S= 800m2 distance between pipe support is 1m manpower is 10 how many day to install all pipe supports?

Answers

Answer 1

In conclusion, with an area of 800m2, a distance between pipe supports of 1m, and 10 available workers, it would take 10 days to install all the pipe supports, with each worker installing 80 supports per day.

To determine the number of days required to install all pipe supports, we need to consider the total area to cover, the distance between supports, and the available manpower.
Given that the area to cover is 800m2 and the distance between supports is 1m, we can calculate the total number of supports needed by dividing the total area by the distance between supports:
Number of supports = Total area / Distance between supports
                = 800m2 / 1m
                = 800 supports
With a manpower of 10, we can calculate the number of supports each person can install per day by dividing the total number of supports by the manpower:
Supports installed per day = Number of supports / Manpower
                         = 800 supports / 10
                         = 80 supports per day
Therefore, it would take 10 days to install all pipe supports, considering the available manpower and the given distance between supports.
In conclusion, with an area of 800m2, a distance between pipe supports of 1m, and 10 available workers, it would take 10 days to install all the pipe supports, with each worker installing 80 supports per day.

To know more about worker visit:

https://brainly.com/question/30203906

#SPJ11


Related Questions

for the following closed-loop system calculate the gains of compensator, kp and ki, such that a closed-loop response to a unit-step input has an overshoot (mp) of approx. 16% and a settling time (ts) of approximately 1 s (2%)

Answers

To calculate the gains of the compensator, Kp and Ki, in order to achieve a closed-loop response with approximately 16% overshoot (Mp) and a settling time of approximately 1 second (2%), we need to design a controller that meets these specifications.

1. Overshoot (Mp):

The overshoot of a closed-loop system is influenced by the damping ratio (ζ). The relation between overshoot and damping ratio is given by the equation: Mp = e^((-ζπ) / sqrt(1 - ζ^2)).

For a desired overshoot of 16% (0.16), we can solve the equation to find the damping ratio (ζ): ζ = sqrt((ln(Mp))^2 / (π^2 + (ln(Mp))^2)).

2. Settling Time (Ts):

The settling time is determined by the dominant closed-loop pole, which is related to the natural frequency (ωn) and damping ratio (ζ). The settling time is approximately 4 / (ζ * ωn).

For a settling time of 1 second (2%), we can solve the equation to find the natural frequency (ωn): ωn = 4 / (Ts * ζ).

Once we have obtained the values of ζ and ωn, we can design the compensator gains Kp and Ki based on the desired specifications.

It's important to note that the specific details of the closed-loop system or transfer function were not provided in the question, so further information would be needed to perform the calculations and determine the appropriate values of Kp and Ki.

Learn more about Overshoot here:

https://brainly.com/question/30423363

#SPJ11

Motors have a horsepower rating that is determined by the amount of ______ they can produce at a specific speed under full load.

Answers

Motors have a horsepower rating that is determined by the amount of mechanical power they can produce at a specific speed under full load.

Horsepower (HP) is a unit of power that measures the rate at which work is done. In the case of motors, it represents the power output of the motor in terms of its ability to generate mechanical force.

The horsepower rating of a motor provides an indication of its capacity to perform work. It is typically determined through testing and evaluation by the manufacturer. The rating specifies the maximum power output that the motor can deliver under full load conditions while operating at a specific speed.

The mechanical power produced by the motor is the result of converting electrical energy into mechanical energy. Motors use various mechanisms, such as electromagnetic fields, to convert electrical input into rotational motion. The horsepower rating allows users to select a motor that matches the power requirements of their application, ensuring that the motor can deliver the necessary force and torque to perform the desired work.

Learn more about mechanical here

https://brainly.com/question/28567479

#SPJ11

what would be the most logical order to analyze the joints in this simple truss if the goal was only to determine the force in each member:

Answers

To determine the force in each member of a simple truss, it is important to analyze the joints in a logical order. The most common approach is to start with the joints that have the fewest number of unknown forces. This allows for a step-by-step process of solving for the forces in each member.

First, identify the joints with zero unknown forces, which are typically the supports. These joints can be analyzed first as they provide fixed values for some forces.

Next, move on to the joints with one unknown force. Solve for this force using the equations of equilibrium, such as the summation of forces in the x and y directions. Repeat this process for all the joints with only one unknown force.

After analyzing the joints with one unknown force, proceed to the joints with two unknown forces. Apply the equilibrium equations to solve for these forces.

Continue this process, analyzing joints with increasing numbers of unknown forces until all the forces in the members are determined.

By analyzing the joints in a logical order, starting with those with fewer unknown forces, the forces in each member of the truss can be accurately determined. This systematic approach simplifies the analysis process and ensures an accurate evaluation of the truss.

You can learn more about equilibrium equations at: brainly.com/question/31097181

#SPJ11

2-derive the outputs' boolean equations (written in simplified forms) for decimal
to bcd priority encoder such that the smallest digit has the highest priority. show
all the steps for the simplification.

Answers

To derive the output Boolean equations for a decimal to BCD (Binary-Coded Decimal) priority encoder, we need to follow a step-by-step process. Let's assume the inputs are D3, D2, D1, and D0, representing the decimal input digits from 0 to 9.

Step 1: Determine the number of outputs required.

In a decimal to BCD priority encoder, we need four outputs to represent the BCD code for each decimal input digit. Let's denote the outputs as Y3, Y2, Y1, and Y0.

Step 2: Write the truth table.

Construct a truth table with inputs (D3, D2, D1, D0) and outputs (Y3, Y2, Y1, Y0) for all possible input combinations. In this case, the truth table will have 10 rows (corresponding to the decimal digits 0 to 9).

Step 3: Determine the outputs based on priority.

The priority encoder assigns a unique code to each input, giving priority to the smallest input digit. The priority order for the decimal digits is as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Based on this priority, we can determine the outputs (Y3, Y2, Y1, Y0) for each decimal input digit in the truth table.

Step 4: Write the Boolean equations for each output.

To simplify the Boolean equations, we can use Karnaugh maps (K-maps) when the number of inputs is small. In this case, we have four inputs (D3, D2, D1, D0), which are convenient for K-map simplification.

Construct a separate K-map for each output (Y3, Y2, Y1, Y0) and fill in the corresponding output values based on the truth table.

Step 5: Simplify the Boolean equations using K-maps.

Analyze each K-map and group adjacent 1s to form product terms. These product terms will represent the simplified Boolean equations for the outputs.

Step 6: Write the final simplified Boolean equations.

Based on the simplified product terms obtained from the K-maps, write the final Boolean equations for each output (Y3, Y2, Y1, Y0).

Following these steps will allow you to derive the outputs' Boolean equations in simplified form for a decimal to BCD priority encoder with the smallest digit having the highest priority.

Learn more about Boolean equations:

https://brainly.com/question/26041371

#SPJ11

Condensate dripping from an air-conditioning system is an indication that the evaporator coil temperature is?

Answers

Condensate dripping from an air-conditioning system is an indication that the evaporator coil temperature is below the dew point temperature.

In an air-conditioning system, the evaporator coil plays a crucial role in cooling the air. The coil contains refrigerant, which absorbs heat from the indoor air, causing the air to cool down. As the warm air passes over the cold evaporator coil, moisture in the air condenses on the surface of the coil.

The temperature at which the moisture in the air starts to condense is known as the dew point temperature. It is the temperature at which the air becomes saturated with water vapor and can no longer hold it in the form of invisible water vapor. When the air reaches its dew point temperature, condensation occurs, resulting in water droplets forming on the evaporator coil.

Therefore, if condensate is dripping from an air-conditioning system, it indicates that the evaporator coil temperature is below the dew point temperature, causing the moisture in the air to condense on the coil.

Learn more about evaporator here

https://brainly.com/question/31289494

#SPJ11

Suppose we could take the system of (Figure 1) and divide it into an arbitrary number of pipeline stages k, each having a delay of 300/k, and with each pipeline register having a delay of 20 ps.

Answers

In conclusion, dividing the system into pipeline stages with appropriate delays can improve system performance by parallelizing the processing of instructions. The number of pipeline stages and the delay of each stage depends on the specific requirements and characteristics of the system.

In the given scenario, we have a system represented by Figure 1. To improve the performance of this system, we can divide it into multiple pipeline stages. Let's say we divide it into k stages, where k is an arbitrary number.
Each pipeline stage has a delay of 300/k, and each pipeline register has a delay of 20 ps.
By dividing the system into pipeline stages, we can parallelize the processing of instructions or tasks. This allows multiple instructions to be executed simultaneously, improving the overall throughput of the system.
For example, if we divide the system into 4 pipeline stages (k=4), each stage would have a delay of 300/4 = 75 ps. Additionally, each pipeline register would have a delay of 20 ps.
In conclusion, dividing the system into pipeline stages with appropriate delays can improve system performance by parallelizing the processing of instructions. The number of pipeline stages and the delay of each stage depends on the specific requirements and characteristics of the system.

To know more about pipeline stages visit:

https://brainly.com/question/33448948

#SPJ11

if the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of

Answers

If the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of sixteen.

The power handling capacity of a transmission line depends on the product of the voltage and current flowing through it. According to Ohm's Law, power (P) is equal to the product of voltage (V) and current (I), i.e., P = V * I.

When the voltage is increased by four times, let's say from V1 to V2, the power handling capacity of the line can be calculated by comparing the two situations.

Let's assume the current remains the same in both situations (I1 = I2). Then, we can calculate the power handling capacity as follows:

P1 = V1 * I1     (initial power handling capacity)
P2 = V2 * I2     (new power handling capacity)

Since I1 = I2, we can rewrite the equations as:

P1 = V1 * I1
P2 = V2 * I1

Now, if V2 is four times V1, we have:

V2 = 4 * V1

Substituting this into the equation for P2:

P2 = (4 * V1) * I1

Simplifying further:

P2 = 4 * (V1 * I1)

Since P1 = V1 * I1, we can rewrite P2 as:

P2 = 4 * P1


Therefore, if the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of sixteen.

This means that the line would be able to handle sixteen times the power compared to its initial capacity.

To know more about Ohm's Law visit:

https://brainly.com/question/30452191

#SPJ11

a single-phase 50 kva, 2400–120 v, 60 hz transformer has a leakage impedance of (0.023 1 j 0.05) per-unit and a core loss of 600 watts at rated voltage

Answers

The leakage impedance of a single-phase 50 kVA, 2400-120 V, 60 Hz transformer is (0.023 + j0.05) per-unit.

The leakage impedance of a transformer represents the resistance and reactance of the winding that does not contribute to the power transfer. In this case, the leakage impedance is given as (0.023 + j0.05) per-unit. The real part, 0.023, represents the resistance, while the imaginary part, 0.05, represents the reactance. The per-unit value is used to normalize the impedance with respect to the rated values of the transformer.

The core loss of the transformer is given as 600 watts at rated voltage. Core loss refers to the power dissipated in the transformer core due to hysteresis and eddy current losses. It is important to consider the core loss when calculating the overall efficiency of the transformer.

Know more about transformer here:

https://brainly.com/question/15200241

#SPJ11

a new integration method based on the coupling of mutistage osculating cones waverider and busemann inlet for hypersonic airbreathing vehicles

Answers

Therefore, the phrase describes a new method of integrating multistage osculating cones, waverider, and Busemann inlet technologies to improve the performance of hypersonic airbreathing vehicles. This integration aims to enhance aerodynamic efficiency and reduce drag, ultimately leading to more efficient and faster vehicles.

The phrase "a new integration method based on the coupling of multistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles" refers to a method of combining different technologies to improve the performance of hypersonic airbreathing vehicles. Here is a step-by-step explanation:

1. Multistage osculating cones: These are structures that change shape at different stages of flight to optimize aerodynamic performance. They are used to reduce drag and increase efficiency.

2. Waverider: A waverider is a type of vehicle design that uses the shockwaves generated by its own supersonic flight to create lift. This design allows for increased aerodynamic efficiency at high speeds.

3. Busemann inlet: A Busemann inlet is a type of air intake design that reduces the effects of shockwaves during supersonic flight. It helps to slow down and compress the incoming air, increasing efficiency and reducing drag.

4. Integration method: The integration method mentioned in the question refers to combining the multistage osculating cones, waverider, and Busemann inlet technologies to create a more efficient and high-performing hypersonic airbreathing vehicle.

The phrase describes a new method of integrating multistage osculating cones, waverider, and Busemann inlet technologies to improve the performance of hypersonic airbreathing vehicles. This integration aims to enhance aerodynamic efficiency and reduce drag, ultimately leading to more efficient and faster vehicles.

To learn more about compress visit:

brainly.com/question/32332232

#SPJ11

Other Questions
What is the effective yield to the lender on a $100,000 loan at 5.75 percent interest, with monthly payments amortized over 25 years if the lender charges 2 points at origination, and the loan is outstanding for the entire amortization period? The autonomic reaction that you feel inside during the experience of an emotion is influenced by? an elderly client is admitted to the health care facility with an indirect inguinal hernia. which abnormal data should the nurse expect to find in the client assessment? Using the developmental forces perspective, an older adult who is vague in answering questions because his generation was socialized not to disclose ones inner self to strangers is an example of:________ The use of the ________ is especially helpful in valuing firms that are not publicly traded. if you repeated a hypothesis test 1,000 times (in other words, 1,000 different samples from the same population), how many times would you expect to commit a type i error, assuming the null hypothesis were true, if a) In part a, how would you have to adjust the time/div control to make a two-cycle sine wave? 30 ml of 0. 00138 m cl- solution is titrated with 0. 00057 m ag+. calculate the pag half-way to the equivalence point when the added titrant volume is 30ml. (hint!: use the ksp value for agcl) Ben updates his ubuntu system's packages using the sudo apt-get upgrade command, and now the apache web service is not working properly. what command should he run? At which phase of the marketing planning process is it especially crucial for zipcar to introduce its core values? a block of mass 10 kg is released on a fixed wedge inside a cart which is moving with constant velocity 10 ms1 towards right. there is no relative motion between block and cart. then work done by normal reaction on block in two jane grows orangess on land she inherited from her grandmother. she incurs explicit costs of $130 for the trees and $30 for fertilizers. in addition, suppose her land is otherwise worth $6000 and her labor is worth $30000 (this is the amount she could earn managing someone else's land instead of her own). fixed costs are relevant for decision making if they vary among the alternatives and are future-oriented. dona is the human resource manager with consultus incorporated she ordered her subordinates to hire ten people for the position of consultants within a period of one month. this target forced her subordinates to hire without proper evaluation of the candidates and affected their morale as well as the quality of the hired consultants. in the context of the leadership grid, identify the leadership style of dona. Titration of 25. 0 ml of an HCl solution of unknown concentration requires 14. 8 ml of 0. 100 m NaOH. What is the molar concentration of the HCl solution? Deliberately making children misbehave to observe parental reactions would be a(n) _____ research behavior. You prepare a stock solution that has a concentration of 2. 5 m. An aliquot with a volume of 10. 0 ml is removed from the solution. What is the concentration of the aliquot?. Organizations which have cultures that score high on ________ tend to be more hierarchical,with power deriving from prestige,force,and inheritance. is the assignment of students to specific education programs and classes on the basis of test scores, perceived ability, or performance. The primary sources of public law include _____. Group of answer choices policies and procedures statutes and penal law the law of obligations the law of contracts or torts