After deduction of 4 paisa in a Rupee a sum of Rs 720 is left.What was it originally?
Given:
After deduction of 4 paisa in a Rupee a sum of Rs 720 is left.
To find:
The original amount.
Solution:
We know that,
1 Rs. = 100 paisa
After deduction of 4 paisa in a Rupee, we get
[tex]100-4=96[/tex]
It means Rs. 720 is the 96% of the original amount.
Let x be the original amount.
[tex]720=\dfrac{96}{100}x[/tex]
[tex]72000=96x[/tex]
[tex]\dfrac{72000}{96}=x[/tex]
[tex]750=x[/tex]
Therefore, the original amount is Rs. 750.
Please help me in this question
Answer:
3/8
Step-by-step explanation:
the total number of possible results is 4×4=16.
out of these 16 only the results
1 2
1 3
1 4
2 2
2 3
3 2
are desired results. these are 6.
so the probability of a desired result is 6/16 = 3/8
Given right angle ABC, what the value of tan(A)?
5/13
12/13
12/5
13/12
need answer asap
Hi there!
[tex]\large\boxed{12/5}}[/tex]
tan (angle) = Opposite side / Adjacent side, so:
Tan (A) = opposite side / adjacent side
= 24 / 10
Simplify:
= 12 / 5
For this problem what I did was add all the measurements and I got 48 m. However, it is wrong. How do I go about solving the perimeter then?
9514 1404 393
Answer:
66 m
Step-by-step explanation:
The perimeter is the sum of the measures of all of the sides. There are two side measures that are missing from the diagram.
The missing horizontal measure is ...
17 m - 8 m = 9 m
The missing vertical measure is ...
16m -7 m = 9 m.
If you add these to the sum you already calculated, you will get the correct answer:
48 m + 9 m + 9 m = 66 m . . . perimeter of the figure
_____
If you're paying attention, you see that the sum of the measures of the two shorter horizontal segments is the same as the measure of the longer horizontal segment. Likewise, the sum of the measurements of the two shorter vertical segments is the same as that of the longer vertical segment.
In other words, the perimeter of this (and any) L-shaped figure is the same as the perimeter of a rectangle having the same horizontal and vertical dimensions as the long sides of the figure.
P = 2(17 m +16 m) = 2(33 m) = 66 m
a bag contain 3 black balls and 2 white balls.
1. A ball is taken from the black and then replaced, a second is taken. what is the probabilities that.
(a) there are both black,
(b)one is black one is white,
(c) at lease one is black,
(d) at most one is one is black.
2. find out if all the balls are chosen without replacement.
please kindly solve with explanation. thank you.
Answer:
Step-by-step explanation:
Total number of balls = 3 + 2 = 5
1)
a)
[tex]Probability \ of \ taking \ 2 \ black \ ball \ with \ replacement\\\\ = \frac{3C_1}{5C_1} \times \frac{3C_1}{5C_1} =\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}\\\\[/tex]
b)
[tex]Probability \ of \ one \ black \ and \ one\ white \ with \ replacement \\\\= \frac{3C_1}{5C_1} \times \frac{2C_1}{5C_1} = \frac{3}{5} \times \frac{2}{5} = \frac{6}{25}[/tex]
c)
Probability of at least one black( means BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{5} \\\\= \frac{9}{25} + \frac{6}{25} + \frac{6}{25}\\\\= \frac{21}{25}[/tex]
d)
Probability of at most one black ( means WW or WB or BW)
[tex]=\frac{2}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{2}{5} \times \frac{2}{5} + \frac{3}{5}\\\\= \frac{4}{25} + \frac{6}{25} + \frac{6}{25}\\\\=\frac{16}{25}[/tex]
2)
a) Probability both black without replacement
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
b) Probability of one black and one white
[tex]=\frac{3}{5} \times \frac{2}{4}\\\\=\frac{6}{20}\\\\=\frac{3}{10}[/tex]
c) Probability of at least one black ( BB or BW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{6}{20} + \frac{6}{20} \\\\=\frac{18}{20} \\\\=\frac{9}{10}[/tex]
d) Probability of at most one black ( BW or WW or WB)
[tex]=\frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{3}{4}\\\\=\frac{6}{20} + \frac{2}{20} + \frac{6}{20} \\\\=\frac{14}{20}\\\\=\frac{7}{10}[/tex]
Help me with moth of these questions please
Answer:
10. CD + DE = CE
11. BC + CE = BE
Step-by-step explanation:
10. CD and DE lie on a straight line, therefore, CD + DE = CE based on the segment addition postulate.
11. BC and CE lie on a straight line, therefore, BC + CE = BE based on the segment addition postulate.
What is the inverse of function f? f(x)=10/9+11
Answer:
Option D is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = 10/9 X + 11
Let f(X) be "y".
y = (10/9) X + 11
Interchange "X" and "y".
x = (10/9) y + 11
or, 9x = 10y + 99
or, y = (9x-99)/10
Therefore, f'(X) = (9x-99)/10.
Hope it helps!
write the equation of the line shown in the graph above in slope-intercept form
The total mass of 8 identical dictionaries is 9.92 kilograms. What is the mass, in kilograms, of one dictionary? Enter your answer in the space provided
What are the domain and range of the function represented by the set of
ordered pairs?
{(-16, 0), (-8, -11), (0, 12), (12,4)}
Answer:
domain:-16,-8,0,12
range:0,-11,12,14
U have to work out the value of a by the way
Answer:
Step-by-step explanation:
180-90=2b+b
90=3b
90/3=b
30=b
2b=2*30
=60
180-90=a+a
90=2a
a=90/2
a=45
the answer is 45 degrees
hope it helps!!let me know if it does
Answer:
a= 15°
Step-by-step explanation:
> use the fact that the sum of angles in a triangle is 180°
> based on the picture in the small right triangle we have b° +2b° +90° =180°
b +2b +90 =180° , combine like terms
3b +90 = 180, subtract 90 from both sides of the equation
3b = 90, divide by 3 both sides of the equation
b = 30°
> angle b has a ray that continues as a line so it makes an 180° angle and we have the acute triangle so we can write that
a + a+ (180-b) =180, substitute b
2a + 180-30 =180, subtract 180 from both sides, and add 30 to both sides
2a=30, divide by 2 both sides
a= 15°
²/₃ + ¹/₃ please answer
FINAL ANSWER:
1
Step-by-step explanation:
[tex]\frac{2}{3} +\frac{1}{3}[/tex]
the denominators are the same so all we need to do is add.
[tex]\frac{2}{3} + \frac{1}{3} =\frac{3}{3}[/tex]
[tex]\frac{3}{3} =[/tex] 1 whole
final answer: 1
hope this answer helps you :)
have a great day and may God Bless You!
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
Which one is a better deal?
paying $2.88 for a 12 roll package of toilet paper
paying $1.20 for a 6 roll package of toilet paper
Answer:
paying $1.20 for a 6 roll package of toilet paper
Step-by-step explanation:
to find the answer, double 6 to equal 12 and double the price as well. therefore, it is 2.40. since 2.40 is cheaper than 2.88, it is a better deal.
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
I WILL MARK BRAINLIEST PLEASE HELP! This graph represents f(x), and g(x) = -7x + 8.
Which statement about these functions is true?
A.
Function f(x) is increasing, and g(x) is decreasing.
B.
Function f(x) is decreasing, and g(x) is increasing.
C.
Functions f(x) and g(x) are both decreasing.
D.
Functions f(x) and g(x) are both increasing.
Answer:
A
Step-by-step explanation:
ITS OPTION (A)
PLZ MARK ME BRAINLIEST..
The asymptote of the function f(x) = 3x + 1 – 2 is . Its y-intercept is
Answer:
-1
Step-by-step explanation:
1-2=-1
y=mx+b
b= y intercept
Answer:
-1
Step-by-step explanation:
We want to know if money affects happiness. We surveyed 20 people one week before they were notified of winning a large publishers clearing house sweepstakes and then again one month after they recieved their prize. What test would we use to compare their previous scores with their current scores
Answer:
Dependent Samples t test
Step-by-step explanation:
The dependent samples t test also called the paired t test are employed in statistical analysis when sample measurement in a certain group is to be paired with the sample measurement on the other group. This is possible because the samples used in the two groups are usually the same. Hence, pairing the samples is feasible in this case. This is different from independent t test as the samples in the groups are entirely different and distinct. Hence, giving no chance to match the samples together. In the scenario described above, the same 20 people(samples) formed the same group of measurement.
giving brainiest Elinor solved this problem. Is her answer correct?
8.93 times 0.15 = 4465. 4465 + 8930 = 13.395
No, Elinor should have placed the decimal point between the 1 and the 3.
No, she should have placed the decimal point between the 3 and the 9.
No, she did not align the place values in the partial products correctly.
Yes. Elinor did not make an error. giving Branniest
Answer:
its a
Step-by-step explanation:
trust did test
Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for the differential equation Q.2 Solve the Initial value problem ln(y ^ x) * (dy)/(dx) = 3x ^ 2 * y given y(2) = e ^ 3 . Q.3 Find the general solution for the given differential equation. (dy)/(dx) = (2x - y)/(x - 2y)
(Q.1)
[tex]y = \dfrac{C - e^x}{2x} \implies y' = \dfrac{-2xe^x-2C+2e^x}{4x^2} = \dfrac{-xe^x-C+e^x}{2x^2}[/tex]
Then substituting into the DE gives
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{2\left(\dfrac{C-e^x}{2x}\right) + e^x}{2x}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = -\dfrac{C-e^x + xe^x}{2x^2}[/tex]
[tex]\dfrac{-xe^x-C+e^x}{2x^2} = \dfrac{-C+e^x - xe^x}{2x^2}[/tex]
and both sides match, so y is indeed a valid solution.
(Q.2)
[tex]\ln\left(y^x\right)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
This DE is separable, since you can write [tex]\ln\left(y^x\right)=x\ln(y)[/tex]. So you have
[tex]x\ln(y)\dfrac{\mathrm dy}{\mathrm dx} = 3x^2y[/tex]
[tex]\dfrac{\ln(y)}y\,\mathrm dy = 3x\,\mathrm dx[/tex]
Integrate both sides (on the left, the numerator suggests a substitution):
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 + C[/tex]
Given y (2) = e ³, we find
[tex]\dfrac12 \ln^2(e^3) = 6 + C[/tex]
[tex]C = \dfrac12 \times3^2 - 6 = -\dfrac32[/tex]
so that the particular solution is
[tex]\dfrac12 \ln^2(y) = \dfrac32 x^2 - \dfrac32[/tex]
[tex]\ln(y) = \pm\sqrt{3x^2 - 3}[/tex]
[tex]\boxed{y = e^{\pm\sqrt{3x^2-3}}}[/tex]
(Q.3) I believe I've already covered in another question you posted.
. A small home business is set up with an investment of Birr 1,000,000 for equipment. The business manufactures a product at a cost of Birr 60 per unit. If the product sells for Birr 140, how many units must be sold before the business breaks even?
Answer:
12,500
Step-by-step explanation:
P = R-E
b.e.p : P=0
R=E
140x = 1000000 + 60 x
80x = 1000000
x=12,500
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
Use the arithmetic progression formula to find the sum of integers from 75 to 100.75,76,77....99,100.
Answer:
The sum is 2275
Step-by-step explanation:
Given
[tex]75,76,77....99,100[/tex]
Required
The sum
Using arithmetic progression, we have:
[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]
Where:
[tex]T_1 = 75[/tex] --- first term
[tex]T_n = 100[/tex] --- last term
[tex]n = T_n - T_1 + 1[/tex]
[tex]n = 100 - 75 + 1 = 26[/tex]
So, we have:
[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]
[tex]S_n = \frac{26}{2}*(75 + 100)[/tex]
[tex]S_n = 13*175[/tex]
[tex]S_n = 2275[/tex]
If P = (2,-1), find the image
of P under the following rotation.
270° counterclockwise about the origin
([?], [])
Enter the number that belongs in
the green box.
9514 1404 393
Answer:
P'(-1, -2)
Step-by-step explanation:
The transformation for 270° CCW rotation is ...
(x, y) ⇒ (y, -x)
Then the image of the given point is ...
P(2, -1) ⇒ P'(-1, -2)
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Plz help. I’m finding surface area. I need the answer in units. Thank you.
Answer:
C. 17 units
Step-by-step explanation:
Surface area of rectangular prism is given as:
A = 2lw + 2lh + 2wh
A = 930 square units
l = 12 units
h = 9 units
w = ? (We're to find the width)
Plug in the value into the formula
930 = 2*12*w + 2*12*9 + 2*w*9
930 = 24w + 216 + 18w
Add like terms
930 - 216 = 42w
714 = 42w
Divide both sides by 42
714/42 = 42w/42
17 = w
w = 17 units
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black, or green. Half of the numbers 1 - 36 are colored red and half are black and the numbers 0 and 00 are green. Each number occurs only once on the wheel. What is the probability of landing on an even number and a number greater than 17? (A number is even if it is divisible by 2. 0 and 00 are considered even as well.)
Answer:
the wording (punctuation) of the question can lead to different interpretations....
I assume that the question was >17 & even which is "5/19",
BUT... it can also be read as two questions
first >17 which is "10/19"
and second an even number which is "9/19"
BUT !!! I think that the question answer is 5/19
Step-by-step explanation:
Even Number = 18/38 = 9/19
greater 17 = 20/38 = 10/19
Even & greater 17 = 10/38 = 5/19
The polynomial 3x² + mx? - nx - 10 has a factor of (x - 1). When divided by x + 2, the remainder is 36. What are
the values of m and n?
Answer:
[tex]m = 12[/tex]
[tex]n =3[/tex]
Step-by-step explanation:
Given
[tex]P(x) = x^3 + mx^2 - nx - 10[/tex]
Required
The values of m and n
For x - 1;
we have:
[tex]x - 1 = 0[/tex]
[tex]x=1[/tex]
So:
[tex]P(1) = (1)^3 + m*(1)^2 - n*(1) - 10[/tex]
[tex]P(1) = 1 + m*1 - n*1 - 10[/tex]
[tex]P(1) = 1 + m - n - 10[/tex]
Collect like terms
[tex]P(1) = m - n + 1 - 10[/tex]
[tex]P(1) = m - n -9[/tex]
Because x - 1 divides the polynomial, then P(1) = 0;
So, we have:
[tex]m - n -9 = 0[/tex]
Add 9 to both sides
[tex]m - n = 9[/tex] --- (1)
For x + 2;
we have:
[tex]x + 2 = 0[/tex]
[tex]x = -2[/tex]
So:
[tex]P(-2) = (-2)^3 + m*(-2)^2 - n*(-2) - 10[/tex]
[tex]P(-2) = -8 + 4m + 2n - 10[/tex]
Collect like terms
[tex]P(-2) = 4m + 2n - 10 - 8[/tex]
[tex]P(-2) = 4m + 2n - 18[/tex]
x + 2 leaves a remainder of 36, means that P(-2) = 36;
So, we have:
[tex]4m + 2n - 18 = 36[/tex]
Collect like terms
[tex]4m + 2n = 36+18[/tex]
[tex]4m + 2n = 54[/tex]
Divide through by 2
[tex]2m + n=27[/tex] --- (2)
Add (1) and (2)
[tex]m + 2m - n + n = 9 +27[/tex]
[tex]3m =36[/tex]
Divide by 3
[tex]m = 12[/tex]
Substitute [tex]m = 12[/tex] in (1)
[tex]m - n =9[/tex]
Make n the subject
[tex]n = m - 9[/tex]
[tex]n = 12 - 9[/tex]
[tex]n =3[/tex]
Golf Scores In a professional golf tournament the players participate in four rounds of golf and the player with the lowest score after all four rounds is the champion. How well does a player's performance in the first round of the tournament predict the final score
Answer:
Mean scores.
Step-by-step explanation:
The golf player will score in the first round, according to these scores the golf player scores can be predicted. The golf player can perform high in first round but he may score lesser in the second round due to stress or mental pressure. The scores can be predicted taking mean of the scores and adding standard deviation to it.
Answer pls:) I would really appreciate it
Answer:
1. C
2. B
3 A
4. A
Step-by-step explanation:
#1
Brady starts off with 12 coins
And buys 6 more coins every year
So add 6 to find number of coins he will have the next year until we've done it five times ( because we want to find how many he will have after 5 years )
12 ( 1st year )
Add 6
12 + 6 = 18 ( 2nd year )
Add 6
18 + 6 = 24 ( 3rd year )
Add 6
24 + 6 = 30 ( 4th year )
Add 6
30 + 6 = 36 ( 5th year )
By the fifth year he will have 36 coins and the sequence would be
12, 18, 24, 30, 36
Which corresponds with answer choice C
2
15, 19, 23, 27, ?
We want to find the next term
To do so we must find the common difference
We can do this by subtracting the last given term by the term before it
27 - 23 = 4
Just to clarify we can do the terms before those
19 - 15 = 4
So the common difference is 4
Now to find the next term we simply add 4 to the last given term
27 + 4 = 31
The next term would be 31
3. Cumulative property of addition states that you can add any 3 numbers in a different order and they will be the same
a + b + 2 = 2 + a + b
Same variables and numbers just different order
Therefore this is an example of cumulative property of addition
4. The GCF ( greatest common factor ) is the greatest number that the two numbers can be divided by
18a and 24ab
Factors of 18
2 , 9 , 6, 3 , 1 and 18
Factors of 24
24, 1, 2, 12, 6, 4, 3 and 8
The greatest factor that both 18 and 24 have is 6
The GCF would be 6a ( not 6 ) because both numbers share a common variable (a) ( 18a , 24ab )