Answer:
Deposit value(P) = $17,760 (Approx)
Step-by-step explanation:
Given:
Future value (F) = $30,000
Number of Year (n) = 15 year = 15 × 12 = 180 month
rate of interest (r) = 3.5% = 0.035 / 12 = 0.0029167
Find:
Deposit value(P)
Computation:
[tex]A = P(1+r)^n\\\\ 30000 = P(1+0.0029167)^{180} \\\\ 30000 = P(1.68917) \\\\ P = 17760.2018[/tex]
Deposit value(P) = $17,760 (Approx)
A line passes through (-5, -3) and is parallel to -3x - 7y = 10. The equation of the line in slope-intercept form is _____
Answer:
-3x - 7y = 36
Step-by-step explanation:
The given line -3x - 7y = 10 has an infinite number of parallel lines, all of the form -3x - 7y = C.
If we want the equation of a line parallel to -3x - 7y = 10 that passes through (-5, -3), we substitute -5 for x in -3x - 7y = 10 and substitute -3 for y in -3x - 7y = 10:
-3(-5) - 7(-3) = C, or
15 + 21 = C, or C = 36
Then the desired equation is -3x - 7y = 36.
Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of roulette, where the wheel consists of slots numbered 00, 0, 1, 2, ..., To play the game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).
Answer:
The correct option is (B).
Step-by-step explanation:
It is provided that, in a game of roulette the wheel consists of slots numbered 00, 0, 1, 2, ..., 33.
The sample space of an experiment, is the set of all the possible outcomes of the random trials.
There are a total of 35 slots on the roulette wheel where the ball can land.
So, there are a total of 35 outcomes for one rotation of the wheel.
Then the sample space consists of all the 35 outcomes, i.e.
S = {00, 0, 1, 2, 3, ..., 33}
Thus, the correct option is (B).
Twice the difference of a number and 9 is 3. Use the variable b for the unknown number.
Answer:
b = 10.5
Step-by-step explanation:
2(b-9) = 3
then:
2*b + 2*-9 = 3
2b - 18 = 3
2b = 3 + 18
2b = 21
b = 21/2
b = 10.5
check:
2(10.5 - 9) = 3
2*1.5 = 3
The quotient of 8 and the difference of three and a number.
Answer: 8÷(3-x)
Answer:
Below
Step-by-step explanation:
● 8 ÷ (3-x)
Dividing by 3-x is like multiplying by 1/(3-x)
● 8 × (1/3-x)
● 8 /(3-x)
please help !! Solve –2.5x ≤ 25
Answer:
x ≥-10
Step-by-step explanation:
–2.5x ≤ 25
Divide each side by -2.5, remembering to flip the inequality
–2.5x/-2.5 ≥ 25 /-2.5
x ≥-10
Answer:
[tex]x\leq -10[/tex]
Step-by-step explanation:
[tex]-2.5x\leq 25[/tex]-----> Multiply by -1:
[tex]2.5x\geq -25[/tex]-----> Divide by 2.5:
[tex]x\geq -10[/tex]
Hope this helps!
Help me solve this!!!
Answer:
54°
Step-by-step explanation:
Let ∠CYX=x
AB║CD
∠AXE=∠CYX (corresponding angles)
∠AXE=3∠CYX-108
x=3x-108
3x-x=108
2x=108
x=108/2=54°
∠AXE=∠CYX=x=54°
∠BXY=∠AXE=54° (Vertically opposite angles)
About 25% of young Americans have delayed starting a family due to the continued economic slump. Determine if the following statements are true or false, and explain your reasoning.a. The distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump in random samples of size 12 is right skewed.b. In order for the distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump to be approximatly normal, we need random samples where the sample size is at least 40.c. A random sample of 50 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.d. A random sample of 150 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.e. Tripling the sample size will reduce the standard error of the sample proportion by one-third.
Answer:
a. True
b. true
c. false
d. false
e. false
Step-by-step explanation:
a. true
polutation = 25% = 0.25
sample = n= 12
n x p
= 12 x o. 25 = 3 and 3 is less than 10
12(1 - p)
= 12 x 0.75
= 9 and is less than 10
b. True
the sample distribution of the population is normal when
sample size x population > or equal to 10
40 x 0.75
= 30 and 30 is greater than 10
c. false
50 x 0.25 = 12.5
50 x 0.20 = 10
z = 10 - 12.5/sqrt(12.5)
= -2.5/3.54
= -0.70
H0: Young american family who delayed
H1: young american family who did not delay
p(z = -0.70)
0.2420>0.005
therefore we accept the null hypothesis
d. false
150 x 0.20 = 30
150 x 0.75 = 37.5
z = 30 - 37.5/sqrt(37.5) = -7.5/6.12 = -1.22
p(z = -1.22) = 0.1112 > 0.05
therefore we do not reject the null hypothesis
e. false
se1 = sqrt(p(1-p)/n
se2 = sqrt(p(1-p)/3n
se2 = 1/sqrt(3)se2
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that
Answer:
Hello the options to your question is missing below are the options
A) if sample means were obtained for a long series of samples, approximately 95 percent of all sample means would be between 10 and 16 miles
B.the unknown population mean is definitely between 10 and 16 miles
C.if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
D.the unknown population mean is between 10 and 16 miles with probability .95
Answer : if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians ( c )
Step-by-step explanation:
95% confidence
interval = 10 to 16 miles
To have 95% confidence signifies that if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians
confidence interval covers a range of samples/values in the interval and the higher the % of the confidence interval the more precise the interval is,
The red blood cell counts (in millions of cells per microliter) for a population of adult males can be approximated by a normal distribution, with a mean of million cells per microliter and a standard deviation of million cells per microliter. (a) What is the minimum red blood cell count that can be in the top % of counts? (b) What is the maximum red blood cell count that can be in the bottom % of counts?
Answer:
(a) Minimum red blood cells 5.744 million cells per micro liter
(b) Maximum red blood cells 5.068 million cells per micro liter.
Step-by-step explanation:
Z-score formula is = [tex]\frac{x-u}{Standard deviation}[/tex]
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.61 so then x will be;
x = 5.744
The minimum red blood cells count that can in top is 27% of count which is 5.744 million cells per micro liter.
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.14 so then x will be;
x = 5.068
The maximum red blood cells count that can be in top is 14% of count which is 5.068 million cells per micro liter.
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4
There are 47 contestants at a national dog show. How many different ways can contestants fill the first place, second place, and third place positions?
Answer:
97290
Step-by-step explanation:
47 different people can win first
47
Now there are only 46 people left
46 different people can win second
46
45 different people can win third
47*46*45
97290
(16 points) Find the radius of convergence and the interval of convergence of the power series. g
Answer:
The equation to be solved is missing in the question.
I will explain power series and ways to find the radius and interval of convergence of a powers series in the attached image.
Step-by-step explanation:
Understand the power seriesFind radius of convergenceDetermine interval of convergenceCompute (3/4)*(8/9)*(15/16)*(24/25)*(35/36)*(48/49)*(63/64)*(80/81)*(99/100) Express your answer in the simplest way possible. (Suggestion: First, try computing 3/4*8/9 then 3/4*8/9*15/16 and so on. Look for patterns.
Answer:
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Step-by-step explanation:
Given
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100})[/tex]
Required
Simplify
For clarity, group the expression in threes
[tex]((\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the first group [Divide 8 by 4]
[tex]((\frac{3}{1})*(\frac{2}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 9 by 3]
[tex]((\frac{1}{1})*(\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex]((\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 15 by 3]
[tex]((\frac{2}{1})*(\frac{5}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 16 by 2]
[tex]((\frac{1}{1})*(\frac{5}{8}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the second group [Divide 35 and 25 by 5]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{7}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 49 by 7]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{1}{3})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 24 by 3]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{1}{1})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Merge the first and second group
[tex]((\frac{5}{8})*(\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](1*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the last group [Divide 99 by 9]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{9})*(\frac{11}{100}))[/tex]
[Divide 63 by 9]
[tex](\frac{4}{7})*((\frac{7}{64})*(\frac{80}{1})*(\frac{11}{100}))[/tex]
[Divide 64 and 80 by 8]
[tex](\frac{4}{7})*((\frac{7}{8})*(\frac{10}{1})*(\frac{11}{100}))[/tex]
[Divide 10 and 4 by 2]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{5}{1})*(\frac{11}{100}))[/tex]
[Divide 100 by 5]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{1}{1})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*(\frac{7}{4})*(\frac{11}{20})[/tex]
[tex]1*(\frac{11}{20})[/tex]
[tex]\frac{11}{20}[/tex]
Hence;
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
I need help please help meee I don’t understand
Answer:
204
Step-by-step explanation:
To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.
For height of the prongs, take 4 from 6.
6 - 4 = 2
Divide by 2 as there are 2 prongs.
2 / 2 = 1
Remember L * W * H
6 * 3 * 1 = 18
Remember that there are two prongs!
3 + 4 = 7
6 * 7 * 4 = 168
168 + 2(18) = 204
Match the base to the corresponding height.
Base (b)
Height (h)
b
h
h
b
The base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
What is a triangle?Triangle is the closed shaped polygon which has 3 sides and 3 interior angles. The height of the triangle is the dimension of the elevation from the opposite peak to the length of the base.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
In the given figure, three triangles is shown with base and height. Here,
The base 1 is matched with height 2, as the height shown in figure 2 is the dimension of the elevation from the opposite peak to the length of the base 1.Similarly, base 2 is matched with height 3.Base 3 is matched with height 1.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
Learn more about the base and height of the triangle here;
https://brainly.com/question/26043588
#SPJ2
I’m struggling to understand this problem somebody please explain it to me thanks!!
ax-5d=3cx-2+7
Answer:
x = (5 +5d)/(a -3c)
Step-by-step explanation:
Maybe you're to solve for x.
__
This is a typical "3-step" linear equation.
First, you collect terms with the variable x on one side of the equation. You do that by subtracting from both sides the x-term you don't want where it is.
We choose to remove the 3cx term from the right side, so we subtract it from both sides.
ax -3cx -5d = 3cx -3cx +5 . . . . . . we have combined the constants, too
x(a -3c) -5d = 5 . . . . . . simplify and factor out x
Second, you remove any terms not containing x from the side of the equation with the x-terms. You do that by adding their opposite to both sides of the equation.
We need to remove the -5d term, so we add 5d to both sides.
x(a -3c) -5d +5d = 5 +5d
x(a -3c) = 5 +5d . . . . . . . . . . simplify
Third, we divide by the coefficient of x. We do that to both sides of the equation. We had to put parentheses around the terms on the right, because we're dividing the whole right side of the equation by (a-3c).
x(a -3c)/(a -3c) = (5 +5d)/(a -3c)
x = (5 +5d)/(a -3c)
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
If the normality requirement is not satisfied (that is, np(1p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in ________ 95% of the intervals. (This is a reading assessment question. Be certain of your answer because you only get one attempt on this question.)
Answer:
less than
Step-by-step explanation:
If the normality requirement is not satisfied (that is, np(1 - p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in _less than__ 95% of the intervals.
The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.
So, let assume that If the 95% confidence interval contains the value for the hypothesized mean, then the sample mean is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.
On the other hand,
If the 95% confidence interval do not contains the value for the hypothesized mean, then the sample mean is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
Find (fºg)(2) and (f+g)(2) when f(x)= 1/x and g(x) = 4x +9
[tex](f\circ g)(2)=\dfrac{1}{4\cdot2+9}=\dfrac{1}{17}\\\\(f+g)(2)=\dfrac{1}{2}+4\cdot2+9=\dfrac{1}{2}+17=\dfrac{1}{2}+\dfrac{34}{2}=\dfrac{35}{2}[/tex]
What is the approximate value of x in –2 ln (x + 1) − 3 = 7?
Answer:
x = 1/e^-5 - 1
Step-by-step explanation:
–2 ln (x + 1) − 3 = 7
–2 ln (x + 1) = 10
ln (x + 1) = –5
x + 1 = e^-5
x = e^-5 - 1
x = 1/e^-5 - 1
the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
To solve the equation -2 ln(x + 1) - 3 = 7 for the approximate value of x, we will follow these steps:
1. Begin with the given equation: -2 ln(x + 1) - 3 = 7.
2. Move the constant term to the other side of the equation: -2 ln(x + 1) = 7 + 3.
3. Simplify: -2 ln(x + 1) = 10.
4. Divide both sides of the equation by -2 to isolate the natural logarithm term: ln(x + 1) = -5.
5. Rewrite the equation using the exponential form of natural logarithm: e⁻⁵ = x + 1.
6. Calculate the value of e⁻⁵: e⁻⁵ ≈ 0.0067.
7. Subtract 1 from both sides of the equation: x = 0.0067 - 1.
8. Simplify: x ≈ -0.9933.
Therefore, the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
Learn more about equation here
https://brainly.com/question/32549431
#SPJ2
Two sides of a triangle are equal length. The length of the third side exceeds the length of one of the other sides by 3 centimeters. The perimeter of the triangle is 93 centimeters. Find the length of each of the shorter sides of the triangle
Answer:
30 cm
Step-by-step explanation:
let x be the lenght of the two sides of equal lenghts, so the other is x+3
and the perimeter is x+x +x +3
P=3x+3
P=3(x+1)
93=3(x+1)
31=x+1
x=30
so the shorter sides are of 30 centimeters and the longest is 33
HELP ME ILL GIV ROBUX Identify the property shown by the equation. 14 × 6 = 6 × 14 A. Commutative Property B. Associative Property C. Identity Property D. Distributive Property PLEASE HELP ME
Answer:
Its commutative property..
Step-by-step explanation:
Commutative property says A×B=B×A
Explanation is attached below.
It takes amy 8 minutes to mow 1/6 of her backyard. At that rate how many more minutes will it take her to finish mowing her backyard
Answer:
40 minutes
Step-by-step explanation:
If it takes her 8 minutes to mow 1/6 of it, we can find the total amount of time it will take by multiplying 8 by 6, since 1/6 times 6 is 1 (1 represents the whole lawn mowed)
8(6) = 48
The question asks for how many more minutes it will take, so subtract 48 by 8.
48 - 8 = 40
= 40 minutes
Answer:
40 minutes
Step-by-step explanation:
We can use ratios to solve
8 minutes x minutes
------------------- = ----------------
1/6 yard 1 yard
Using cross products
8 * 1 = 1/6 x
Multiply each side by 6
8*6 = 1/6 * x * 6
48 = x
48 minutes total
She has already done 8 minutes
48-8 = 40 minutes
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
If f(x)=x/2-3and g(x)=4x^2+x-4, find (f+g)(x)
Step-by-step explanation:
(f+g)(x) = f(x) + g(x)
= x/2-3 + 4x²+x+4
= ..........