Answer:
[tex]\frac{98p^{6}}{q}[/tex]
Step-by-step explanation:
Distribute the exponents
[tex](\frac{(7^{-2}p^{-6}q^{-8})}{2q^{-9}} )^{-1}[/tex]
[tex](\frac{q}{98p^{6}} )^{-1}[/tex]
Distribute the -1
[tex]\frac{98p^{6}}{q}[/tex]
Martha ran a 3-mile race in 24 minutes. how long does it take her to run 1 mile?
Answer:
8 minuets
Step-by-step explanation:
24min/3miles = 8
Answer:
8 minutes.
Step-by-step explanation:
If we divide 24 minutes by 3 miles, your answer will be 8 minutes.
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
Find the intersection of the parabola y=-2x^2-4x+2 and the line -6x+y=14
Answer:
(-2,2) and (-3,-4)
Step-by-step explanation:
by graphing the line and parabola, you should get this graph
Triangles P Q R and S T U are shown. Angles P R Q and T S U are right angles. The length of P Q is 20, the length of Q R is 16, and the length of P R is 12. The length of S T is 30, the length of T U is 34, and the length of S U is 16.
Using the side lengths of △PQR and △STU, which angle has a sine ratio of Four-fifths?
∠P
∠Q
∠T
∠U
Answer:
[tex]\angle P[/tex]
Step-by-step explanation:
Given
[tex]\triangle PRQ = \triangle TSU = 90^o[/tex]
[tex]PQ = 20[/tex] [tex]QR = 16[/tex] [tex]PR = 12[/tex]
[tex]ST = 30[/tex] [tex]TU = 34[/tex] [tex]SU = 16[/tex]
See attachment
Required
Which sine of angle is equivalent to [tex]\frac{4}{5}[/tex]
Considering [tex]\triangle PQR[/tex]
We have:
[tex]\sin(P) = \frac{QR}{PQ}[/tex] --- i.e. opposite/hypotenuse
So, we have:
[tex]\sin(P) = \frac{16}{20}[/tex]
Divide by 4
[tex]\sin(P) = \frac{4}{5}[/tex]
Hence:
[tex]\angle P[/tex] is correct
Answer:
A or <P
Step-by-step explanation:
on edge 2021
URGENT!!!!!! 15 POINTDS
Answer:
Option C
Step-by-step explanation:
thankful that there are graphing tools. see screenshot
graph a circle with General form.x^2 +y^2+8x-12y+24=0
Answer:
jhshejwjabsgsgshshsnsjs
Answer:
Step-by-step explanation:
Put the equation into center-radius form.
x² + y² + 8x - 12y + 24 = 0
x² + y² + 8x - 12y = -24
(x²+8x) + (y²-12y) = -24
(x²+8x+4²) + (y²-12y+6²) = 4²+6²-24
(x+4)² + (y-6)² = 28
Center: (-4,6)
radius: √28
PLEASE HELP AND BE CORRECT BEFORE ANSWERING PLEASE AND THANK YOU
9514 1404 393
Answer:
6 units
Step-by-step explanation:
The dilation factor is 2, so the length of A'B' will be 2 times the length of AB.
AB can be seen to be 3 units, so A'B' will be 2×3 = 6 units.
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
Answer ASAP
Will give brainliest!
More information pleaseeeeeeee
Determine if the sequence below is arithmetic or
geometric and determine the common difference / ratio in
simplest form.
3, 8, 13, ..
(PLEASE HELPP)
9514 1404 393
Answer:
arithmetic; common difference of 5
Step-by-step explanation:
It usually works well to check differences first. Here, they are ...
8 -3 = 5
13 -8 = 5
These are the same value, so the sequence is arithmetic with a common difference of 5.
A survey sampled men and women workers and asked if they expected to get a raise or promotion this year. Suppose the survey sampled 200 men and 200 women. If 98 of the men replied Yes and 72 of the women replied Yes, are the results statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year?
a. State the hypothesis test in terms of the population proportion of men and the population proportion of women.
b. What is the sample proportion for men? For women?
c. Use α= 0.01 level of significance. What is the p-value and what is your conclusion?
Answer:
a)
The null hypothesis is: [tex]H_0: p_M - p_W = 0[/tex]
The alternative hypothesis is: [tex]H_1: p_M - p_W > 0[/tex]
b) For men is of 0.49 and for women is of 0.36.
c) The p-value of the test is 0.0039 < 0.01, which means that the results are statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year.
Step-by-step explanation:
Before solving this question, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Men:
98 out of 200, so:
[tex]p_M = \frac{98}{200} = 0.49[/tex]
[tex]s_M = \sqrt{\frac{0.49*0.51}{200}} = 0.0353[/tex]
Women:
72 out of 200, so:
[tex]p_W = \frac{72}{200} = 0.36[/tex]
[tex]s_W = \sqrt{\frac{0.36*0.64}{200}} = 0.0339[/tex]
a. State the hypothesis test in terms of the population proportion of men and the population proportion of women.
At the null hypothesis, we test if the proportion are similar, that is, if the subtraction of the proportions is 0, so:
[tex]H_0: p_M - p_W = 0[/tex]
At the alternative hypothesis, we test if the proportion of men is greater, that is, the subtraction is greater than 0, so:
[tex]H_1: p_M - p_W > 0[/tex]
b. What is the sample proportion for men? For women?
For men is of 0.49 and for women is of 0.36.
c. Use α= 0.01 level of significance. What is the p-value and what is your conclusion?
From the sample, we have that:
[tex]X = p_M - p_W = 0.49 - 0.36 = 0.13[/tex]
[tex]s = \sqrt{s_M^2+s_W^2} = \sqrt{0.0353^2 + 0.0339^2} = 0.0489[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error, so:
[tex]z = \frac{0.13 - 0}{0.0489}[/tex]
[tex]z = 2.66[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a difference above 0.13, which is the p-value of z = 2.66.
Looking at the z-table, z = 2.66 has a p-value of 0.9961.
1 - 0.9961 = 0.0039.
The p-value of the test is 0.0039 < 0.01, which means that the results are statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year.
Select the correct answer.
Each statement describes a transformation of the graph of y=x. Which statement correctly describes the graph of y= x - 13?
OA. It is the graph of y= x translated 13 units to the right.
OB. It is the graph of y=xwhere the slope is decreased by 13.
It is the graph of y= x translated 13 units to the left.
OD. It is the graph of y= x translated 13 units up.
ОС.
minus sign ironically makes it go to the right
because the function crosses the y axis at -13
It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
The equation y = x - 13 represents a transformation of the graph of y = x. To find the type of transformation, we have to compare the two equations and look for changes.
In the equation y = x - 13, we subtract 13 from the value of x.
This means that the graph of y = x is shifted 13 units downwards,
since every point on the graph has 13 subtracted from its y-coordinate.
Hence, It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
Santos flipped a coin 300 times. The coin landed heads up 125 times. Find the ratio of heads to total number of coin flips. Express a simplified ratio
Answer:
5:12
Step-by-step explanation:
125:300 simplified = 5:12
I hope this helps
convert 2m 50cm 15mm in cm
Answer:
251.5 cm
Step-by-step explanation:
1 m = 100 cm
1 cm = 10 mm
2 m + 50 cm + 15 mm =
= 2 m * (100 cm)/m + 50 cm + 15 mm * (1 cm)/(10 mm)
= 200 cm + 50 cm + 1.5 cm
= 251.5 cm
In this problem, y = 1/(1 + c1e−x) is a one-parameter family of solutions of the first-order DE y' = y − y2. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition. y(0)=-1/3
If y (0) = -1/3, then
-1/3 = 1 / (1 + C e ⁻⁰)
Solve for C :
-1/3 = 1 / (1 + C )
-3 = 1 + C
C = -4
So the particular solution to the DE that satisfies the given initial condition is
[tex]\boxed{y=\dfrac1{1-4e^{-x}}}[/tex]
Peter, Jan, and Maxim are classmates. Their total score for the last test was 269. Peter's score was more than the sum of Jan's and Maxim's scores. What could be Peter's least possible score?
Answer:
135
Step-by-step explanation:
Given that :
Total score obtained by Peter, Jan and Maxim = 269
Let :
Peter's score = x
Jan's score = y
Maxim's score = z
x + y + z = 269
x > (y + z)
For x to be greater Than y + z ;
Then x > (269 / 2) ; x > 134.5
The least possible x score is 135
Hence, Peter's least possible score is 135.
Find mBFE, help ASAP!!!
Answer: C
<BFE is 148 degrees
Step-by-step explanation:
We have angles <BFC (57 degrees) and <CFD (34 degrees), but what is <DFE?
1. The angle symbol in the vertexes shows that <BFC is congruent to <DFE, meaning that they are the same
2. Knowing this, we can safely say that <DFE is equal to 57 degrees because <BFC is also 57 degrees.
3. Now, we have all the angles we need to find out <BFE.
4. <BFC+<CFD+<DFE=<BFE
5. Substitute to get
57+34+57=<BFE
91+57=<BFE
148=<BFE
6. Now we know that the answer is 148 degrees.
The elevation E, in meters, above sea level at which the boiling point of a certain liquid ist degrees Celsius is given by the function shown below. At what elevation is the boling point 99.5*7 100°?
E() - 1200(100-1) • 580(100 - 1)
At what elevation is the boiling point 99.5?
E (90.5*)=. meters
At what elevation is the boiling point 100"?
E(100*)-meters
Answer:
Given E(t)=1100(100-t)+580(100-t)^2
Put t = 99.5, we get
E(99.5)=1100(100-99.5)+580(100-99.5)^2
E(99.5)=1100(0.5)+580(0.5)^2
E(99.5)=1100(0.5)+580(0.25)
E(99.5)=550+145
E(99.5)=695m
Step-by-step explanation:
It can be concluded that -
E(99.5) = 695
E(100) = 0
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.
Given is the function as follows -
E(t) = 1100(100 - t) + 580(100 - t)²
The given function is -
E(t) = 1100(100 - t) + 580(100 - t)²
At → E(99.5)
E(99.5) = 1100(100 - t) + 580(100 - t)²
E(99.5) = 1100(100 - 99.5) + 580(100 - 99.5)²
E(99.5) = 1100(0.5) + 580(0.5)²
E(99.5) = 550 + 145
E(99.5) = 695
At → E(100)
E(100) = 1100(100 - t) + 580(100 - t)²
E(100) = 1100(100 - 100) + 580(100 - 100)²
E(100) = 0
Therefore, it can be concluded that -
E(99.5) = 695
E(100) = 0
To solve more questions on expressions, visit the link below -
brainly.com/question/1041084
#SPJ2
Use the figure to find y.
Tanθ =sin /cos
tan θ = 5/2 / y
tan (30°) = 5/2 /y
[tex]y = \frac{5 \sqrt{3} }{2} [/tex]
y=4.33
Find the equation of line b in slope-intercept form. Line a is parallel to line b. Line a passes through the points (1,8) and (2,-1), line b passes through the point (4,13)
9514 1404 393
Answer:
y = -9x +49
Step-by-step explanation:
The slope of line b is the same as the slope of line a. That can be found using the slope formula:
m = (y2 -y1)/(x2 -x1)
m = (-1 -8)/(2 -1) = -9
The y-intercept can be found from the given point using the formula ...
b = y - mx
b = 13 -(-9)(4) = 13 +36 = 49
Then the slope-intercept equation of line b is ...
y = -9x +49
HELP ME WITH THIS MATHS QUESTION
PICTURE IS ATTACHED
Answer:
In picture.
Step-by-step explanation:
To do this answer, you need to count the boxes up to the mirror line. This will give us the exact place to draw the triangle.
The picture below is the answer.
Find the value of x in each case and give an explanation plzzz, thank youu :)
Answer:
Step-by-step explanation:
the arrows from the picture tells us that TV is parallel to RS
since TS is a transversal that cuts the 2 parallel lines TV and RS than ∠S =x
(alternate interior angles)
sum of angles in a Δ is 180° so x+x+2x = 180°, 4x =180°, x= 45°
2x = 45*2 = 90°
A friend wants to buy a pool and has two places she wants to purchase the pool with the largest volume which pool should she buy a rectangular pool that is 20' x 15' in 54 inches deep or a cylindrical pool that has a 3.3 m radios and is 1.8 m deep
Answer:
20'×15 in 54 inches
Step-by-step explanation:
The Best as a pool should be rectangular in shape and 54inches deep for safety of life's
The volume of the rectangular pool that is 20' x 15' in 54 inches deep is largest.
What is the volume of a cylinder?The volume of the cylinder is the product of the height, pie, and square of the radius.
The volume of the cylinder = [tex]\pi r^{2}[/tex]h
The volume of the cylindrical pool that has a 3.3 m radius and is 1.8 m deep is;
= [tex]\pi r^{2}[/tex]h
[tex]= 3.14 (3.3)^2 (1.8)\\\\= 61.55 m^3[/tex]
The volume of the rectangular pool that is 20' x 15' in 54 inches deep ;
V = 20 x 15 x 54
V = 16,200 cubic meter.
The volume of the rectangular pool that is 20' x 15' in 54 inches deep is largest.
Learn more about volume;
https://brainly.com/question/1578538
#SPJ2
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
Find the interest on the loan using the Banker's rule. P= $8550. r=8.8%, t= 105 days The interest on the loan using the Banker's rule is $
Riley wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 4.5% and the other bank is offering a rate of 4.5% compounded annually. Which is the better deal?
What is the index of the radical below?
√10
A. 5
B. 9
C. 2
D. 10
HELP PLEASE BE CORRECT
Answer:
12
Step-by-step explanation:
Scale factor of 4
CD = 3
3 · 4 = 12
Length of C'D' is 12 units
Answer:
12 units
Step-by-step explanation:
The original segment CD = 3 units
Scale factor is 4.
3 x 4 = 12
a.
What is 46.7% of
4/5?
Answer:
0.3736
Step-by-step explanation:
46.7 percent of [tex]\frac{4}{5}[/tex] is 0.3736.
What is the percentage?A percentage is a figure or ratio stated as a fraction of 100 in mathematics. Although the abbreviations "pct," "pct," and occasionally "pc" are also used, the percent sign, " percent ", is frequently used to signify it. A % is a number without dimensions and without a standard measurement.What is a fraction?A number is stated as a quotient in mathematics when the numerator and denominator are divided. Both are integers in a simple fraction. A fraction appears in the numerator or denominator of a complex fraction. The numerator of a proper fraction is less than the denominator.Solution -To find 46.7% of [tex]\frac{4}{5}[/tex].
So,
[tex]\frac{46.7}{100}[/tex] × [tex]\frac{4}{5}[/tex]
[tex]\frac{0.467}{100}[/tex] × [tex]\frac{4}{5}[/tex]
⇒ [tex]0.3736[/tex]
Therefore, 46.7% of [tex]\frac{4}{5}[/tex] is 0.3736.
Know more about percentages here:
https://brainly.com/question/24304697
#SPJ2
The function ƒ(x) = (x − 1)^2 + 5 is not one-to-one. Find a portion of the domain where the function is one-to-one and find an inverse function.
The restricted domain for ƒ is ?
Answer:
f(x)=(x-1)^2+5 with domain x>1 and range y>5 has inverse g(x)=sqrt(x-5)+1 with domain x>5 and range y>1.
Step-by-step explanation:
The function is a parabola when graphed. It is in vertex form f(x)=a(x-h)^2+k where (h,k) is vertex and a tells us if it's reflected or not or if it's stretched. The thing we need to notice is the vertex because if we cut the graph with a vertical line here the curve will be one to one. So the vertex is (1,5). Let's restrict the domain so x >1.
* if x>1, then x-1>0.
* Also since the parabola opens up, then y>5.
So let's solve y=(x-1)^2+5 for x.
Subtract 5 on both sides:
y-5=(x-1)^2
Take square root of both sides:
Plus/minus sqrt(y-5)=x-1
We want x-1>0:
Sqrt(y-5)=x-1
Add 1 on both sides:
Sqrt(y-5)+1=x
Swap x and y:
Sqrt(x-5)+1=y
x>5
y>1