans and 5 buses with 371 students. Each van and each bus carried the same number of students. Find the number of students in each van and in each bus.
Answer:
Buses - 43 people
Vans - 12 people
What is the cube root of -1,000p12q3?
O-1004
O - 10pta
O 1004
O 10pta
Answer:
Your options are not clear
Step-by-step explanation:
[tex]\sqrt[3]{-1000 \times p^{12} \times q^3} \\\\(-1 \times 10^3 \times p^{12} \times q^3)^{\frac{1}{3} }\\\\(-1^3)^{\frac{1}{3} }\times 10^{3 \times \frac{1}{3} } \times p^{12 \times \frac{1}{3}} \times q^{3 \times \frac{1}{3}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (-1)^3 = - 1 \ ] \\\\- 1 \times 10 \times p^4 \times q\\\\-10p^4q[/tex]
Một người gửi tiết kiệm tại ngân hàng một số tiền là 120 triệu đồng vào đầu mỗi năm theo thể thức lãi kép kỳ hạn một năm với lãi suất cố định 6,5%/ năm.
a) Hỏi sau 3 năm, số tiền gốc cộng lãi mà người đó nhận được là bao nhiêu ?
b) Hỏi sau bao nhiêu năm thì tổng số tiền nhận được lần đầu vượt quá 1,1 tỷ đồng.
Answer: lil t j
Step-by-step explanation:
I’m not a goat but I fit the description we walk around with then bands in my pocket
The radius of a plant pot is 4.5 cm, and its height is 6 cm. What is the volume of the pot?
Use the value 3.14 for , and round your answer to the nearest whole number.
Be sure to include the correct unit in your answer.
Answer:
381 cm³
Step-by-step explanation:
Volume of the pot = volume of a cylinder
Volume of the pot = πr²h
Where,
π = 3.14
radius (r) = 4.5 cm
h = 6 cm
Substitute
Volume of the pot = 3.14*4.5²*6
Volume of the pot = 381.51 ≈ 381 cm³ (nearest whole number)
Segment [tex]$s_1$[/tex] has endpoints at [tex]$(3+\sqrt{2},5)$[/tex] and[tex]$(4,7)$[/tex]. Segment [tex]$s_2$[/tex] has endpoints at [tex]$(6-\sqrt{2},3)$[/tex] and[tex]$(3,5)$[/tex]. Find the midpoint of the segment with endpoints at the midpoints of [tex]$s_1$[/tex] and [tex]$s_2$[/tex]. Express your answer as [tex]$(a,b)$[/tex].
Answer:
The midpoint of the segment with endpoints at the midpoints of s1 and s2 is (4,5).
Step-by-step explanation:
Midpoint of a segment:
The coordinates of the midpoint of a segment are the mean of the coordinates of the endpoints of the segment.
Midpoint of s1:
Using the endpoints given in the exercise.
[tex]x = \frac{3 + \sqrt{2} + 4}{2} = \frac{7 + \sqrt{2}}{2}[/tex]
[tex]y = \frac{5 + 7}{2} = \frac{12}{2} = 6[/tex]
Thus:
[tex]M_{s1} = (\frac{7 + \sqrt{2}}{2},6)[/tex]
Midpoint of s2:
[tex]x = \frac{6 - \sqrt{2} + 3}{2} = \frac{9 - \sqrt{2}}{2}[/tex]
[tex]y = \frac{3 + 5}{2} = \frac{8}{2} = 4[/tex]
Thus:
[tex]M_{s2} = (\frac{9 - \sqrt{2}}{2}, 4)[/tex]
Find the midpoint of the segment with endpoints at the midpoints of s1 and s2.
Now the midpoint of the segment with endpoints [tex]M_{s1}[/tex] and [tex]M_{s2}[/tex]. So
[tex]x = \frac{\frac{7 + \sqrt{2}}{2} + \frac{9 - \sqrt{2}}{2}}{2} = \frac{16}{4} = 4[/tex]
[tex]y = \frac{6 + 4}{2} = \frac{10}{2} = 5[/tex]
The midpoint of the segment with endpoints at the midpoints of s1 and s2 is (4,5).
The following data represents the number of days absent and the final grade for a sample of college students in a general education course at a large state university.
No. of absences 0 1 2 3 4 5 6 7 8 9
Final Grade 89.2 86.4 83.5 81.1 78.2 73.9 64.3 71.8 65.5 66.2
a) Which variable is the explanatory variable?
b) Draw a scatter plot and describe your scatter plot (Direction, Strength, Form).
c) Compute the correlation coefficient
d) Does a linear relation exist between the number of absences and the final grade? Justify your answer.
e) Write out the least-squares regression line equation.
f) Compute and draw the residual (on your scatter plot) for a student who misses 5 class meetings.
g) Explain the slope in context.
h) Is the y-intercept meaningful in this situation? Explain.
i) Compute and interpret the coefficient of determination.
j) Construct a residual plot to verify the requirements of the least-squares regression model.
Help please which option
Answer:
Step-by-step explanation:
-1<x<3. I hope it helpful!
19. Which of the following would best be solved using factoring the difference of squares?
O x^3 + 5x^2 - 9x - 45 = 0
O 3x² + 12x = 8
O x^2 - 25 = 0
O x^2 + 3x – 10 = 0
Please hurry!
Answer:
x² + 3x - 10 = 0
x² - 25 = 0
What’s the solution
Answer:
x ≥ 12
Step-by-step explanation:
-3/4x +2 ≤ -7
Subtract 2 from each side
-3/4x +2-2 ≤ -7-2
-3/4x ≤ -9
Multiply each side by -4/3, remembering to flip the inequality
-3/4x * -4/3 ≥ - 9 *(-4/3)
x ≥ 12
Answer:
x>=12
Step-by-step explanation:
-3/4x + 2<=-7
-3/4x <= -7 -2
-3/4x<=-9
cross multiply
-3x<=-36
dividing throughout by -3
x>=12
Simplify -4 + (-3) + 6.
Answer:3/6 in simplest fraction form is 1/2.
Step-by-step explanation:EASY and my chanel is FireFlameZero if u can check dat out
Use a net to find the surface area of the cone
to the nearest square centimeter. Use 3.14 for
20 cm
TT.
Answer:
4444
Step-by-step explanation:
Answer:
819
Step-by-step explanation:
addinh jndenf,r fm,fd vm,fd jngtjgntftb n
bm bm tm mt m
tmknmenmgv
etab
etbbbbbbehgeb
tbbbbbbbbbbb
Consider all four-digit numbers that can be made from the digits 0-8 (assume that numbers cannot start with 0). What is the probability of choosing a random number from this group that is less than or equal to 4000
Answer:
The probability is:
P = 0.375
Step-by-step explanation:
First, we need to find the total number of four-digit numbers that can be made with the digits 0-8, such that the first digit can not be zero.
To do this, we first need to find the number of selections that we have, in this case, there are 4, one for each digit in our 4-digit number.
Now let's count the number of options that we have for each one of these selections:
first digit: we have 8 options (because the 0 can not be here)
second digit: we have 9 options (because now the zero can be taken)
third digit: we have 9 options
fourth digit: we have 9 options.
The total number of combinations is equal to the product of all the numbers of options, this is:
C = 8*9*9*9 = 5,832
Now we need to find how many of these are less or equal than 4000.
So now let's count the options again:
first digit: 3 options {1, 2, 3}
second digit: 9 options
third digit: 9 option
fourth digit: 9 options
Total number of combinations:
C' = 3*9*9*9 = 2,187
Here we should also count the combination for the number 4000 itself, as it was not counted in our previous calculation, then we have:
C' = 2,187 + 1 = 2,188 combinations.
The probability of randomly choosing a number that is smaller than or equal to 4000 will be equal to the quotient between the number of combinations that are smaller than or equal to 4000 (2,188 combinations) and the total number of combinations (5,832)
this is:
P = 2,188/5,832 = 0.375
Exhibit 11-10 n = 81 s2 = 625 H0: σ2 = 500 Ha: σ2 ≠ 500 At 95% confidence, the null hypothesis _____. a. should not be rejected b. should be revised c. should be rejected d. None of these answers are correct
Answer:
Option C
Step-by-step explanation:
n = 81
s2 = 625
H0: σ2 = 500
Ha: σ2 ≠ 500
Test Statistics X^2 = (n-1)s^2/ σ2 = (81-1)*625/500
X^2 = 100
P value = 0.0646 for degree of freedom = 81-1 = 80
And X^2 = 100
At 95% confidence interval
Alpha = 0.05 , p value = 0.0646
p < alpha, we will reject the null hypothesis
At 95% confidence, the null hypothesis
What is the solution to the inequality x(x – 3) > 0?
Answer:
The solution to the inequality is [tex](-\infty, 0) \cup (3, \infty)[/tex]
Step-by-step explanation:
We have a product, which is positive if both terms is positive or if both is negative.
Both positive:
[tex]x > 0[/tex]
[tex]x - 3 > 0 \rightarrow x > 3[/tex]
Then the intersection of these two is: [tex]x > 3[/tex]
Both negative:
[tex]x < 0[/tex]
[tex]x - 3 < 0 \rightarrow x < 3[/tex]
Then the intersection of those two is: [tex]x < 0[/tex]
Then:
Union of two solutions:
[tex]x < 0[/tex] or [tex]x > 3[/tex]
Then
[tex](-\infty, 0) \cup (3, \infty)[/tex]
if ABCD is a cyclic quadrilateral and A,B,C,D are its interior angles , then prove that
tanA/2+tanB/2=cotC/2+cotD/2
answer the question plz
dont spam or else i will report that
9514 1404 393
Explanation:
In a cyclic quadrilateral, opposite angles are supplementary. This means ...
A + C = 180° ⇒ A/2 +C/2 = 90° ⇒ C/2 = 90° -A/2
B + D = 180° ⇒ B/2 +D/2 = 90° ⇒ D/2 = 90° -B/2
It is a trig identity that ...
tan(α) = cot(90° -α)
so we have ...
tan(A/2) = cot(90° -A/2) = cot(C/2)
and
tan(B/2) = cot(90° -B/2) = cot(D/2)
Adding these two equations together gives the desired result:
tan(A/2) +tan(B/2) = cot(C/2) +cot(D/2)
What number must you add to complete the square? x^2+26x=11
Answer:
[tex] {x}^{2} + 26x = 11 \\ x = 0.4 \: and \: - 26.4[/tex]
find the equation of the line passing through points A(3,4) and B(1,10)
Answer:
y = -3x + 13
Step-by-step explanation:
First, find the slope:
[tex]m=\frac{y_1-y_2}{x_1-x_2}\\\\m=\frac{4-10}{3-1}\\\\m=\frac{-6}{2}\\\\m=-3[/tex]
Finally, find the equation:
[tex]y-y_1=m(x-x_1)\\\\y-4=-3(x-3)\\\\y-4=-3x+9\\\\y=-3x+13[/tex]
Which two terms are interchangeable?
Answer: Axioms and Postulates
Step-by-step explanation:
Even if we draw more points on a line, It is an accepted statement of a fact that cannot be disproved - which which these are called Axioms or Postulates; and they are interchangeable.
I hope my explanation helped. Your welcome.
Search
Khan Academy
Dependent probability
In a class of 7, there are 4 students who play soccer.
If the teacher chooses 3 students, what is the probability that none of the three of them play soccer?
Answer:
[tex]\frac{12}{49}[/tex]
Step-by-step explanation:
[tex]\frac{4}{7} *\frac{3}{7} = \frac{12}{49}[/tex]
Hope this helps.
HI CAN SOMEONE THAT REALLY KNOWS ABOUT THIS HELP ME WITH FINAL EXAM...
The data represented by the following stem-and-leaf plot range from
to
489
5147
6235
769
A. 49; 79
B. 48; 79
C. 48; 76
D. 49; 76
Find the value of y and show work
Answer:
75
Step-by-step explanation:
∠K and ∠ R are congruent (equal)
Triangle Sum Theory - angles of all triangles add to 180
180 - 79 - 26 = 75
A review of combination
Answer:
What is a Combination? A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. In combinations, you can select the items in any order. Combinations can be confused with permutations.
#happylearning
x^3y+2x^2y^2+xy^3 and 2x^3+4x^2y+2xy^2 Find the HCF.
Answer:
[tex]x(x+y)^2[/tex]
Step-by-step explanation:
We are given that
[tex]x^3y+2x^2y^2+xy^3[/tex] and [tex]2x^3+4x^2y+2xy^2[/tex]
We have to find HCF.
[tex]x^3y+2x^2y^2+xy^3=xy(x^2+2xy+y^2)[/tex]
=[tex]xy(x+y)^2[/tex]
By using the formula
[tex](x+y)^2=x^2+2xy+y^2[/tex]
[tex]xy(x+y)^2=x\times y\times (x+y)^2[/tex]
[tex]2x^3+4x^2y+2xy^2=2x(x^2+2xy+y^2)[/tex]
[tex]=2x(x+y)^2[/tex]
[tex]2x(x+y)^2=2\times x\times (x+y)^2[/tex]
HCF of ([tex]x^3y+2x^2y^2+xy^3,2x^3+4x^2y+2xy^2[/tex])
[tex]=x(x+y)^2[/tex]
help what's the answer??
If 12 girls can sweep a room in 20hours, how many hours will it take 8 girls to perform the same task, assuming they are sweeping at the same rate?
Answer:
30 hour
Step-by-step explanation:
girls time
12 20 hour
8 x(let)
now,
12/8=x/20
12×20=8×x
240=8x
x=240/8
x=30,,