Answer:
check the attachment
Step-by-step explanation:
2x - y = - 4
- y = - 4 - 2x
y = 2x + 4
slope of the line = 2 with y - intercept 4
An air conditioning system can circulate 310 cubic feet of air per minute. How many cubic yards of air can it circulate per minute? The air conditioning system can circulate about cubic yards of air per minute.
Answer:
310/[tex]3^{3}[/tex] = 310/27 =11.48
Step-by-step explanation:
Answer:
310/ = 310/27 =11.48
Step-by-step explanation:
The sum of the base and height of a triangle is 14 cm. Which of the following equations could be used to find the maximum area of the triangle?
A) A = 0.5x^2 - 15x
B) A = -0.5x^2 + 7x
C) A = -x^2 + 10x
D) A = x^2 - 10x
Answer:
B
Step-by-step explanation:
Let the base of the triangle be b and the height be h.
The sum of the base and height is 14. Thus:
[tex]b+h=14[/tex]
Recall that the area of a triangle is given by:
[tex]\displaystyle A=\frac{1}{2}bh[/tex]
From the first equation, solve for either variable:
[tex]h=14-b[/tex]
Substitute:
[tex]\displaystyle A=\frac{1}{2}b(14-b)[/tex]
Distribute:
[tex]\displaystyle A=\frac{1}{2}(14b-b^2)[/tex]
Distribute:
[tex]\displaystyle A=-0.5b^2+7b[/tex]
Let b = x. Hence:
[tex]A=-0.5x^2+7x[/tex]
Therefore, our answer is B.
Hannah ran 12 laps for 8 days. How many laps did she run in total if she take a break of 1 complete day and 1 half day.
Answer:
The correct answer would be - 9.75 laps (if runs 12 laps in 8 days) or 78 laps (if 12 laps each day for 8 days)
Step-by-step explanation:
Given:
a) Laps covered in 8 days = 12
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 12/8 laps per day
= 3/2 laps per day
Now multiply the daily run with days
= (3/2)*6.5 (due to 8 - 1.5 = 6,5 days)
= 9.75 laps
B) Given:
Laps covered in 8 days = 12*8 =96
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 96/8 laps per day
= 12laps per day
Now multiply the daily run with days
= 12*6.5 (due to 8 - 1.5 = 6,5 days)
= 78 laps
when price of indomie noodles was lowered from #50 to #40 per unit, quantity demanded increases from 400 to 600 units per week. calculate the coefficient of price elasticity of demand and determine whether by lowering price this firm has made a wise decision
Answer:
The price elasticity of demand is -10
Step-by-step explanation:
Given
[tex]p_1,p_2 = 50,40[/tex]
[tex]q_1,q_2 = 400,500[/tex]
Solving (a): The coefficient of price elasticity of demand (k)
This is calculated as:
[tex]k = \frac{\triangle q}{\triangle p}[/tex]
So, we have:
[tex]k = \frac{500 - 400}{40 - 50}[/tex]
[tex]k = \frac{100}{-10}[/tex]
[tex]k = -10[/tex]
Because |k| > 0, then we can conclude that the company made a wise decision.
Test 21,753 for divisibility by 2,3,5,9 and 10
Answer:
Step-by-step explanation:
21,753
at unit place=3 not an even number,not equal to 5 and not equal to 0
so 21,753 is not divisible by 2,5 and 10
again
2+1+7+5+3=18 divisible by 3 and 9.
so 21,753 is divisible by 3 and 9.
4b^2+300=0 this is a quadratic equation that I am trying to solve including any solutions with imaginary numbers I will include a picture
Answer:
b= 5i square root of 3
b = -5i square root of 3
Step-by-step explanation:
4b^2+300=0
4b^2 = -300
b^2 = -75
b = square root of -75
b = -75^1/2
^1/2 means square root
b = 25^1/2 * 3^1/2 * i
b= 5i square root of 3
b = -5i square root of 3
ES
What is the mZACB?
А.
10°
B
O 50°
(4x)
O 90°
O 180°
(7x-20)
С
Done
Intro
Answer:
B
O 50° is the mZACB out of the options
HELP ASAP I WILL GIVE BRAINLIST
Find the length of an arc of a circle with a 8-cm radius associated with a central angle of 240 degrees. Give your answer in exact and approximate form to the nearest hundredth. Show and explain your work
Answer:
33.51 cm
Step-by-step explanation:
240/360 = 2/3 (Arc length is 2/3 of the total circumference)
C = 2[tex]\pi[/tex]r ( Calculate the total circumference)
C = 2(8)[tex]\pi[/tex]
C = 50.265
2/3(50.265) (Take 2/3 of the circumference. times 2 divide by 3)
33.51
Use a calculator and leave the answer to C and then multiply and divide. You get a more precise answer.
The exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
The arc length in approximate form is 33.49 radians.
What is the formula for arc length?[tex]s = r\times \theta[/tex]
where r is the radius of the circle and [tex]\theta[/tex] is the central angle in radians.
How to convert angle from degrees to radians?Radians = Degrees ×[tex]\frac{\pi}{180^{\circ}}[/tex]
For given question,
We have been given a circle with a 8-cm radius associated with a central angle of 240 degrees.
[tex]r=8~cm,~\theta=240^{\circ}[/tex]
First we convert angle in radians.
[tex]\theta=240^{\circ}\\\\\theta=240^{\circ} \times \frac{\pi}{180^{\circ}}\\\\ \theta=\frac{4\pi}{3}[/tex]
Using the formula of the arc length,
[tex]s=8\times \frac{4\pi}{3} \\\\s=\frac{32\pi}{3}[/tex]
The exact answer of the arc length is [tex]s=\frac{32\pi}{3}[/tex]
Substitute the value of [tex]\pi = 3.14[/tex]
So, the arc length would be,
[tex]\Rightarrow s=\frac{32\times \pi}{3}\\\\\Rightarrow s=\frac{32\times 3.14}{3}\\\\\Rightarrow s=33.49[/tex]radians
Therefore, the exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
the arc length in approximate form is 33.49 radians.
Learn more about the arc length here:
https://brainly.com/question/16403495
#SPJ2
suppose △abc≅△xyz. what is the corresponding congruent part for each segment or angle?
Answer:
See below
Step-by-step explanation:
Hi there!
We're given that ΔABC≅ΔXYZ
When two triangles are congruent, their corresponding parts are congruent
Because of that, it means vertex A in ΔABC is congruent to vertex X in ΔXYZ, vertex B is congruent to vertex Y, and vertex C is congruent to vertex Z
Since we don't have a picture of the triangles given, we can use the names of the triangles to find the corresponding parts
so, to find the corresponding congruent angle to <BCA:
B is the first letter in the angle, and the corresponding letter in ΔXYZ is Y.
C is the second letter in the angle, and the corresponding letter is Z.
A is the last letter in the angle, and the corresponding letter is X
so that means <YZX is congruent to <BCA
now let's do the same for <ZYX
Z is the first letter in the angle, and the corresponding letter that's in the same place in ΔABC is C
Y is the second letter in the angle, and the corresponding letter is B
X is the last letter in the angle, and the corresponding letter is A
So that means <CBA is congruent to <ZYX
Now to find corresponding sides:
We can still use the names of the triangles, ΔABC and ΔXYZ
so to find the corresponding side to AB,
in ΔABC, AB makes up the first and second letter of the name of the triangle
The corresponding side must also make up the first and second letter of the name of the triangle
in ΔXYZ, the letters X and Y make up the first and second letter
so that means XY must be corresponding to AB
finally,
we need to find the segment congruent to YZ
in ΔXYZ, YZ makes up the second and third letter of the name of the triangle
the corresponding side must also make up the second and third letter of the name of the triangle
in ΔABC, the letters B and C make up the second and third letter in the triangle
So that means BC must be congruent to YZ
Hope this helps!
The value of y varies with x and z, and y=8, when x=4 and z=10. What is the value of y when x=5 and z=11
Suppose a large shipment of televisions contained 9% defectives. If a sample of size 393 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 3%
Answer:
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose a large shipment of televisions contained 9% defectives
This means that [tex]p = 0.09[/tex]
Sample of size 393
This means that [tex]n = 393[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{393}} = 0.0144[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 3%?
Proportion between 0.09 - 0.03 = 0.06 and 0.09 + 0.03 = 0.12, which is the p-value of Z when X = 0.12 subtracted by the p-value of Z when X = 0.06.
X = 0.12
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.12 - 0.09}{0.0144}[/tex]
[tex]Z = 2.08[/tex]
[tex]Z = 2.08[/tex] has a p-value of 0.9812
X = 0.06
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0144}[/tex]
[tex]Z = -2.08[/tex]
[tex]Z = -2.08[/tex] has a p-value of 0.0188
0.9812 - 0.0188 = 0.9624
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Bob had 10 more cars than Paul. Paul had 15 cars.
Answer:
Bob had 25 cars
Step-by-step explanation:
10+15=25
Un automóvil consume 4 galones de gasolina al recorrer 180 kilómetros y para recorrer 900 kilómetros necesita 20 galones ¿cuántos kilómetros recorre por galón? ¿Cuantos galones consumirá en 2700 kilómetros?
Answer:
45 km por galón
60 galones en 2700 Km
Step-by-step explanation:
180 / 4
45 km por galón
900 / 45
20 galones
2700 / 45
60 galones en 2700 Km
The cardinal number of {200, 201, 202, 203, ..., 1099}
Answer:
I have not been able to answer it sorry
There are 3 boxes on stage that appear identical, but one is Lucky. The boxes are full of tickets; some are labeled "win" and the others are labeled "lose." In the Lucky box, ninety percent of the tickets are winners. In each of the other two boxes, only twelve percent of the tickets are winners.
1. You will pick a box at random and draw one ticket from it at random.2. What is the probability you will draw a winning ticket? 3. If you do draw a winning ticket, what is the chance it came from the Lucky box?
Answer:
2.-P = 0.38
3.-P [ Lb | Wt ] = 0.788
Step-by-step explanation:
1.-Probability of choosing any box is, 1/3. So the probability of choosing the lucky box is 1/3
Let´s say the lucky box is the number 2 box ( that consideration does not in any way change the problem generality)
Then we have
p₁ probability of choosing box 1 is 1/3 p₁´ Probability of win ticket is 0.12
p₂ probability of choosing box 2 is 1/3 p₂´Probability of win ticket is 0.90
p₃ probability of choosing box 3 is 1/3 p₃´ Probability of win ticket is 0.12
Then
P (of choosing a winning ticket is) = p₁*p₁´ + p₂*p₂´ + p₃*p₃´
P = 1/3*0.12 + 1/3*0.9 + 1/3*0.12
P = 0.04 + 0.3 + 0.04
P = 0.38
3.- if I draw a winning ticket what is the probability it came from Lucky box
According to Bayes theorem
P [ Lb | Wt ] = P(Lb) * P[ Wt|Lb]/ P(Wt)
P(Lb) = 1/3 = 0.33333
P[Wt|Lb] = 0.9
P(Wt) = 0.38
Then By substitution
P [ Lb | Wt ] = 0.333 * 0.9 / 0.38
P [ Lb | Wt ] = 0.788
Tell whether the following two triangles can be proven congruent through SAS.
A.Yes, the two triangles are congruent because they’re both right triangles.
B.Yes, the two triangles are congruent because two sides and their included angle are congruent in both triangles.
C.No, the two triangles can only be proven congruent through SSS.
D.No, the two triangles can only be proven congruent through AAA.
Answer:
C.No, the two triangles can only be proven congruent through SSS.
On a coordinate plane, 2 triangles are shown. The first triangle has points A (negative 1, negative 2), B (negative 4, negative 2), C (negative 1, negative 4). The second triangle has points A prime (1, 2), B prime (4, 2), C prime (1, 4). What rule describes the rotation about the origin? (x, y) → How many degrees was the figure rotated about the origin?
9514 1404 393
Answer:
(x, y) ⇒ (-x, -y)180°Step-by-step explanation:
Each image point has its signs reversed from the pre-image point.
(x, y) ⇒ (-x, -y) . . . . describes the rotation
Rotation from the third quadrant (A) to the first quadrant (A') is a rotation of 180°.
Answer:
3rd and 2nd option
Step-by-step explanation:
Explain how to divide a decimal by a decimal
Answer:
To divide a decimal by another decimal:
Move the decimal point in the divisor to the right until it is a whole number.
Move the decimal point in the dividend to the right by the same number of places as the decimal point was moved to make the divisor a whole number.
Then divide the new dividend by the new divisor
Step-by-step explanation:
see in the example
A forestry researcher wants to estimate the average height of trees in a forest near Atlanta, Georgia. She takes a random sample of 18 trees from this forest. The researcher found that the average height was 4.8 meters with a standard deviation of 0.55 meters. Assume that the distribution of the heights of these trees is normal. For this sample what is the margin of error for her 99% confidence interval
Answer:
The margin of error for her confdence interval is of 0.3757.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 18 - 1 = 17
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 17 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 2.8982
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}}[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
Standard deviation of 0.55 meters.
This means that [tex]s = 0.55[/tex]
What is the margin of error for her 99% confidence interval?
[tex]M = T\frac{s}{\sqrt{n}}[/tex]
[tex]M = 2.8982\frac{0.55}{\sqrt{18}}[/tex]
[tex]M = 0.3757[/tex]
The margin of error for her confdence interval is of 0.3757.
Margin of error is the distance between the mean and the limit of confidence intervals. The margin of error for the given condition is 3.28 approximately.
What is the margin of error for small samples?Suppose that we have:
Sample size n < 30
Sample standard deviation = sPopulation standard deviation = [tex]\sigma[/tex]Level of significance = [tex]\alpha[/tex]Degree of freedom = n-1Then the margin of error(MOE) is obtained as
Case 1: Population standard deviation is knownMargin of Error = [tex]MOE = T_{c}\dfrac{\sigma}{\sqrt{n}}[/tex]
Case 2: Population standard deviation is unknown[tex]MOE = T_{c}\dfrac{s}{\sqrt{n}}[/tex]
where [tex]T_{c}[/tex] is critical value of the test statistic at level of significance
For the given case, taking the random variable X to be tracking the height of trees in the sample taken of trees from the considered forest.
Then, by the given data, we get:
[tex]\overline{x} = 4.8[/tex], [tex]s = 4.8[/tex], n = 18
The degree of freedom is n-1 = 17
Level of significance = 100% - 99% = 1% = 0.01
The critical value of t at level of significance 0.01 with degree of freedom 17 is obtained as T = 2.90 (from the t critical values table)
Thus, margin of error for 99% confidence interval for considered case is:
[tex]MOE = T_{c}\dfrac{s}{\sqrt{n}}\\\\MOE = 2.9 \times \dfrac{4.8}{\sqrt{18}} \approx 3.28[/tex]
Thus, the margin of error for the given condition is 3.28 approximately.
Learn more about margin of error here:
https://brainly.com/question/13220147
class 7th chapter: Simple Equation
The solution of the equation p-1 =20 is -------- *
a) 19
b) 20
c) 21
Answer:
C
Step-by-step explanation:
p=20+1
the slope of line is
Answer:
there is no file attached
Step-by-step explanation:
In the diagram, point D is the center of the medium-sized circle that passes through C and E, and it is also the center of the largest circle that passes through A and G. Each of the diameters of the small circles with centers B and F equals the radius of the medium-sized circle with center D. The shaded area is what fraction of the largest circle?Single choice.
9514 1404 393
Answer:
5/8
Step-by-step explanation:
The area of the smaller circles is proportional to the square of the ratio of their diameters. The two smallest circles have diameters equal to 1/4 the diameter of the largest circle. Hence their areas are (1/4)^2 = 1/16 of that of the largest circle.
Similarly, the medium circle has a diameter half that of the largest circle, so its area is (1/2)^2 = 1/4 of the are of the largest circle.
The smaller circles subtract 2×1/16 +1/4 = 3/8 of the area of the largest circle. Then the shading is 1-3/8 = 5/8 of the area of the largest circle.
What is the value of 3 minus (negative 2)?
A number line going from negative 5 to positive 5.
Answer:
5
Step-by-step explanation:
3-(-2) will become positive 5. so number line will go towards positive 5.
-09
2 1 point
The amount of a radioactive substance y that remains after t years is given by the equation y = a (e)^kt, where a is the initial
amount present and k is the decay constant for the radioactive substance. If a = 100, y = 50, and k = -0.035, find t.
Answer:
19.80
Step-by-step explanation:
Given the equation :
y = a (e)^kt
If a = 100, y = 50, and k = -0.035, find t.
50 = 100(e)^(-0.035t)
50/100 = e^(-0.035t)
0.5 = e^-0.035t
Take the In
In(0.5) = - 0.035t
-0.693147 = - 0.035t
-0.693147 / - 0.035 = t
19.8042 = t
Hence, t = 19.80
In 2006, there were 160 teachers in College A, and three fourth of them had their own vehicles. In 2007, 20 new teachers came to the school and 6 of them had own vehicles. Calculate the percentage increase in the numbers of teacher who had own vehicles.
Answer: 5%
Step-by-step explanation:
In 2006, there were 160 teachers in College A, and ¾ of them had their own vehicles, the number of people who had their own vehicles will be:
= 3/4 × 160
= 120
In 2007, 20 new teachers came to the school and 6 of them had own vehicles. This means the number if people with vehicles will be:
= 120 + 6
= 126
The percentage increase will be:
= Increase / Old vehicle owners × 100
= 6/120 × 100
= 1/20 × 100
= 5%
The Percentage increase is 5%.
log2(6x) – log2 (x)-2
Answer:
xlog(64)−xlog(2)−2
Step-by-step explanation:
Simplify 6log(2) by moving 6 inside the logarithm.
log(2^6)x − log(2)x − 2
Raise 2 to the power of 6.
log(64)x − log(2)x − 2
Reorder factors in log(64)x − log(2)x −2.
5. In 2015, Texas led the nation in the percentage of people who lacked health insurance (21.6% of the population). It is known that, nationally, 5% of patients account for 50% of the costs of healthcare. These are the “high cost” patients Assume* that: Being a high cost patient and being uninsured are independent characteristics Insured and uninsured people become “patients” at the same rate The uninsured and high cost patients in Texas are evenly distributed across the state, and that high cost patients are evenly distributed across insured and uninsured patient populations a. What is the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured?
Answer: 0.108
Step-by-step explanation:
Since the probability of the uninsured is 21.6% of the population, then the probability of insured will be:
= 1 - 21.6%
= 78.4%
The probability of high cost patients is 5%. Therefore, the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured will be:
= 5% × 21.6%
= 0.05 × 0.216
= 0.108
HELP ASAP I WILL GIVE BRAINLIST
If sin ∅ = -sqrt{3} OVER 2 and π < ∅ < 3π OVER 2, what are the values of cos ∅ and tan ∅? What is ∅ in degrees and radians? Be sure to show and explain all work.
Step-by-step explanation:
sin ∅ = -(√3)/2
Note that
cos²∅ + sin²∅ = 1
cos²∅ = 1 - sin²∅
= 1 - (-√3 / 2)²
= 1 - (-√3)²/ 2²
= 1 - 3/4
= 1/4
cos²∅ = 1/4
Taking square root of both sides
cos∅ = 1/2
Note that tan∅ = sin∅/cos∅
therefore, tan∅ = -(√3)/2 ÷ 1/2
= -(√3)/2 × 2/1
= -√3
tan∅ = -√3
Since sin∅ = -√3 /2
Then ∅ = -60⁰
The value of ∅ for the given range (third quadrant) is 240⁰.
NB: sin∅ = sin(180-∅)
Also, since 180⁰ is π radians, then ∅ = 4π/3
Midsegments geometry acellus pls helppfpfpff
Answer:
BC = 28
Step-by-step explanation:
The midsegment DF is half the measure of the third side BC , then
BC = 2 × DF = 2 × 14 = 28
24
4
3+
2+
2
1
-3
-
-1
1
1
2
3
4
-1+
-2 +
-3+
4
What is the slope of the line?
Answer:
1.5/2
Step-by-step explanation:
slope formula = y2-y1/ x2 - x1
point one (2,0)
point 2 (0, 1.5)
you dont really need to subtract anything because the intercepts, so the slope is 1.5/2
(slope or m = 1.5 - 0 / 2 - 0 )
x intercept = value of x when y is 0
y intercept = value of y when x is 0