Answer:
See explanation and image attached
Explanation:
Let us recall that the reaction in question is expected to happen by SN2 mechanism. This is because, the reaction occurs at secondary carbon atom and the attacking nucleophile (N3^-) is a good nucleophile.
The reaction occurs via a backside attack of the N3^- ion on (R)-2-chloropentane. This backside attack leads to inversion of configuration at the reaction centre to yield (S)-CH3CH(N3)CH2CH2CH3.
The images of the alkyl halide and nucleophile are shown in the image attached to this answer.
g Arrange the following compounds in order of acidity (highest to lowest): H2O, H3O , HCl A. CH3COOH > HCl > H2O B. H2O > CH3COOH > HCl C. HCl > H2O > CH3COOH D. HCl > CH3COOH > H2O
Answer:
Arrange the following compounds in order of acidity (highest to lowest): H2O, CH3COOH , HCl
A. CH3COOH > HCl > H2O
B. H2O > CH3COOH > HCl
C. HCl > H2O > CH3COOH
D. HCl > CH3COOH > H2O
Explanation:
The given substances are acetic acid, hydrochloric acid, and water.
Since HCl is a strong acid and it undergoes complete ionization.
CH3COOH acetic acid is a weak acid and it undergoes partial dissociation in water.
Pure water is a neutral substance.
Hence, the order of acidity is shown below:
HCl > CH3COOH > H2O.
Among the given options, option D is the correct answer.
15. You are interested in separating 4-methylbenzoic acid from 1,4-dimethoxybenzene using a procedure similar to the extraction procedure we used in lab. You plan to use sodium bicarbonate instead of sodium hydroxide. a) Show the reaction between salicylic acid and sodium bicarbonate. Label the acid, base, conjugate acid, conjugate base. b) Give the pKa values of the acid and conjugate acid. c) Which base will work better, sodium hydroxide or sodium bicarbonate
Solution :
a). The separation of 4-methylbenzoic acid from 1,4-dimethoxybenzene will work but it will result in lower recovery.
In the reaction of acid-base to form a sodium 4 - methoxy benzoate, that is soluble in the water, 4-methoxy benzoic acid reacts with the sodium bicarbonate to give sodium 4-methoxybenzoate as well as carbonic acid.
b). The pKa for the 4-methoxybenzoic acid is [tex]4.46[/tex], and that of carbonic acid is [tex]6.37[/tex]
c). The Keq for the reaction is [tex]10(6.37 - 4.46) = 101.91[/tex]
Therefore, the equilibrium lies to the right and also the reaction favors the products and the separation works.
But the recovery will be low when compared to the extraction with Sodium hydroxide as the strong base will drive the equilibrium further to the right position, thus neutralizing all the acids virtually. And the weak base will partially neutralize the acid.
g A sample of chlorine gas starting at 681 mm Hg is placed under a pressure of 991 mm Hg and reduced to a volume of 513.7 mL. What was the initial volume, in mL, of the chlorine gas container if the process was performed at constant temperature?
Answer:
747.5 mL
Explanation:
Assuming ideal behaviour, we can solve this problem by using Boyle's law, which states that at constant temperature:
P₁V₁ = P₂V₂Where in this case:
P₁ = 681 mm HgV₁ = ?P₂ = 991 mm HgV₂ = 513.7 mLWe input the data given by the problem:
681 mm Hg * V₁ = 991 mm Hg * 513.7 mLAnd solve for V₁:
V₁ = 747.5 mLIf the volume of the gas is increased to 9.6 L , what will the pressure be?
A certain liquid has a normal boiling point of and a boiling point elevation constant . A solution is prepared by dissolving some urea () in of . This solution boils at . Calculate the mass of that was dissolved. Round your answer to significant digits.
This question is incomplete, the complete question is;
A certain liquid X has a normal boiling point of 150.4 °C and a molar boiling point elevation constant kb is 0.60 °Ckgmol⁻¹.
A solution is prepared by dissolving some urea (NH22CO) in 750 g of X. This solution boils at 150.9 °C . Calculate the mass of urea that was dissolved. Round your answer to 3 significant digits.
Answer:
the mass of urea that was dissolved is 37.5 g
Explanation:
Given the data in the question;
normal boiling point of X; Tb⁰ = 150.4 °C
boiling point of solution Tb = 150.9 °C
Change in boiling point Δt = Tb - Tb⁰ = 150.9 °C - 150.4 °C = 0.5 °C
Kb = 0.6 °C.kg.mol⁻¹
V = 750 g
Now, we know that
Δt = Kb × molality
so
0.5 = 0.6 × molality
molality = 0.5 / 0.6
molality = 0.833
we know that molar mass of urea is 60 g/mol
so
molality = mass × 1000 / molar mass × volume( g )
we substitute
0.833 = ( mass × 1000 ) / ( 60 × 750 )
0.833 = ( mass × 1000 ) / 45000
0.833 × 45000 = mass × 1000
mass = ( 0.833 × 45000 ) / 1000
mass = 37485 / 1000
mass = 37.485 ≈ 37.5 g { 3 significance figure }
Therefore, the mass of urea that was dissolved is 37.5 g
3)O que são políticas públicas?
Answer:
azertyuiopazertyuiiop
Question 9
2 pts
How many milliliters of 1.0 M HCl needs to be diluted to make 200 mL of a 0.1 M solution?
O 0.2 mL
O 0.02 mL
O 20 mL
2 mL
2 nts
Answer: There are 20 milliliters of 1.0 M HCl is required to be diluted to make 200 mL of a 0.1 M solution.
Explanation:
Given: [tex]M_{1}[/tex] = 1.0 M, [tex]V_{1}[/tex] = ?
[tex]M_{2}[/tex] = 0.1 M, [tex]V_{2}[/tex] = 200 mL
Formula used is as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}[/tex]
Substitute values into the above formula as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}\\1.0 M \times V_{1} = 0.1 M \times 200 mL\\V_{1} = \frac{0.1 M \times 200 mL}{1.0 M}\\= 20 mL[/tex]
Thus, we can conclude that there are 20 milliliters of 1.0 M HCl is required to be diluted to make 200 mL of a 0.1 M solution.
How many alkenes are formed by E2 elimination of HBr from 3-bromo -3,4-dimethylhexane using a strong base such as sodium methoxide (NOTE: draw 3,4-dimethyl as anti configuration)
Answer:
2
Explanation:
2 alkenes are formed by E2 elimination of HBr from 3-bromo -3, 4 - dimethylhexane using a strong base such as sodium methoxide
CAN YOU PLEASE HELP ME
When Pt electrodes are used in the electrolysis of Kl(aq), a number of reactions are possible at the electrodes. Using a standard reduction potentials table predict which reaction is most likely to occur at the anode
anode is oxidation
so look at the reduction potential for Pt and Kl
the one with the smaller reduction potential will undergo oxidation
the one with the larger reduction potential will undergo reduction
you have to flip the equation that undergoes oxidation because the reduction table always gives reduction equations
Aluminum hydroxide, with heat, creates____
Answer:
Water and Aluminium oxide
Explanation:
Have a nice day.
Platinum is one of the most dense elements (d = 21.5 g/cm3). What is the volume of a 10.0 g sample of the metal?
Answer:
0.465
Explanation:
To find the volume of a substance, divide the mass by the density.
M/D = V
10.0 / 21.5 = 0.4651163
Then round to 3 significant figures: and the density is 0.465
Which of the following is the correct way to balance the following chemical question:
2SnO2 + 4H2 -> 2Sn + 4H2O
SnO2 + 2H2 -> Sn + 2H2O
a. Both equation I and II are balanced, but equation I is the correct way to write the balanced equation.
b. Can you divide equation II by another factor and still have it be correct? Why or why not?
c. In a complete sentence, write down a method you could use to determine if an equation is written in the correct way.
Answer:
i have no answer for part A
part B
the one that has a 4 can be divided by 2 because reducing
part c
you can determine if an equation is written in the correct way by balancing the equation as if it had not been done already.
13. What would you expect the pH of an aqueous solution of tertiary bromide in water to be (acidic, neutral, or basic)
Answer:
oshfjidgshsjdh
Explanation:
918474828
Explain why the balls representing fluorine (teal) and hydrogen (white) have only one peg, while carbon (black) has four.
Answer:
Hydrogen and fluorine form only one bond while carbon forms four bonds to other atoms.
Explanation:
This question brings us to the idea of valency. Fluorine is univalent while carbon is tetravalent.
Univalent means that fluorine can only form one bond to hydrogen while carbon forms as much as four bonds because it is tetravalent.
Hence fluorine and hydrogen have only one peg while carbon has four.
5. The Rf of ibuprofen was found to be 0.32 when t-butyl methyl ether was used as the development solvent. What effect would there be on the Rf of ibuprofen if acetone had been used to develop the TLC plate?
Answer:
The Rf value of ibuprofen increases
Explanation:
TLC involves the elution of a solute using a mobile phase(solvent). The stationary phase is made of an adsorbent such as silica.
The extent of interaction between the solute and the mobile phase affects the Rf value. The greater the interaction between the solute and the solvent, the greater the Rf value.
On the other hand, the polarity of the solvent and the solute also affects the Rf value. If the solvent is changed from t-butyl methyl ether to acetone, the Rf value for ibuprofen increases because ibuprofen is polar and acetone is also polar hence there is greater interaction between the solvent and solute.
Whate the mass percentage of Sulphure in Na2so4 ?
Answer:
Water H2O + SULPHATE OXIDE
Cal is titrating 57.7 mL of 0.311 M HBr with 0.304 M Ba(OH)2. How many mL of Ba(OH)2 does Cal need to add to reach the equivalence point?
Answer:
118.06 mL
Explanation:
The neutralization reaction between HBr (acid) and Ba(OH)₂ (base) is the following:
2HBr + Ba(OH)₂ → BaBr₂ + 2H₂O
According to the equation, 2 moles of HBr react with 1 mol Ba(OH)₂. Thus, at the equivalence point the moles of acid and base react completely:
2 moles HBr = 1 mol Ba(OH)₂
We can replace the moles by the product of the molar concentration (M) and volume (V):
2 x (M HBr) x (V HBr) = M Ba(OH)₂ x V Ba(OH)₂
Now, we introduce the data in the equation to calculate the volume in mL of Ba(OH)₂:
V Ba(OH)₂ = (2 x (M HBr) x (V HBr))/M Ba(OH)₂
= (2 x 0.311 M x 57.7 mL)/(0.304 M)
= 118.06 mL
Therefore, 118 mL of Ba(OH)₂ are needed.
In a solution, the solvent is
ANSWER:
A. always water
B. dissolved in the solute
C. present in larger amount than the solute is
D. always nonpolar
Answer:
dissolved in the solute
Explanation:
A solvent is the component that dissolves the solute and is present in larger amount. The type of solution is determined by the state of the solute and solvent. If you have NaCl, a solid, dissolved in water, a liquid, the type of solution is a solid/liquid solution.
43.0 mL of 1.49 M perchloric acid is added to 14.0 mL of calcium hydroxide, and the resulting solution is found to be acidic.
29.1 mL of 0.498 M barium hydroxide is required to reach neutrality.
What is the molarity of the original calcium hydroxide solution?
Answer:
2.29 M
Explanation:
Equation of the reaction;
Ca(OH)2(aq) + 2HClO4(aq) → 2H2O(l) + Ca(ClO4)2(aq)
Concentration of acid CA = 1.49 M
Concentration of base CB= ????
Volume of acid VA= 43.0 ml
Volume of base VB= 14.0 ml
Number of moles of acid NA = 2 moles
Number of moles of base NB = 1 mole
CAVA/CBVB = NA/NB
CAVANB =CBVBNA
CB= CAVANB/VBNA
CB= 1.49 × 43.0 × 1/14.0 × 2
CB= 2.29 M
Please please help help please
Which is NOT an indicator of a chemical change?
Answer:
The choice that is not an indicator of a chemical change is "State of matter changes". More common than not, chemical reactions produce energy in the form of light or heat. Along with energy, they also produce a new substance called the product that could be in any state of matter (solid, gas, or liquid).
Explanation:
A structural model of retinol is shown below. How many carbon atoms are in
retinol?
А. 14
В. 28
С. 20
D. 5
Answer:
The answer is 20
Explanation:
Assign oxidation state to each atom in each element ion or compound.
a. Ag
b. Ag+
c. CaF2
d. H2S
e.CO3
f. CrO4
g. Cl2
h. Fe
i. CuCl2
j. CH4
Answer:
a. [tex]Ag^0[/tex]
b. [tex]Ag^{+}[/tex]
c. [tex]Ca^{2+}F_2^-[/tex]
d. [tex]H_2^+S^{2-}[/tex]
e. [tex](C^{4+}O_3^{2-})^{-}[/tex]
f. [tex](Cr^{6+}O_4^{2-})^{2-}[/tex]
g. [tex]Cl_2^0[/tex]
h. [tex]Fe^0[/tex]
i. [tex]Cu^{2+}Cl_2^-[/tex]
j. [tex]C^{4-}H_4^+[/tex]
Explanation:
Hello there!
In this case, according to the concept of charge balance, which tell us that the overall charge is zero for any compound, except ions, it turns out possible to proceed as follows:
a. [tex]Ag^0[/tex]
b. [tex]Ag^{+}[/tex]
c. [tex]Ca^{2+}F_2^-[/tex]
d. [tex]H_2^+S^{2-}[/tex]
e. [tex](C^{4+}O_3^{2-})^{-}[/tex]
f. [tex](Cr^{6+}O_4^{2-})^{2-}[/tex]
g. [tex]Cl_2^0[/tex]
h. [tex]Fe^0[/tex]
i. [tex]Cu^{2+}Cl_2^-[/tex]
j. [tex]C^{4-}H_4^+[/tex]
Keep in mind lonely elements have 0 as their oxidation state.
Regards!
what does LPG stand for? mention one important source of LPG give sort answer
Answer:
liquefied petroleum gas
LPG is prepared by refining natural gas. it is made by refining crude oil or from extracted natural gas streams as they emerge from the ground.
Linoleic acid is a polyunsaturated fatty acid found, in ester form, in many fats and oils. Its doubly allylic hydrogens are particularly susceptible to abstraction by radicals, a process that can lead to the oxidative degradation of the fat or oil.
a. True
b. Flase
Answer:
True.
Explanation:
The information presented in the question above regarding linoleic acid is true. Linoleic acid is, in fact, found in many oils and fats in the ester form. In addition, linoleic acid is considered a polyunsaturated fatty acid, due to the presence of two unsaturations in its composition. Its chemical formula is CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7COOH and it is an essential fatty acid for the human body, as it is essential in the composition of arachidonic acid that is responsible for building muscle, managing body fat thermogenesis, and regulating core protein synthesis.
a. Draw 2,3-dichloro octane.
b. Write the lewis structure for H20 molecule.
Answer:
a.draw 2,3 dicholoro octane
Explanation:
mag isip ka kung paano hehe
One student measured a spectrum and observed double yellow lines. He claimed that it must be Sodium. Please justify if he is correct. Why
Answer:
We know that the student was measuring a spectrum, and observed double yellow lines, he claimed that it was Sodium.
There are multiple elements with double yellow lines, like Mercury or Sodium, but Sodium has two bright yellow lines, so it is usually identified by them.
So when we look at a spectrum and we see a strong doublet in the yellow range, we can easily assume that it is Sodium.
Here we assume that the student only saw the yellow doublet, this would imply that the yellow doublet is way more intense than the other lines, that can't be seen (while for other elements with double yellow lines, we should see other lines with similar intensity) then we can conclude that it is Sodium.
The student is correct.
How much carbon dioxide is released when it is fully combusted with 4Kg of ethanol with more than enough oxygen? How do you work it out?
Answer:
7.640 kg
Explanation:
Step 1: Write the balanced complete combustion equation for ethanol
C₂H₆O + 3 O₂ ⇒ 2 CO₂ + 3 H₂O
Step 2: Calculate the moles corresponding to 4 kg (4000 g) of C₂H₆O
The molar mass of C₂H₆O is 46.07 g/mol.
4000 g × 1 mol/46.07 g = 86.82 mol
Step 3: Calculate the moles of CO₂ released
86.82 mol C₂H₆O × 2 mol CO₂/1 mol C₂H₆O = 173.6 mol CO₂
Step 4: Calculate the mass corresponding to 173.6 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
173.6 mol × 44.01 g/mol = 7640 g = 7.640 kg
Chloride ion is a strong nucleophile and bromide is a good leaving group. The major product of treating (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) is _________. (1S,2R)-1-chloro-2-bromobutane cis-2-butene (1R,2S)-1-chloro-2-bromobutane (S)-2-chlorobutane trans-2-butene (R)-2-chlorobutane
Answer:
Chloride ion is a strong nucleophile and bromide is a good leaving group. The major product of treating (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) is _________. (1S,2R)-1-chloro-2-bromobutane cis-2-butene (1R,2S)-1-chloro-2-bromobutane (S)-2-chlorobutane trans-2-butene (R)-2-chlorobutane
Explanation:
The reaction of (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) forms the following product:
The answer is (R)-2-chlorobutane.
The reaction take splace through [tex]S_{N} _2[/tex] mechansim and inversion in configuration happens.
how to separate and purify the Flufenamic acid from the aqueous layer
Answer:
Explanation:
H