Sandy used these rules to write a 6-digit number.
• 3 in the tens place
• 6 in the hundreds place
1 in the thousands place
• 8 in the ten thousands place
4 in the ones place
• 2 in the hundred thousands place
.
What number did she write?
A. 281,634
B. 361.842
C. 681,234
D. 864,321

Answers

Answer 1

9514 1404 393

Answer:

  A. 281,634

Step-by-step explanation:

You can identify the number after the first two "rules".

Choices A and C have 3 in the tens place.

Choice A has 6 in the hundreds place.

Sandy Used These Rules To Write A 6-digit Number. 3 In The Tens Place 6 In The Hundreds Place1 In The

Related Questions

If per unit variable cost of a product is Rs.8 and fixed cost is Rs 5000 and it is sold for Rs 15 per unit, profit in 1000 units is.......
a.. rs 7000
b. rs 2000
c. rs 25000
d. rs 0​

Answers

Answer:

a.. rs 7000

Because 15×1000=15000 it is SP when selling 1000units in the rate of Rs 15/unit& 8×1000=8000 this is cp when buying 1000 units in the rate of Rs 8/unit.

So,by formula of profit,

Rs (15000-8000)=Rs7000

WORTH 100 POINTS!
The function h(x) is quadratic and h(3) = h(-10) = 0. Which could represent h(x)?

1) h(x) = x2 - 13x - 30
2) h(x) = x2 - 7x - 30
3) h(x) = 2x2 + 26x - 60
4) h(x) = 2x2 + 14x - 60

Answers

Answer:

h(x) = 2x^2 +14x -60

Step-by-step explanation:

A quadratic is of the form

h(x) = ax^2 + bx +c

h(3) = h(-10) = 0

This tells us that the zeros are at x=3 and x = -10

We can write the equation in the form

h(x) = a( x-z1)(x-z2) where z1 and z2 are the zeros

h(x) = a(x-3) (x- -10)

h(x) = a(x-3) (x+10)

FOIL

h(x) = a( x^2 -3x+10x-30)

h(x) = a(x^2 +7x -30)

Let a = 2

h(x) = 2x^2 +14x -60

It means

zeros are 3 and -10

Form equation

y=x²-(3-10)x+(-10)(3)y=x²+7x-30

Multi ply by 2

y=2x²+14x-60

Option D

Illustrate the 7th pattern of the sequence of square numbers. ​

Answers

1,4,9,16,25,36,49,........

7th pattern =49.....

Answer:

1, 4, 9, 16, 25, 36, 49…................the 7 the pattern is 49

We are given a weighted coin (with one side heads, one side tails), and we want to estimate the unknown probability pp that it will land heads. We flip the coin 1000 times and it happens to land heads 406 times. Give answers in decimal form, rounded to four decimal places (or more). We estimate the chance this coin will land on heads to

Answers

Answer:

0.4060

Step-by-step explanation:

To calculate the sample proportion, phat, we take the ratio of the number of preferred outcome to the total number of trials ;

Phat = number of times coin lands on head (preferred outcome), x / total number of trials (total coin flips), n

x = 406

n = 1000

Phat = x / n = 406/ 1000 = 0.4060

The estimate of the chance that this coin will land on heads is 0.406

Probability is the likelihood or chance that an event will occur.

Probability = Expected outcome/Total outcome

If a coin is flipped 1000 times, the total outcomes will 1000

If it landed on the head 406 times, the expected outcome will be 406.

Pr(the coin lands on the head) = 406/1000

Pr(the coin lands on the head) = 0.406

Hence the estimate of the chance that this coin will land on heads is 0.406

Learn more on probability here: https://brainly.com/question/14192140

10. (30-i)-(18+6i)+30i

Answers

Answer:

[tex]12+23i[/tex]

Step-by-step explanation:

[tex](30−i)−(18+6i)+30i[/tex]

[tex]30−i−18−6i+30i[/tex]

[tex]12−i−6i+30i[/tex]

[tex]12−7i+30i[/tex]

[tex]12+23i[/tex]

Hope it is helpful....

A.) V’ (-3,-5), K’ (-1,-2), B’ (3,-1), Z’(2,-5)

B.) V’(-4, 1), K’(-2, 4), B(2,5) Z’ (1, 1)

C.) V’ (-3,-4), K’(-1,-1) B’ (3,0), Z’(2,-4)

D.) V’ (-1,0), K’ (1, 3), B’(5,4), Z’(4,0)

Answers

Answer:

C

Step-by-step explanation:

this is a "translation" - a shift of the object without changing its shadow and size.

this shift is described by a "vector" - in 2D space by the x and y distances to move.

we have here (1, 0) - so, we move every point one unit to the right (positive x direction) and 0 units up/down.

therefore, C is the right answer (the x coordinates of the points are increased by 1, the y coordinate are unchanged).

Subtract the integers. 22−​(−10​)​

Answers

Answer:

32

Step-by-step explanation:

Step 1: change 22 - ( -  10) into 22 + 10

Step 2: solve it like normal

Again need help with these ones I don’t understand and they have to show work

Answers

Let’s rewrite the given equation by adding 81 to both sides:
[tex]x^2 - 18x + 81= 65 + 81[/tex]
[tex](x - 9)^2 = 146[/tex]
Taking the square root of both sides, we get
[tex]x - 9 = \pm\sqrt{146}[/tex]
or
[tex]x = 9 \pm \sqrt{146} = 9 \pm 12.1 = 21.1\:\text{and}\:-3.1[/tex]

Use the information below to complete the problem: p(x)=1/x+1 and q(x)=1/x-1 Perform the operation and show that it results in another rational expression. p(x) + q(x)

Answers

Answer:

hope u will understand...if u like this answer plz mark as brainlist

Answer:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

Step-by-step explanation:

We are given the two functions:

[tex]\displaystyle p(x) = \frac{1}{x+1}\text{ and } q(x) = \frac{1}{x-1}[/tex]

And we want to perform the operation:

[tex]\displaystyle p(x) + q(x)[/tex]

And show that the result is another rational expression.

Add:

[tex]\displaystyle = \frac{1}{x+1} + \frac{1}{x-1}[/tex]

To combine the fractions, we will need a common denominator. So, we can multiply the first fraction by (x - 1) and the second by (x + 1):

[tex]\displaystyle = \frac{1}{x+1}\left(\frac{x-1}{x-1}\right) + \frac{1}{x-1}\left(\frac{x+1}{x+1}\right)[/tex]

Simplify:

[tex]=\displaystyle \frac{x-1}{(x+1)(x-1)} + \frac{x+1}{(x+1)(x-1)}[/tex]

Add:

[tex]\displaystyle = \frac{(x-1)+(x+1)}{(x+1)(x-1)}[/tex]

Simplify. Hence:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

help with 1 b please. using ln.​

Answers

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

General Formulas and Concepts:

Pre-Algebra

Equality Properties

Algebra I

Terms/CoefficientsFactoringExponential Rule [Root Rewrite]:                                                                 [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Algebra II

Natural logarithms ln and Euler's number eLogarithmic Property [Exponential]:                                                             [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]

Calculus

Differentiation

DerivativesDerivative NotationImplicit Differentiation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿf’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

*Note:

You can simply just use the Quotient and Chain Rule to find the derivative instead of using ln.

Step 1: Define

Identify

[tex]\displaystyle y = \sqrt{\frac{x}{2 - x}}[/tex]

Step 2: Rewrite

[Function] Exponential Rule [Root Rewrite]:                                               [tex]\displaystyle y = \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}}[/tex][Equality Property] ln both sides:                                                                 [tex]\displaystyle lny = ln \bigg[ \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}} \bigg][/tex]Logarithmic Property [Exponential]:                                                             [tex]\displaystyle lny = \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg)[/tex]

Step 3: Differentiate

Implicit Differentiation:                                                                                 [tex]\displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg) \bigg][/tex]Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \frac{dy}{dx} \bigg[ \frac{x}{2 - x} \bigg][/tex]Chain Rule [Basic Power Rule]:                                                                     [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \bigg[ \frac{2}{(x - 2)^2} \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{-1}{x(x - 2)}[/tex]Isolate  [tex]\displaystyle \frac{dy}{dx}[/tex]:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-y}{x(x - 2)}[/tex]Substitute in y [Derivative]:                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-\sqrt{\frac{x}{2 - x}}}{x(x - 2)}[/tex]Rationalize:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-\frac{x}{2 - x}}{x(x - 2)\sqrt{\frac{x}{2 - x}}}[/tex]Rewrite:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{x(x - 2)(2 - x)\sqrt{\frac{x}{2 - x}}}[/tex]Factor:                                                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{-x(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

why infinity ( ) can’t be included in an inequality?

Answers

Answer:

Step-by-step explanation:

Because then the value on the other side will be unbounded by the infinity sign while expressing the answers on a number line.

please click thanks and mark brainliest if you like :)

Addition prop of equality
subtraction prop of quality
multiplication prop of equality
Division prop of equality
simplifying
distrib prop

Answers

1 multiplication prop
2simplifying
3 Addition prop
4 simplifying

Please answer this question

Answers

The answer is C. 4.1¯6

Find the multiplicative inverse of: -3/7 X -4/9

Answers

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

[tex]\frac{21}{4}[/tex]

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

[tex]\boxed{\text{Calculating the answer...}}\\\\---------------\\\rightarrow -\frac{3}{7} * -\frac{4}{9}\\\\\rightarrow \frac{12}{63} \\\\\rightarrow \frac{12/3}{63/3}\\\\\rightarrow\boxed{\frac{4}{21}}\\--------------\\\rightarrow \frac{4}{21}* x= 1\\\\\rightarrow (21)*\frac{4}{21}x= 1(21)\\\\\rightarrow 4x=21\\\\\rightarrow \frac{4x=21}{4}\\\\\rightarrow \boxed{x=\frac{21}{4}}[/tex]

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

please help! 50 points!

Answers

Answer:

a) forming a bell

b) 5

c) 4.7

d) mean

is the correct answer

pls mark me as brainliest

12) Find the angles between 0o and 360o where sec θ = −3.8637 . Round to the nearest 10th of a degree:

Please show all work

Answers

9514 1404 393

Answer:

  105.0°, 255.0°

Step-by-step explanation:

Many calculators do not have a secant function, so the cosine relation must be used.

  sec(θ) = -3.8637

  1/cos(θ) = -3.8637

  cos(θ) = -1/3.8637

  θ = arccos(-1/3.8637) ≈ 105.000013°

The secant and cosine functions are symmetrical about the line θ = 180°, so the other solution in the desired range is ...

  θ = 360° -105.0° = 255.0°

The angles of interest are θ = 105.0° and θ = 255.0°.

Which statement is true about the ratios of squares to
cicles in the tables? PLS HURRY!!!!

Answers

Answer:

show us a screenshot or image

or type it out, copy paste

Step-by-step explanation:

Which expression defines the given series for seven terms?

–4 + (–5) + (–6) + . . .

Answers

Answer: -n+(-n-1)

Step-by-step explanation:

Expression will be -n + (-1)

Series

-4 +(-5)+(-6)+(-7)+(-8)+(-9)+(-10)+(-11)+(-12)+(-13) and so on

Here number -n has + (-n-1) being added to it

please click thanks and mark brainliest if you like :)

A tour bus is traveling along a triangular path. The three straight lines form a right triangle. One leg of the triangle represents a distance of 8 miles. The other leg of the triangle is 4 miles shorter than the hypotenuse. What is the length of the hypotenuse of this​ triangle? Of the other​ leg?

Answers

Answer:

Hypotenuse=10 miles.

Short leg=6 miles.

Step-by-step explanation:

Set up triangle, leg 8 miles, hypotenuse x miles, short leg x-4 miles.Input into Pythagoras theorem.Simplify.

Translate this phrase into an algebraic expression.
61 less than twice Jenny's age
Use the variable j to represent Jenny's age.

Answers

ANSWER: 2j-61
j = Jenny's age

if point B is the midpoint of points A and C, find the value of x and AC. AB= 5x - 2, BC= 9x -10

Answers

9514 1404 393

Answer:

x = 2AC = 16

Step-by-step explanation:

The midpoint divides the segment into two equal lengths:

  AB = BC

  5x -2 = 9x -10

  8 = 4x

  2 = x

  AB = 5(2) -2 = 8

  AC = 2AB = 2(8) = 16

The average of two numbers is 5x. If one of the numbers is 2x + 3, find the other number.

Answers

Answer:

8x-3

Step-by-step explanation:

Average of 2 numbers means add the two numbers and divide by 2

(y+z)/2 = 5x

Let z = 2x+3

(y+2x+3)/2 = 5x

Multiply each side by 2

y+2x+3 = 10x

Subtract 2x from each side

y+3 = 10x-2x

y+3 = 8x

Subtract 3

y = 8x-3

The other number is 8x-3

A manufacturer of industrial solvent guarantees its customers that each drum of solvent they ship out contains at least 100 lbs of solvent. Suppose the amount of solvent in each drum is normally distributed with a mean of 101.8 pounds and a standard deviation of 3.76 pounds.

Required:
a. What is the probability that a drum meets the guarantee? Give your answer to four decimal places.
b. What would the standard deviation need to be so that the probability a drum meets the guarantee is 0.99?

Answers

Answer:

The answer is "0.6368 and 0.773".

Step-by-step explanation:

The manufacturer of organic compounds guarantees that its clients have at least 100 lbs. of solvent in every fluid drum they deliver. [tex]X\ is\ N(101.8, 3.76)\\\\P(X>100) =P(Z> \frac{100-101.8}{3.76}=P(Z>-0.47))[/tex]

For point a:

Therefore the Probability =0.6368  

For point b:

[tex]P(Z\geq \frac{100-101.8}{\sigma})=0.99\\\\P(Z\geq \frac{-1.8}{\sigma})=0.99\\\\1-P(Z< \frac{-1.8}{\sigma})=0.99\\\\P(Z< \frac{-1.8}{\sigma})=0.01\\\\z-value =0.01\\\\area=-2.33\\\\ \frac{-1.8}{\sigma}=-2.33\\\\ \sigma= \frac{-1.8}{-2.33}=0.773[/tex]

The perimeter of a triangle is 83 centimeters. If two sides are equally long and the third side is 8 centimeters longer than the others, find the lengths of the three sides.

Answers

Answer:

25, 33

Step-by-step explanation:

let the length of the one with equal sides be x

third side = x+8

x+x+x+8 = 83

3x+8 = 83

3x = 75

x = 25

x+8 = 25+8 = 33

Find the sum of ∑3/k=0 k^2

Answers

Answer:

[tex]14[/tex]

Step-by-step explanation:

Given

[tex]\displaystyle \sum_{k=0}^3k^2[/tex]

Let's break down each part. The input at the bottom, in this case [tex]k=0[/tex], is assigning an index [tex]k[/tex] at a value of [tex]0[/tex]. This is the value we should start with when substituting into our equation.

The number at the top, in this case 3, indicates the index we should stop at, inclusive (meaning we finish substituting that index and then stop). The equation on the right, in this case [tex]k^2[/tex], is the equation we will substitute each value in. After we substitute our starting index, we'll continue substituting indexes until we reach the last index, then add up each of the outputs produced.

Since [tex]k=0[/tex] is our starting index, start by substituting this into [tex]k^2[/tex]:

[tex]0^2=0[/tex]

Now continue with [tex]k=1[/tex]:

[tex]1^1=1[/tex]

Repeat until we get to the ending index, [tex]k=3[/tex]. Remember to still use [tex]k=3[/tex] before stopping!

Substituting [tex]k=2[/tex]:

[tex]2^2=4[/tex]

Substituting [tex]k=3[/tex]:

[tex]3^2=9[/tex]

Since 3 is the index we end at, we stop here. Now we will add up each of the outputs:

[tex]0+1+4+9=\boxed{14}[/tex]

Therefore, our answer is:

[tex]\displaystyle \sum_{k=0}^3k^2=0+1+4+9=\boxed{14}[/tex]

Answer:

14

Step-by-step explanation:

∑3/k=0 k^2

Let k=0

0^2 =0

Let k = 1

1^2 =1

Let k =2

2^2 = 4

Let k = 3

3^2 = 9

0+1+4+9 = 14

how many feet is in one centimeter and how many inches is in 1 feet?​

Answers

Answer:

12 inches r in a foot

0 feet r in a centimeter

Step-by-step explanation:

Answer:

0.032 feet in a centimeter and 12 inches in 1 foot

Step-by-step explanation:

hope it helps pls mark as brainliest!

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

what is the slope and point

Answers

Answer:

Step-by-step explanation:

Which equation is represented by the graph below?

Answers

Answer:

Hello,

Answer C

Step-by-step explanation:

Since ln(1)=0

if x=1 then y=4 ==> y=ln(x)+4

y=ln(x) is translated up for 4 units.

What is A11 for the geometric sequence 3,072, −1,536, -768, −384...?

Answers

Answer:

3

Step-by-step explanation:

The general formula of the series is 3072/(-2)^(n-1). A11=3072/(-2)^10=3

Other Questions
If 1125 = 3^m 5^n ;find the value of m and n. choose the best selection for the quadrilateral with vertices at the following points (-5,-1), (2,2), (0,0), (-3,-3),a.rectangle b.square c.rhombus d.trapezoid Solve the right triangle given that mZA= 30, mZC = 90, anda = 15. Round your result to one decimal place. Which graph represents an odd function?y64.2.O-6..4-2.2..B49TV Pls help me with this problem Which of the following answer choices correctly expresses the number 64? A. 4'6 B. 4'5 C. 4'4 D. 4'3 Please help!!!! What's the rule that represents the sequence 13, 27, 41, 55, ...?Answers Below: Use a number line to represent the following. (a) {-4,-1, 0, 2, 3} Here is the picture of the problem I need help with. Which of the following statements regarding EBITDA is correct: Select one: a. A defined term in GAAP b. None of the listed answers c. A proxy for net income d. A proxy for operating income e. All of the listed answers _____ is a broad area that encompasses such things as brochures, signs, logos, television advertisements, newspaper advertisements, sales techniques, and internal business design Ms Alvarez wants to determine the seventh graders'preferences for the location of the end-of-year fieldtrip. Which of the samples is representative of thepopulation?a) all students in Ms. Alvarez's fifth-period classb) all students in Ms. Alvarez's advisory groupc) every third student from an alphabetical list of allstudents in the entire school districtd) every fifth student from an alphabetical list of allseventh graders in the school what is -10/19-5/7 but not converted into a decimal please! No quiero leer este poema. Prefiero leer _____.A. eseB. saC. se Health psCHIDIYY EIL.ercise1. In your own way how would define psychology? Go Long Telephone Company charges a flat rate of $18.75 per month plus $0.18 per minute. To Call Telephone Company charges a flat rate of$12.51 per month plus $0.42 per minute. How many minutes would a customer need to use in order for the bill from Go Long and Via Call to be equal at the end of the month? Raquel establece que la rapidez del sonido en el aire en un da es de 346 m/s . Das despus hace la misma medicin obteniendo una rapidez de 340 m/ s . Cul ser la temperatura del aire en cada da? Help me to solve this fast ( prove it) The acidity model given by pH = -log10[H+] where acidity (pH) is a measure of the hydrogen ion concentration [H+] (measured in moles of hydrogen per liter) of a solution. Using this model, determine the pH of a solution with a hydrogen ion concentration of 2.3 X 10^-5 (round your answer to the nearest hundredth) On September 1, Ziegler Corporation had 57,000 shares of $5 par value common stock, and $171,000 of retained earnings. On that date, when the market price of the stock is $15 per share, the corporation issues a 2-for-1 stock split. The general journal entry to record this transaction is: