Answer:
78 cm²
42 cm
Step-by-step explanation:
To obtain the area of the shape given :
The figure is divide into three different rectanglular parts :
Recall, area of a rectangle = Length x width :
Rectangle 1 : 9* 6 = 54 cm²
Rectangle 2 = 6 * 2 = 12 cm²
Rectangle 3 = 4 * 3 = 12 cm²
Total area = (54 + 12 + 12). = 78 cm²
Perimeter = sun of the exterior sides of the shape
Perimeter = (9 + 8 + 3 + 4 + 3 + 6 + 3 + 6) = 42 cm
?
6.2
Divided by 1/2
Answer:
The answer is 3.1
[tex]6.2 \div \frac{1}{2} = 3.1[/tex]
If we were to convert it into a **FRACTION** the answer would be : 31/10.
And that i an improper fraction, but as a **MIXED NUMBER** : [tex]3 \frac{1}{10}[/tex]
All answers would be : 3.1 , 31/10 and 3 1/10
Answer:
0.5167
Step-by-step explanation:
6.2/12 first rewrite 6.2 as an improper fraction or 36/5 then multiply by 1/12 to get the solution of 0.5167.
If a normally distributed population has a mean (mu) that equals 100 with a standard deviation (sigma) of 18, what will be the computed z-score with a sample mean (x-bar) of 106 from a sample size of 9?
Answer:
Z = 1
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean (mu) that equals 100 with a standard deviation (sigma) of 18
[tex]\mu = 100, \sigma = 18[/tex]
Sample of 9:
This means that [tex]n = 9, s = \frac{18}{\sqrt{9}} = 6[/tex]
What will be the computed z-score with a sample mean (x-bar) of 106?
This is Z when X = 106. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{106 - 100}{6}[/tex]
[tex]Z = 1[/tex]
So Z = 1 is the answer.
please help me on this
Answer:
Median
Step-by-step explanation:
Using the median to measure central tendency, rather than the mean, is better for a skewed data set.
Since a skewed data set will have either very high or low extreme data points, the mean will be less representative and accurate when measuring central tendency.
Using the median will measure this better because it is not as vulnerable as the mean when there are extreme data points.
So, the answer is the median.
The measure of angle tis 60 degrees.
What is the x-coordinate of the point where the
terminal side intersects the unit circle?
1
2
O
O
Isla Isla
2
DONE
Answer:
Step-by-step explanation:
Not a clear list of options and/or reference frame
Probably 0.5 if angle t is measured from the positive x axis.
Find a pair of polar coordinates for the point with rectangular coordinates (5, –5).
Answer:
(5*sqrt(2), 5pi/4)
Step-by-step explanation:
In Polar coordinates, tan(theta)=y/x and r=sqrt(x^2+y^2)
tan(theta)=-5/5=-1. Theta=5pi/4
r=sqrt(5^2+5^2)=5*sqrt(2)
Hence the Polar coordinate is (5*sqrt(2), 5pi/4)
The polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].
What is polar coordinate system?The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.
How to convert rectangular coordinates to polar coordinates?To convert rectangular coordinate (x, y) to polar coordinate(r, θ) by using some formula
tanθ = y/x and [tex]r =\sqrt{x^{2} +y^{2} }[/tex]
According to the given question
We have
A rectangular coordinate (5, -5).
⇒ x = 5 and y = -5
Therefore,
[tex]r=\sqrt{(5)^{2} +(-5)^{2} } =\sqrt{25+25} =\sqrt{50} =5\sqrt{2}[/tex]
and
tanθ = [tex]\frac{-5}{5} =-1[/tex]
⇒ θ = [tex]tan^{-1} (-1)[/tex] = [tex]-\frac{\pi }{4}[/tex]
Therefore, the polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].
Learn more about polar coordinates here:
https://brainly.com/question/1269731
#SPJ2
A shop sells a particular of video recorder. Assuming that the weekly demand for the video recorder is a Poisson variable with the mean 3, find the probability that the shop sells. . (a) At least 3 in a week. (b) At most 7 in a week. (c) More than 20 in a month (4 weeks).
Answer:
a) 0.5768 = 57.68% probability that the shop sells at least 3 in a week.
b) 0.988 = 98.8% probability that the shop sells at most 7 in a week.
c) 0.0104 = 1.04% probability that the shop sells more than 20 in a month.
Step-by-step explanation:
For questions a and b, the Poisson distribution is used, while for question c, the normal approximation is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
In which
x is the number of successes
e = 2.71828 is the Euler number
[tex]\lambda[/tex] is the mean in the given interval.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The Poisson distribution can be approximated to the normal with [tex]\mu = \lambda, \sigma = \sqrt{\lambda}[/tex], if [tex]\lambda>10[/tex].
Poisson variable with the mean 3
This means that [tex]\lambda= 3[/tex].
(a) At least 3 in a week.
This is [tex]P(X \geq 3)[/tex]. So
[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]
In which:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
So
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0498 + 0.1494 + 0.2240 = 0.4232[/tex]
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - 0.4232 = 0.5768[/tex]
0.5768 = 57.68% probability that the shop sells at least 3 in a week.
(b) At most 7 in a week.
This is:
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X = 5) = \frac{e^{-3}*3^{5}}{(5)!} = 0.1008[/tex]
[tex]P(X = 6) = \frac{e^{-3}*3^{6}}{(6)!} = 0.0504[/tex]
[tex]P(X = 7) = \frac{e^{-3}*3^{7}}{(7)!} = 0.0216[/tex]
Then
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 + 0.1008 + 0.0504 + 0.0216 = 0.988[/tex]
0.988 = 98.8% probability that the shop sells at most 7 in a week.
(c) More than 20 in a month (4 weeks).
4 weeks, so:
[tex]\mu = \lambda = 4(3) = 12[/tex]
[tex]\sigma = \sqrt{\lambda} = \sqrt{12}[/tex]
The probability, using continuity correction, is P(X > 20 + 0.5) = P(X > 20.5), which is 1 subtracted by the p-value of Z when X = 20.5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{20 - 12}{\sqrt{12}}[/tex]
[tex]Z = 2.31[/tex]
[tex]Z = 2.31[/tex] has a p-value of 0.9896.
1 - 0.9896 = 0.0104
0.0104 = 1.04% probability that the shop sells more than 20 in a month.
The probability of the selling the video recorders for considered cases are:
P(At least 3 in a week) = 0.5768 approximately.P(At most 7 in a week) = 0.9881 approximately.P( more than 20 in a month) = 0.0839 approximately.What are some of the properties of Poisson distribution?Let X ~ Pois(λ)
Then we have:
E(X) = λ = Var(X)
Since standard deviation is square root (positive) of variance,
Thus,
Standard deviation of X = [tex]\sqrt{\lambda}[/tex]
Its probability function is given by
f(k; λ) = Pr(X = k) = [tex]\dfrac{\lambda^{k}e^{-\lambda}}{k!}[/tex]
For this case, let we have:
X = the number of weekly demand of video recorder for the considered shop.
Then, by the given data, we have:
X ~ Pois(λ=3)
Evaluating each event's probability:
Case 1: At least 3 in a week.
[tex]P(X > 3) = 1- P(X \leq 2) = \sum_{i=0}^{2}P(X=i) = \sum_{i=0}^{2} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 3) = 1 - e^{-3} \times \left( 1 + 3 + 9/2\right) \approx 1 - 0.4232 = 0.5768[/tex]
Case 2: At most 7 in a week.
[tex]P(X \leq 7) = \sum_{i=0}^{7}P(X=i) = \sum_{i=0}^{7} \dfrac{3^ie^{-3}}{i!}\\\\P(X \leq 7) = e^{-3} \times \left( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120 + 729/720 + 2187/5040\right)\\\\P(X \leq 7) \approx 0.9881[/tex]
Case 3: More than 20 in a month(4 weeks)
That means more than 5 in a week on average.
[tex]P(X > 5) = 1- P(X \leq 5) =\sum_{i=0}^{5}P(X=i) = \sum_{i=0}^{5} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 5) = 1- e^{-3}( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120)\\\\P(X > 5) \approx 1 - 0.9161 \\ P(X > 5) \approx 0.0839[/tex]
Thus, the probability of the selling the video recorders for considered cases are:
Learn more about poisson distribution here:
https://brainly.com/question/7879375
can some0ne help me?
Answer:
(x - 2)/3
(x - 4)/-5 or (-x + 4)/5
Step-by-step explanation:
this is an inverse function, and to solve an inverse function you would :
swap x and g(x) without bringing the x coefficient with it, just simply swap the variables. Then, solve for g(x), and that's it
the first question's answer is :
g(x) = 3x + 2
x = 3(g(x)) + 2
x - 2 = 3(g(x))
(x - 2)/3 = g(x)
the second one is:
g(x) = 4 - 5x
x = 4 - 5(g(x))
x - 4 = -5(g(x))
(x-4)/-5 = g(x)
g(x) = 3x + 2
y = 3x + 2
x = 3y + 2
3y = x - 2
y = x/3 - 2/3
inverse g(x) = (x - 2) / 3
g(x) = 4 - 5x
y = 4 - 5x
x = 4 - 5y
5y = 4 - x
y = 4/5 - x/5
inverse g(x) = (4 - x) / 5
A chocolate chip cookie manufacturing company recorded the number of chocolate chips in a sample of 60 cookies. The mean is 22.36 and the standard deviation is2.97 . Construct a 80% confidence interval estimate of the standard deviation of the numbers of chocolate chips in all such cookies.
Answer:
2.665 < σ < 3.379
Step-by-step explanation:
Given :
s = 2.97
Sample size, n = 60
α = 80%
χ² Critical value (two - tailed), df = (60-1) = 59
χ² = 45.577 ; χ² = 73.279
The 80% confidence interval for the standard deviation :
s * √(n - 1) / χ² critical
2.97 * √(60 - 1) / 73.279 < σ < 2.97 * √(60 - 1) / 45.577
2.665 < σ < 3.379
I'm interval notation please
9514 1404 393
Answer:
(-2, 4]
Step-by-step explanation:
-21 ≤ -6x +3 < 15 . . . . given
-24 ≤ -6x < 12 . . . . . . subtract 3
4 ≥ x > -2 . . . . . . . . . . divide by -6
In interval notation, the solution is (-2, 4].
__
Interval notation uses a square bracket to indicate the "or equal to" case--where the end point is included in the interval. A graph uses a solid dot for the same purpose. When the interval does not include the end point, a round bracket (parenthesis) or an open dot are used.
pls help me asap !!!
Answer:
11
Step-by-step explanation:
Hopefully you can see that this is an isosceles triangle and remembering the inequality theorem of a triangle (4,4,11 triangle cannot exist). Iso triangle has two side the same length - as well as two angles the same.
use quadratic formula to solve the following equation
9514 1404 393
Answer:
x = 2 or x = 9
Step-by-step explanation:
To use the quadratic formula, we first need the equation in standard form for a quadratic. We can get there by multiplying the equation by 3(x -3).
2(3) +4(3(x -3)) = (x +4)(x -3)
6 +12x -36 = x² +x -12
x² -11x +18 = 0
Using the quadratic formula to find the solutions, we have ...
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-(-11)\pm\sqrt{(-11)^2-4(1)(18)}}{2(1)}\\\\x=\dfrac{11\pm\sqrt{49}}{2}=\{2,9\}[/tex]
The solutions are x=2 and x=9.
A rectangle has a length of 7 in. and a width of 2 in. if the rectangle is enlarged using a scale factor of 1.5, what will be the perimeter of the new rectangle
Answer:
27 inch
Step-by-step explanation:
Current perimeter=18
New perimeter=18*1.5=27 in
which of the following is the correct graph of the solution to the inequality -18 > 5x + 2 > -48?
Answer:
good luck
.............
Answer: the third one. filled circle for 4 ,5,6,7,8,9, open circle 10
Step-by-step explanation:
A park is 5 miles east of Roxana's home. A library is 4 miles north of the park. How far is Roxana's home from the library?
Answer: 9 miles I think but I dont know where her house is exactly.
A ball thrown upwards hits a roof and returns back to the ground.
The upward movement is modeled by a function [tex]s=-t^2+3t+4[/tex]
s= −(t^2)+3t+4
and the downward movement is modeled by [tex]s=-t^2+3t+4[/tex]
s= −2(t^2)+t+7, where s is the distance (in metres) from the ground and t is the time in seconds.
Find the height of the roof from the ground.
Answer: 6 m
A ball thrown upwards from the altitude 4 m,
hits a roof and returns back to the ground.
upward movement: s= −t²+3t+4
downward movement: s=-2t²+t+7
Step-by-step explanation:
Let's calculate the intersection:
[tex]- t^2+3t+4 =-2t^2+t+7\\\\t^2+2t-3=0\\\\t^2+3t-t-3=0\\\\t(t+3)-(t+3)=0\\\\(t+3)(t-1)=0\\\\t=-3 \ (exclude)\ or\ t=1\\\\if\ t=1 \ then\ s=-1^2+3*1+4=6\\\\height\ is\ 6\ m.\\[/tex]
Sorry, i have forgotten the picture.
190 of 7
6 7 8 9 10
-3
4
5
6
The slope of the line shown in the graph is
and the intercept of the line is
Answer:slope 2/3
Y-int 6
Step-by-step explanation:
What is the value of n to the nearest whole number?
O 10
o 13
18
o
21
Answer:
n is 13
Step-by-step explanation:
[tex] {n}^{2} = {12}^{2} + {6}^{2} - (2 \times 12 \times 6) \cos(90 \degree) \\ {n}^{2} = 180 \\ n = 13.4[/tex]
Answer:
n is 13
Step-by-step explanation:
a farmer needs 5 men to clear his farm in 10 days. How many men will he need if he must finish clearing the farm in two days if they work at the same rate?
Answer:
25 workers
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
,
5x-22 3x +105 x minus 22 3 X + 10
-291x+10
:)))))) Have fun
*PLEASE HELP ME ILL GIVE BRAINLIST IF CORRECT*
Noah is playing a game where he must spin two wheels, each with 9 equal slices. There are 3 red slices, 3 green slices, 2 blue slices and 1 yellow slice on each wheel. If Noah spins and lands on a yellow slice on both wheels he wins, but if he lands on any other color, he loses. This information was used to create the following area model.
Is this a fair game? Why or why not?
A. Yes, the game is fair because Noah has equal probabilities of winning or losing.
B. Yes, the game is fair because Noah does not have equal probabilities of winning or losing.
C. No, the game is not fair because Noah has equal probabilities of winning or losing.
D. No, the game is not fair because Noah does not have equal probabilities of winning or losing.
Step-by-step explanation:
Yes, the game is fair because noah has equal probabilities of Winning
Answer:
No, the game is not fair because Noah does not have equal probabilities of winning or losing.
Step-by-step explanation:
A school has 4 different after school activities planned in the fall Janet has time to participate in 2 of these activities. How many different pairs of after-school activities can Janet choose from the available activities?
Answer:
6
Step-by-step explanation:
Of 4 options, Janet has to choose 2. This is combinations as A and B is the same as B and A.
Combinations formula gives us 4!/ 2!2! , or 6.
Solve this equation for x. Round your answer to the nearest hundredth.
1 = In(x + 7)
Answer:
[tex]\displaystyle x \approx -4.28[/tex]
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra II
Natural logarithms ln and Euler's number eStep-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 1 = ln(x + 7)[/tex]
Step 2: Solve for x
[Equality Property] e both sides: [tex]\displaystyle e^1 = e^{ln(x + 7)}[/tex]Simplify: [tex]\displaystyle x + 7 = e[/tex][Equality Property] Isolate x: [tex]\displaystyle x = e - 7[/tex]Evaluate: [tex]\displaystyle x = -4.28172[/tex]e^1 = x+7
e - 7 = x
x = -4.28
Which of the fractions below are less than 2/5? Select two.
Answer:
1/8 is less than
Step-by-step explanation:
i dont see any fractions below gona have to edit your answer
A box with a square base and no top is to be made from a square piece of carboard by cutting 4 in. squares from each corner and folding up the sides. The box is to hold 1444 in3. How big a piece of cardboard is needed
Answer:
[tex]C=27inch\ by\ 27inch[/tex]
Step-by-step explanation:
Squares [tex]h=4inch[/tex]
Volume [tex]v=1444in^3[/tex]
Generally the equation for Volume of box is mathematically given by
[tex]V=l^2h[/tex]
[tex]1444=l^2*4[/tex]
[tex]l^2=361[/tex]
[tex]l=19in[/tex]
Since
Length of cardboard is
[tex]l_c=19+4+4[/tex]
[tex]l_c=27in[/tex]
Therefore
Dimensions of the piece of cardboard is
[tex]C=27inch\ by\ 27inch[/tex]
Identify the decimals labeled with the letters A B and a C
Answer:
A=3.1
B=4.2
C=2.7
Step-by-step explanation:
Is this the correct answer?
Answer:
25.40
Step-by-step explanation:
tickets ( 2 at 10.95 each) = 2* 10.95 = 21.90
popcorn ( 1 at 7.50) = 7.50
Total cost before discount
21.90+7.50=29.40
subtract the discount
29.40-4.00 =25.40
Answer:
Yep! That's correct!
Step-by-step explanation:
We know that Marilyn and her sister are each getting a ticket that cost $10.95. They are also getting a $7.50 popcorn to share. Let's add those values up.
(10.95 * 2) + 7.50 {Multiply 10.95 by 2 to get 21.90.}
21.90 + 7.50 {Add 7.50 to 21.90 to get 29.40}
$29.40 (without the credit) in toal
A credit on a movie reward card functions as a discount, so what we need to do next is subtract 4 from 29.40. That will get us $25.40 as the total cost.
After doing the math, I can deduce that your answer is correct!
The distance between Ali's house and 1 point
college is exactly 135 miles. If she
drove 2/3 of the distance in 135
minutes. What was her average speed
in miles per hour?
Ali's average speed was 40 miles per hour.
What is an average speed?
The total distance traveled is to be divided by the total time consumed brings us the average speed.
How to calculate the average speed of Ali?
The total distance between the college from Ali's house is 135 miles.
She drove 2/3rd of the total distance in 135 minutes.
She drove =135*2/3miles
=90miles.
Ali can drive 90miles in 135 mins.
Therefore, her average speed is: 90*60/135 miles per hour.
=40 miles per hour.
Learn about average speed here :
https://brainly.in/question/14787217
#SPJ2
Below is the graph of a polynomial function with real coefficients
(a) The function f is increasing over which intervals? Choose all that apply.
D(-0, -8)
O (-5,-2) O (-8, -2) O (-2,
2) (2,5)
O (5, 0 )
?
(b) The functionfhas local maxima at which x-values? If there is more than one value,
separate them with commas.
(c) What is the sign of the leading coefficient of f?
Select One
(d) Which of the following is a possibility for the degree of f? Choose all that apply.
4
5
6
Please help if you can thank you
9514 1404 393
Answer:
(a) (-∞, -8), (-5, -2), (2, 5)
(b) -8, -2, 5
(c) negative
(d) 6
Step-by-step explanation:
(a) The function is increasing on intervals where the graph slopes upward left-to-right. Those are (-∞, -8), (-5, -2), and (2, 5).
__
(b) The local maxima are at the right end of each interval on which the function is increasing: -8, -2, 5.
__
(c) The function opens downward (∩), so has a negative leading coefficient.
__
(d) There are three local maxima and two local minima (left end of an increasing interval), so a total o 5 turning points. The degree of the polynomial is at least one more than this: 6.
Use absolute value to express the distance between -12 and -15 on the number line
A: |-12-(-15)|= -37
B: |-12-(-15)|= -3
C: |-12-(-15)|= 3
D: |-12-(-15)|= 27
Twice a number increased by the product of the number and fourteen results in forty eight
Answer:
Let x = the number. Then you have:
2x + 14x = 48 Collect like terms
16x = 48 Divide both sides by 16
x = 3
PLEASE MARK AS BRAINLIEST ANSWER
The number that satisfies the given statement is 3.
We are given that twice a number increased by the product of the number and 14 results in 48.
We will find the value of the number that we used in the given above statement.
Understand the meaning of the keywords used in the statement.Increased means addition.
Product means multiplication.
Results mean equal to sign.
Let's write the given statement in equation form.
Consider P = the number
Twice a number = 2P
Increased = +
Products of the number and 14 = P x 14
Results in 48 = equals 48.
Combining all the above we get,
2P + P x 14 = 48
2P + 14P = 48
16P = 48
P = 48 / 16
P = 3
Thus the number that satisfies the given statement is 3.
Learn more about similar problems here:
https://brainly.com/question/17618748
#SPJ2