a. Yes, the sampling distribution of the sample mean is a normal distribution with a mean of $52000 and a standard error of $\frac{4800}{\sqrt{17}}$.
b. Yes, the sampling distribution of the sample mean is a normal distribution with a mean of $52000 and a standard error of $\frac{4800}{\sqrt{51}}$.
c. You would need to know that the population distribution of X, teacher salaries, is normal in order to answer the questions regarding any sample size.
d. Assuming a sample size of 51, the probability that the sampling error is within $1000 is approximately 0.84 or 84%.
e. Assuming a sample size of 51, the 90th percentile for the average teacher's salary is approximately $54488.
f. Assuming that teacher's salaries are normally distributed, the 90th percentile for an individual teacher's salary is approximately $56396.
Learn more about mean:
https://brainly.com/question/20118982
#SPJ11
If P = 2y² + 4xy + 4
Q = − 3y² + 7 - 3xy
R=- 3xy + 8
Find P+Q=R.
Answer:
P = [tex]2y^{2}[/tex] + 4xy +4
Q = [tex]-3y^{2}[/tex] + 7 -3xy
R = -3xy +8
Step-by-step explanation:
How many sides has a polygon if the sum of its
interior angles is 1440⁰
Answer:
10 sides
Step-by-step explanation:
We can use the formula for the sum of the interior angles of a polygon to solve this problem. The formula for the sum of the interior angles of a polygon with n sides, where S is the sum of the interior angles, and n is the number of sides of the polygon is:
S = (n - 2) x 180 degrees
If the sum of the interior angles is 1440 degrees, we can set this equal to the formula and solve for n:
1440 = (n - 2) x 180
Dividing both sides by 180, we get:
8 = n - 2
Adding 2 to both sides, we get:
n = 10
Therefore, a polygon with a sum of interior angles of 1440 degrees has 10 sides.
I need help please show your work
Answer:
The 2nd equation is false.
Step-by-step explanation:
You don't even have to solve. DE is not 58, it's 40.
The 2nd equation is false.
I need help somebody please
Answer: 54 square in
Step-by-step explanation:
I don't know if this is the same person but I answered this same question just now please check my profile or comment if you want the explanation
Estimating the within-group variance. Refer to the previous exercise. Here are the cell standard deviations and sample sizes for cooking enjoyment: Find the pooled estimate of the standard deviation for these data. Use the rule for examining standard deviations in ANOVA from Chapter 12 (page 560) to determine if it is reasonable to use a pooled standard deviation for the analysis of these data.
In the following question, among the given options, the statement is said to be, The pooled estimate of the standard deviation for the data given is √(54.14^2/10 + 24.26^2/10) = 22.74.
According to the rule for examining standard deviations in ANOVA from Chapter 12 (page 560), the within-group standard deviation should be no more than twice the size of the between-group standard deviation. In this case, the between-group standard deviation is 44.85 and the within-group standard deviation (22.74) is less than twice the size of the between-group standard deviation, so it is reasonable to use a pooled standard deviation for the analysis of these data.
For more such questions on deviation
https://brainly.com/question/475676
#SPJ11
Determine whether each of the following conditional statements is true or false. (a) If 10<7,10<7, then 3=43=4. (c) If 10<7,10<7, then 3+5=83+5=8. (b) If 7<10,7<10, then 3=43=4. (d) I…Determine whether each of the following conditional statements is true or false.(a) If 10<7,10<7, then 3=43=4.(c) If 10<7,10<7, then 3+5=83+5=8.(b) If 7<10,7<10, then 3=43=4.(d) If 7<10,7<10, then 3+5=83+5=8.
The given conditional statements are false, true, false, True.
They are determined by following:
(a) False - The statement "If 10<7,10<7, then 3=43=4" is false, since 10 is not less than 7.
(b) True - The statement "If 7<10,7<10, then 3=43=4" is true, since 7 is less than 10.
(c) False - The statement "If 10<7,10<7, then 3+5=83+5=8" is false, since 10 is not less than 7.
(d) True - The statement "If 7<10,7<10, then 3+5=83+5=8" is true, since 7 is less than 10.
Conditional statements are used in mathematics and logic to express relationships between events and conditions. These statements consist of an "if-then" structure, where the "if" clause is the antecedent or condition, and the "then" clause is the consequent or outcome.
The truth value of the conditional statement depends on whether the condition is true or false. If the condition is true, then the outcome is also true, and the statement is considered true.
If the condition is false, then the outcome may be true or false, and the statement is considered false. Conditional statements are widely used in mathematical proofs, programming, and reasoning to establish logical connections between different events and conditions.
To learn more about the 'conditional statement':
https://brainly.com/question/11073037
#SPJ11
Square ABCD is similar to square EFGH. The ratio of AB:EF is 1:4. The area of square EFGH is 14,400ft ft squared by 2. What is AB?
The Length of AB in square ABCD is 30 feet.
Since the squares ABCD and EFGH are similar, their corresponding sides are proportional, so we can set up the following relation:
AB/EF = 1/4
We can also use the fact that the ratio of the areas of two similar figures is equal to the square of the ratio of their corresponding sides. Therefore,
AB²/EF² = (Area of square ABCD)/(Area of square EFGH)
Substituting the given values:
AB²/EF² = (Area of square ABCD)/(14400)
Since the areas of squares are proportional to the square of their sides, we can write,
Area of square ABCD/Area of square EFGH = (AB/EF)²
Substituting this into the above equation and solving for AB, we get,
AB²/EF² = (AB/EF)²
AB² = (AB/EF)² * EF²
AB² = (1/4)² * 14400
AB² = 900
AB = 30 feet
Therefore, the length of the side AB of square ABCD is 30 feet.
Learn more about squares on
https://brainly.com/question/28776767?referrer=searchResults
#SPJ4
A barista mixes 12lb of his secret-formula coffee beans with 15lb of another bean that sells for $18 per lb. The resulting mix costs $20 per lb. How much do the barista's secret-formula beans cost per pound?
Answer: $22.50
Step-by-step explanation:
Let x be the cost per pound of the secret-formula coffee beans.
The total cost of the secret-formula beans is 12x dollars.
The total cost of the other beans is 15 × 18 = 270 dollars.
The total cost of the mix is (12 + 15) × 20 = 540 dollars.
Since the barista mixed 12 pounds of the secret-formula beans with 15 pounds of the other beans, the total weight of the mix is 12 + 15 = 27 pounds.
We can set up an equation based on the total cost of the mix:
12x + 270 = 540
Subtracting 270 from both sides:
12x = 270
Dividing both sides by 12:
x = 22.5
Therefore, the barista's secret-formula coffee beans cost $22.50 per pound.
The ordering and transportation cost €C for components used in manufacturing process is approximated by the function below, where C is measured in thousands of dollars and is the order size in hundreds_ C(x) = s(x x+3 (a) Verify that C(3) C(6) _ c(3) (b) According to Rolle's Theorem, the rate of change of the cost must be for some order size in the interval (3 answer to the nearest whole number:) components Find that order size (Round vour Need Help? Ialkto Tutor
The value of x in the interval (3 < x < 6) for which the rate of change of the cost is zero.
(a) To verify that C(3) < C(6), we have to find the values of C(3) and C(6).The given function is C(x) = s(x x+3)The order size is measured in hundreds. So, when x = 3, the order size is 300 and when x = 6, the order size is 600.Therefore, C(3) = s(3 x 3+3) = s(18) and C(6) = s(6 x 6+3) = s(39)Now, as s(x) > 0, we can see that C(6) > C(3). Hence, C(3) < C(6).(b) According to Rolle's Theorem, the rate of change of the cost must be 0 for some order size in the interval (3 < x < 6).We know that the function is continuous and differentiable in the interval (3 < x < 6). Now, the rate of change of the cost is given by the derivative of the function C(x) with respect to x.C(x) = s(x x+3)C'(x) = s[1 + (x + 3) . 1] = s(1 + x + 3) = s(x + 4)As per Rolle's Theorem, there must exist a value of x in the interval (3 < x < 6) such that C'(x) = 0.So, s(x + 4) = 0x + 4 = 0x = -4Thus, the order size is -4 x 100 = -400. However, this is an absurd answer as the order size cannot be negative. Therefore, there is no value of x in the interval (3 < x < 6) for which the rate of change of the cost is zero.
Learn more about Interval
brainly.com/question/4184136
#SPJ11
identify the symbols used for each of the following: (a) sample standard deviation; (b) population standard deviation; (c) sample variance; (d) population variance. if sample data consist of weights measured in grams, what units are used for these statistics and parameters?
(a) Symbol used for sample standard deviation is “s” or “σˆ” (s-hat). The unit for the sample standard deviation is grams, as it is calculated from a sample.
(b) Symbol used for population standard deviation is “σ” (sigma).The unit for the population standard deviation is also grams, as it is calculated for the entire population.
The population standard deviation is a parameter, which is a fixed value calculated from every individual in the population.
A sample standard deviation is a statistic. This means that it is calculated from only some of the individuals in a population. Since the sample standard deviation depends upon the sample, it has greater variability.
(c) Symbol used for sample variance is “s²” or “σ²ˆ” (sigma-hat squared). The unit for the sample variance is grams², as it is calculated from a sample.
(d) Symbol used for population variance is “σ²” (sigma squared). The unit for the population variance is also grams², as it is calculated for the entire population.
Population variance refers to the value of variance that is calculated from population data, and sample variance is the variance calculated from sample data.
Due to this value of denominator in the formula for variance in case of sample data is ‘n-1’, and it is ‘n’ for population data. As a result both variance and standard deviation derived from sample data are more than those found out from population data.
To learn more about sample and population refer :
https://brainly.com/question/9295991
#SPJ11
A production facility contains two machines that are used to rework items that are initially defective. Let X be the number of hours that the first machine is in use, and let Ybe the number of hours that the second machine is in use, on a randomly chosen day. Assume that X and Y have joint probability density function given by 3. f(x) = { 3/2(x^2 +y^2) 0
Answer:
Step-by-step explanation:
a bin can hold 28 pounds. each toy car weighs 7 ounces. how many toy cars can the bin hold? (2 points) 64 toy cars 72 toy cars 88 toy cars 92 toy cars
A bin can hold 28 pounds. each toy car weighs 7 ounces., so the bin can hold 64 toy cars.
How to determine the number of toy carsTo determine the number of toy cars the bin can hold, we must first convert the weight limit of the bin and the weight of the toy cars to a uniform unit of measure.
We'll then divide the weight limit of the bin by the weight of one toy car. After that, we'll multiply the resulting value by the number of ounces in one pound (16).
Here's how to solve the problem:
1 pound = 16 ounces
Therefore, a bin that can hold 28 pounds can hold:28 × 16 = 448 Ounces
The weight of one toy car is 7 ounces.
Divide the weight limit of the bin (448 ounces) by the weight of one toy car (7 ounces):
448 ÷ 7 = 64
Therefore, the bin can hold 64 toy cars.
Learn more about weight limit at
https://brainly.com/question/14375094
#SPJ11
give three examples of contracts you are currently a part of or have been a part of in the past. identify whether they are unilateral or bilateral; express or implied; executed or executory.
The three examples of contracts are:
Employment ContractRental AgreementPurchase AgreementContracts are legal agreements between two or more parties that involve the exchange of goods, services, or money. They can be classified as unilateral or bilateral, express or implied, executed or executory.
Here are three examples of contracts that a person can be a part of:
Employment Contract: An employment contract is a bilateral, express contract between an employer and an employee. It defines the terms and conditions of employment, including salary, benefits, and job responsibilities. An employment contract is executed when both parties have agreed to the terms of the agreement and have signed the contract.Rental Agreement: A rental agreement is a unilateral or bilateral, express or implied, executory contract between a landlord and a tenant. It outlines the terms of the lease, such as the duration of the tenancy, rent, security deposit, and maintenance responsibilities. A rental agreement can be either oral or written. It is considered executed when the tenant moves in and starts paying rent.Purchase Agreement: A purchase agreement is a bilateral, express contract between a buyer and a seller. It outlines the terms of the sale, including the price, payment terms, delivery method, and warranty. A purchase agreement is executed when the buyer pays the agreed-upon amount and the seller delivers the product or service.To know more about the "contracts":https://brainly.com/question/5746834
#SPJ11
60 identical machines in a factory pack 150 crates of limes per day
between them.
a) Write the ratio of the number of machines to the number of crates
packed per day in the form 1: n.
b) How many crates of limes would 70 of these machines pack per day?
Give any decimals in your answers to 1 d.p.
a) To write the ratio of the number of machines to the number of crates packed per day in the form 1: n, we need to find the number of crates packed per day per machine. We can do this by dividing the total number of crates packed per day by the number of machines:
Number of crates packed per day per machine = 150 crates/day ÷ 60 machines = 2.5 crates/machine/day
Therefore, the ratio of the number of machines to the number of crates packed per day in the form 1: n is 1:2.5 or 2:5.
b) To find out how many crates of limes 70 of these machines would pack per day, we can use the ratio from part (a) to set up a proportion:
1 machine : 2.5 crates/day = 70 machines : x crates/day
Solving for x, we get:
x = (70 machines × 2.5 crates/day) / 1 machine = 175 crates/day
Therefore, 70 of these machines would pack 175 crates of limes per day.
Step-by-step explanation:
a) The ratio of the number of machines to the number of crates packed per day can be written as:
60 : 150
To simplify this ratio, we can divide both sides by 10:
6 : 15
Finally, we can divide both sides by 3 to get the ratio in the form 1 : n:
1 : 2.5
Therefore, the ratio of the number of machines to the number of crates packed per day is 1 : 2.5.
b) If 60 machines can pack 150 crates per day, then one machine can pack:
150/60 = 2.5 crates per day
So, 70 machines can pack:
70 × 2.5 = 175 crates per day
Therefore, 70 machines can pack 175 crates of limes per day.
1. The line segment AB has endpoints A(-5, 3) and B(-1,-5). Find the point that partitions the line segment in
a ratio of 1:3
Answer:
To find the point that partitions the line segment AB in a ratio of 1:3, we can use the following formula:
P = (3B + 1A) / 4
where P is the point that partitions the line segment in a ratio of 1:3, A and B are the endpoints of the line segment, and the coefficients 3 and 1 represent the ratio of the segment we are dividing.
Substituting the values, we get:
P = (3*(-1, -5) + 1*(-5, 3)) / 4
P = (-3, -7)
Therefore, the point that partitions the line segment AB in a ratio of 1:3 is (-3, -7).
Step-by-step explanation:
The length of a rectangular room is 9 feet longer than twice the width. If the room's perimeter is 150 feet, what are the room's dimensions?
Answer:
Length = 53 feet
Width = 22 feet
Step-by-step explanation:
Perimeter = 2(length + width)
Then:
a = 2w + 9 Ec. 1
150 = 2(a + w) Ec. 2
a = length
w = width
From Eq. 1:
a - 9 = 2w Eq. 3
From Eq. 2:
150 = 2*a + 2*w
150 = 2a + 2w
150 - 2a = 2w Eq. 4
Equalizing Eq. 3 and Eq. 4
a - 9 = 150 - 2a
a + 2a = 150 + 9
3a = 159
a = 159/3
a = 53
From Eq. 1:
a = 2w + 9
53 = 2w + 9
53 - 9 = 2w
44 = 2w
44/2 = w
w = 22
Check:
From Eq. 2
150 = 2(a+w)
150 = 2(53+22)
150 = 2*75
A cat gave birth to 333 kittens who each had a different mass between 147147147 and 159\,\text{g}159g159, start text, g, end text. Then, the cat gave birth to a 4^{\text{th}}4 th 4, start superscript, start text, t, h, end text, end superscript kitten with a mass of 57\,\text{g}57g57, start text, g, end text.
The answer to the question is 334 kittens.
Given that a cat gave birth to 333 kittens who each had a different mass between 147 g and 159 g. Then the cat gave birth to a 4th kitten with a mass of 57 g.
First of all, we will find out the range of the mass of kittens. The range is given as follows;Range = Maximum Value - Minimum Value Range = 159 g - 147 g Range = 12 g
Now, the cat gave birth to a 4th kitten with a mass of 57 g, we can say that the minimum value of kitten's mass is 57 g.So, the maximum value of kitten's mass can be calculated as follows;Maximum Value = 57 g + Range Maximum Value = 57 g + 12 g Maximum Value = 69 g Now, we can say that all kittens with a mass of 69 g or less would be born because the minimum value of kitten's mass is 57 g and the range of mass is 12 g.
Therefore, the answer to the question is 334 kittens.
Learn more about Range
brainly.com/question/28135761
#SPJ11
Aaron sampled 101 students and calculated an average of 6.5 hours of sleep each night with a standard deviation of 2.14. Using a 96% confidence level, he also found that t* = 2.081.confidence intervat = x±s/√n A 96% confidence interval calculates that the average number of hours of sleep for working college students is between __________.
The average number of hours of sleep for working college students is between 6.28 and 6.72 hours of sleep each night
According to the given data,
Sample size n = 101
Sample mean x = 6.5
Standard deviation s = 2.14
Level of confidence C = 96%
Using a 96% confidence level, the value of t* for 100 degrees of freedom is 2.081, as given in the question.
Now, the formula for the confidence interval is:x ± (t* × s/√n)Here, x = 6.5, s = 2.14, n = 101, and t* = 2.081
Substituting the values in the above formula, we get:
Lower limit = x - (t* × s/√n) = 6.5 - (2.081 × 2.14/√101) = 6.28
Upper limit = x + (t* × s/√n) = 6.5 + (2.081 × 2.14/√101) = 6.72
Therefore, the 96% confidence interval for the average number of hours of sleep for working college students is between 6.28 and 6.72 hours of sleep each night.
You can learn more about the average numbers at: brainly.com/question/16956746
#SPJ11
for h(x) = 4x-1, find h(0) and h(2)
Answer:
- 1 and 7
Step-by-step explanation:
to find h(0) substitute x = 0 into h(x)
h(0) = 4(0) - 1 = 0 - 1 = - 1
to find h2) substitute x = 2 into h(x)
h(2) = 4(2) - 1 = 8 - 1 = 7
what is (2x+45)° x° = what?
Answer:
x = 45.
Step-by-step explanation:
Given a straight line with the equation.
First collect like terms:
2x + x = 180 - 45
Then calculate:
3x = 135
Finally after dividing both sides by 3:
x = 45
Anna wants to make 30 mL of a 60 percent salt solution by mixing togethera 72 percent salt solution and a 54 percent salt solution. How much of each solution should dhe use
Anna should use 10 mL of the 72% salt solution and 20 mL of the 54% salt solution to make 30 mL of a 60% salt solution
Let's assume that Anna will use x mL of the 72% salt solution, and therefore she will use (30 - x) mL of the 54% salt solution (since the total volume is 30 mL).
To find out how much of each solution Anna should use, we can set up an equation based on the amount of salt in each solution.
The amount of salt in x mL of 72% salt solution is
= 0.72x
The amount of salt in (30 - x) mL of 54% salt solution is
= 0.54(30 - x)
To make a 60% salt solution, the total amount of salt in the final solution should be
0.6(30) = 18
So we can set up an equation
0.72x + 0.54(30 - x) = 1
Simplifying the equation
0.72x + 16.2 - 0.54x = 18
0.18x = 1.8
x = 10 ml
Learn more about equation here
brainly.com/question/17156168
#SPJ4
determine whether the set S spans R2. If the set does not span R2, then give a geometric description of the subspace that it does span. a, S = {(1, −1), (2, 1)} b, S = {(1, 1)} c, S = {(0, 2), (1, 4)}
a. S = {(1, -1), (2, 1)}Let's begin by calculating the determinant of the matrix composed of the vectors of S, and checking if it is equal to 0. Because the two vectors are not colinear, they should span R2.|1 -1||2 1| determinant is not 0, therefore S spans R2. No geometric description is required for this example.
b. S = {(1, 1)} The set S contains one vector. A set containing only one vector cannot span a plane because it only spans a line. Therefore, S does not span R2. Geometric description: S spans a line that passes through the origin (0, 0) and the point (1, 1).c. S = {(0, 2), (1, 4)} Let's again begin by calculating the determinant of the matrix composed of the vectors of S, and checking if it is equal to 0.|0 2||1 4| determinant is 0, thus S does not span R2. In this scenario, S only spans the line that contains both vectors, which is the line with the equation y = 2x.
Geometric description: S spans a line that passes through the origin (0, 0) and the point (1, 2).
Learn more about geometric description:
https://brainly.com/question/28159445
#SPJ11
solve the proportion 7/11=18/x+1
Solve the equation [tex]7/11=18/x+1[/tex] we find the solution is [tex]x = 27.2857[/tex]
What is a formula or equation?Your example is an equation since an equation is any statement with an equals sign. Equations are frequently utilized for mathematical equations since mathematicians like equal signs. A set of instructions for achieving a certain result is called an equation.
A formula is it an expression?A number, a constant, or a mix of numbers, variables, and operation symbols make up an expression. Two expressions joined by such an assignment operator form an equation.
we can cross-multiply,
[tex]7(x+1) = 11(18)[/tex]
Expanding the left side,
[tex]7x + 7 = 198[/tex]
Subtracting [tex]7[/tex] from both sides,
[tex]7x = 191[/tex]
Dividing both sides by [tex]7[/tex],
[tex]x = 191/7[/tex]
Therefore, the solution to the proportion is
[tex]x = 27.2857[/tex]
To know more about equation visit:
https://brainly.com/question/10413253
#SPJ1
please help i have been trying to get an answer for 5+ hours
How is the quotient of 556 and 16 determined using an area model?
Enter your answers in the boxes to complete the equations. Your final answer should be a mixed number in simplest form.
Answer:
To use an area model to determine the quotient of 556 and 16, we can divide a rectangle of area 556 into 16 equal parts. Each part will have an area of 556/16.
We can start by dividing 556 into 16 groups of 10 (160), and then into 16 groups of 3 (48). That leaves us with a remainder of 4.
So we have:
556 = 16 x 34 + 48 + 4
This shows that 556 can be written as 16 times some whole number (34) plus a remainder of 48 + 4/16.
Simplifying the remainder, we have:
48 + 4/16 = 48 + 1/4 = 48.25
Therefore, the quotient of 556 and 16 is:
556/16 = 34 1/4
The quotient of 556 and 16 using an area model can be determined by producing a rectangle with the total area of 556 and one side of 16. The length of the other side will be the quotient. In this case, the quotient is 34 3/4.
Explanation:When asked to determine the quotient of 556 and 16 using the area model, one way to think of this is making a rectangle. The total area is 556 and one side is 16. The length of the other side will be the quotient.
Start by first estimating how many times 16 could fit into 556. Let's take 30 as an estimate, because 30*16 = 480, which is relatively close to 556. Draw a rectangle with the width of 16 and the length of 30.
Find the difference between the rectangle's area and 556. So, 556 - 480 = 76. Now, 76 is our remaining area to fill. 16 goes into 76 four more times, adding up to 64.
There is still a leftover area, which is 76-64 = 12. This is smaller than our width of 16. So, your final answer is 34 12/16 or 34 3/4 in simplest form.
Learn more about Area Model here:https://brainly.com/question/18472914
#SPJ2
In a candy factory, each bag of candy contains 300 pieces. The bag can be off by 10 pieces.
Write an absolute value inequality that displays the possible number of candy pieces that a bag contains.
Answer:
[tex] |x - 300| \leqslant 10[/tex]
Solve the following formula for t
S=12(V0+V1)t
Answer:
[tex]{ \rm{s = 12( v_{0} + v_{1} )t}} \\ \\{ \boxed { \rm{t = \frac{s}{12(v_{0} + v_{1})} \: \: }}}[/tex]
find the number of outcomes in the complement of the given event. out of 344 high school students in their senior year, 175 are left-handed.
There are 169 outcomes in the complement of the given event.
To find the number of outcomes in the complement of the given event, which is that out of 344 high school students in their senior year, 175 are left-handed, you need to follow a few steps. So, let's get started. To find the number of outcomes in the complement of the given event, you will first find the total number of students that are right-handed, which can be found by subtracting the number of left-handed students from the total number of students:344 - 175 = 169Therefore, there are 169 right-handed students.
Next, to find the number of outcomes in the complement of the given event, you will need to subtract the number of outcomes in the given event from the total number of possible outcomes. Since the number of possible outcomes is equal to the total number of students, the number of outcomes in the complement of the given event can be found by subtracting the number of left-handed students from the total number of students:344 - 175 = 169 Therefore, there are 169 outcomes in the complement of the given event.
Learn more about Complement
brainly.com/question/13058328
#SPJ11
Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order.
y dA, D is bounded by y = x − 6; x = y2
D
The value of the double integral using the easier order, ydA bounded by y = x − 6; x = y² is 125/12.
The double integral, indicated by ', is mostly used to calculate the surface area of a two-dimensional figure. By using double integration, we may quickly determine the area of a rectangular region. If we understand simple integration, we can easily tackle double integration difficulties. Hence, first and foremost, we will go over some fundamental integration guidelines.
Given, the double integral ∫∫yA and the region y = x-6 and x = y²
y = x-6
x = y²
y² = y +6
y² - y - 6 = 0
y² - 3y +2y - 6 = 0
(y-3) (y+2) = 0
y = 3 and y = -2
[tex]\int\int\limits_\triangle {y} \, dA\\ \\[/tex]
= [tex]\int\limits^3_2 {y(y+6-y^2)} \, dx \\\\\int\limits^3_2 {(y^2+6y-y^3)} \, dx \\\\(\frac{y^3}{3} + 3y^2-\frac{y^4}{4} )_-_2^3\\\\\frac{63}{4} -\frac{16}{3} \\\\\frac{125}{12}[/tex]
The value for the double integral is 125/12.
Integration is an important aspect of calculus, and there are many different forms of integrations, such as basic integration, double integration, and triple integration. We often utilise integral calculus to determine the area and volume on a very big scale that simple formulae or calculations cannot.
Learn more about Double Integral:
https://brainly.com/question/19053586
#SPJ4
Jen’s assignment is to read at least 85 pages of a novel. Jen has read 31 pages. How many pages p does Jen have left to read? Write an inequality that represents this situation. Then solve the inequality
Jen has 54 pages left to read to meet her assignment requirement.
The inequality that represents this situation is p ≥ 85 - 31
To find how many pages Jen has left to read, we can subtract the number of pages she has already read from the minimum number of pages she needs to read.
The minimum number of pages Jen needs to read is 85, and she has already read 31 pages. So, the number of pages she has left to read, p, can be found by:
p = 85 - 31
p = 54
Therefore, Jen has 54 pages left to read.
To represent this situation with an inequality, we can use:
p ≥ 85 - 31
This inequality states that the number of pages Jen still needs to read, p, must be greater than or equal to the difference between the minimum number of pages she needs to read (85) and the number of pages she has already read (31).
Solving for p:
p ≥ 85 - 31
p ≥ 54
This means that Jen must read at least 54 more pages to meet her assignment requirement.
To learn more about inequality Click here:
brainly.com/question/30228778
#SPJ4
If the GM between √2 and 2√2 is a find the value of a.
Answer:
If the GM between √2 and 2√2 is a find the value of a.
Step-by-step explanation:
To find the geometric mean between two numbers, we simply take the square root of their product.
In this case, we want to find the geometric mean between √2 and 2√2.
Their product is:
√2 * 2√2 = 2√4 = 2*2 = 4
So, the geometric mean between √2 and 2√2 is the square root of 4, which is:
√4 = 2
Therefore, the value of a is 2.