Answer:
The answer is 5
Step-by-step explanation:
divide 10 by two and get 5
Answer:
[tex]x = 5[/tex]
Step-by-step explanation:
We have the equation [tex]2x = 10[/tex], we can try and isolate x by dividing both sides by 2.
[tex]2x \div 2 = 10\div2\\x = 5[/tex]
Hope this helped!
z3+(y2-4x) x is 6 y is 8 z is 3
Answer:
9
Step-by-step explanation:
x = 6
y = 8
z = 3
3z + (2y - 4x)
= (3)3 + (2[8] - 4[6])
= 9 + (16 - 16)
= 9 + 0
= 9
Hope this helps! Tell me if am wrong about the answer, please!
Tell me the answer
69:?::89:36
?????????????????????????????????????
Convert to slope-intercept from: y-4=9(x-7)
Answer:
y = 9x - 59
Step-by-step explanation:
y - 4= 9(x-7)
y - 4 = 9x - 63
y - 4 + 4 = 9x - 63 + 4
y = 9x - 59
Answer:
Below
Step-by-step explanation:
● y-4 = 9(x-7)
Multiply 9 by (x-7)
● y-4 = 9x - 63
Add 4 to both sides
● y-4+4 = 9x-63 +4
● y = 9x - 59
please help!!!! Use the graph to complete the statement. O is the origin. Ry−axis ο Ry=x: (-1,2)
A. (1, -2) B. (-1, -2) C. (2, -1) D. (-2, -1)
Answer: D. (-2, -1)
Step-by-step explanation:
Here we do two reflections to the point (-1, 2).
First, we do a reflection over the line x = y. Remember that a reflection over a line keeps constant the distance between our point and the given line, so we have that for a pint (x, y), the reflection over the line y = x is:
Ry=x (x, y) = (y, x)
so for our point, we have:
Ry=x (-1, 2) = (2, -1)
Now we do a reflection over the y-axis, again, a reflection over a line keeps constant the distance between our point and the given line, so if we have a point (x,y) and we do a reflection over the y-axis, our new point will be:
Ry-axis (x,y) = (-x, y)
Then in our case:
Ry-axis (2, -1) = (-2, -1)
The correct option is D.
Consider the plot created from the residuals of a line of best fit for a set of data.
Does the residual plot show that the line of best fit is appropriate for the data?
Yes, the points have no pattern.
No, the points are evenly distributed about the x-axis.
No, the points are in a linear pattern.
Yes, the points are in a curved pattern.
Answer:
No, the points are in a linear pattern.
Step-by-step explanation:
Residual plot is a graph that shows the residuals on the vertices. The y-axis has residual values and x-axis has independent variables. The horizontal axis shows the independent variables to determine the best fit for a set. The graph given is in a linear pattern. The random pattern shows that linear model is good fit.
Answer:
C: No, the points are in a linear pattern
Step-by-step explanation:
edg2021
I have been seeing this question with multiple different answers, and no one is sure about anything! All I can say for sure is that IT IS NOT A! So C makes the most sense. B is simply not true, and neither is D, its not curved or evenly distribute.
If a polygon has an area of 10 cm² and is dilated by a factor of 2, what will be the area of the dilated polygon?
Area depends on the product of sides,
so if the sides are shortened by a factor of 2, area will reduce by a factor of 4. (2×2)
new area = 10/4=2.5 cm²
I need help with this please.
Answer:
the slope is 60
Step-by-step explanation:
the slope is the number multiplying the x value, or t in this case.
Answer:
The slope is 60, and create the graph by dragging one point to (0,0) and one point to (1,60).
Step-by-step explanation:
If we have the proportional relationship [tex]d=60t[/tex], then the slope will be what we multiply t by to get d, therefore the slope is 60.
Since there is no y-intercept, the line WILL pass through the origin (0,0), so a point goes there.
If we make t 1, then d will be at point (1,60) because [tex]60\cdot1=60[/tex].
Hope this helped!
URGENTT PLEASE ANSWER
Answer:
Step 2
Step-by-step explanation:
9 was added to both sided so the equation would remain equal and the 9 would be cancelled out on the left side.
Event A: Flipping heads on a coin #1. Event B: Flipping heads on a coin #2. What is P(A and B)?
Answer:
coin 1
Step-by-step explanation: i think this is it
Answer:
Heads is a 50, 50 situation. so 1/2 plus 1/2 is 1/4
please i really need help The line plot below displays the fraction of incoming calls answered before the second ring by a group of employees. What fraction of employees answered less than of their incoming calls before the second ring?
Answer:
B
Step-by-step explanation:
If we count the number of points we find out that there are 36 employees
so the fraction must go like x/36
x is the numbers of dots that are less than a 1/2 which are 1/8, 1/4 and 3/8
so x=6
6/36
1/6
so option B
The graphs below have the same shape. What is the equation of the blue
graph?
Answer:
B
Step-by-step explanation:
Given f(x) then f(x + k) represents a horizontal translation of f(x)
• If k > 0 then shift left by k units
• If k < 0 then shift right by k units
Here g( x) is f(x) moved 5 units right, thus
g(x) = (x - 5)² → B
if "f" varies directly with "m," and f = -19 when m = 14, what is "f" when m = 2
Answer:
f = - [tex]\frac{19}{7}[/tex]
Step-by-step explanation:
Given f varies directly with m then the equation relating them is
f = km ← k is the constant of variation
To find k use the condition f = - 19 when m = 14, thus
- 19 = 14k ( divide both sides by 14 )
- [tex]\frac{19}{14}[/tex] = k
f = - [tex]\frac{19}{14}[/tex] m ← equation of variation
When m = 2, then
f = - [tex]\frac{19}{14}[/tex] × 2 = - [tex]\frac{19}{7}[/tex]
1. (a) Find the greatest common divisor of the term 144x3y2and 81xy4
(b) Hence factorise completely this expression 144x3y2-81xy4
Answer:
Step-by-step explanation:
a) 144x³y² = 2 *2*2*2* 3* 3* x³ * y² = 2⁴ * 3² * x³ * y²
81xy⁴ = 3 * 3 * 3 * 3 * x * y⁴ = 3⁴ * x * y³
GCD is that are in both term
Greatest common divisor = 3² * x * y² = 9xy²
b) 144x³y² - 81xy⁴ = 9xy² * 16x²y - 9xy²*9y²
= 9xy²(16x²y - 9y²)
what is the greatest common factor of 48,24,and 32
Answer:
8
Step-by-step explanation:
gcf
The radius of the circle is increasing at a rate of 1 meter per day and the sides of the square are increasing at a rate of 3 meters per day. When the radius is 3 meters, and the sides are 20 meters, then how fast is the AREA outside the circle but inside the square changing
Answer:
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
Step-by-step explanation:
According to the statement of the problem, the circle is inside the square and the area inside the square but outside the circle, measured in square meters, is represented by the following formula. It is worth to notice that radius ([tex]r[/tex]) is less than side ([tex]l[/tex]), both measured in meters:
[tex]A_{T} = A_{\square} -A_{\circ}[/tex]
[tex]A_{T} = l^{2}-\pi\cdot r^{2}[/tex]
Now, the rate of change of the total area is calculated after deriving previous expression in time:
[tex]\frac{dA_{T}}{dt} = 2\cdot l\cdot \frac{dl}{dt} -2\pi\cdot r\cdot \frac{dr}{dt}[/tex]
Where [tex]\frac{dl}{dt}[/tex] and [tex]\frac{dr}{dt}[/tex] are the rates of change of side and radius, measured in meters per day.
Given that [tex]l = 20\,m[/tex], [tex]r = 3\,m[/tex], [tex]\frac{dl}{dt} = 3\,\frac{m}{day}[/tex] and [tex]\frac{dr}{dt} = 1\,\frac{m}{day}[/tex], the rate of change of the total area is:
[tex]\frac{dA_{T}}{dt} = 2\cdot (20\,m)\cdot \left(3\,\frac{m}{day} \right)-2\pi\cdot (3\,m)\cdot \left(1\,\frac{m}{day} \right)[/tex]
[tex]\frac{dA_{T}}{dt} \approx 101.150\,\frac{m^{2}}{day}[/tex]
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions: 2ab-6a+5b+___
Answer:
-15
Step-by-step explanation:
In this question, we want to fill in the blank so that we can have the resulting expression expressed as the product of two different linear expressions.
Now, what to do here is that, when we factor the first two expressions, we need the same kind of expression to be present in the second bracket.
Thus, we have;
2a(b-3) + 5b + _
Now, putting -15 will give us the same expression in the first bracket and this gives us the following;
2a(b-3) + 5b-15
2a(b-3) + 5(b-3)
So we can have ; (2a+5)(b-3)
Hence the constant used is -15
what is mean absolute deviation (MAD) and how do I find it?
Steps to find MAD:
Step 1. Calculate mean([tex]\overline{x}[/tex]) of the data using formula: [tex]\overline{x}=\dfrac{\sum x}{n}[/tex] , where x denotes data points and n is the number of data points.
Step 2. Calculate distance of each data point from mean :
Distance = [tex]|x-\overline{x}|[/tex]
Step 3. Divide distance of each data point from mean by n:
MAD = [tex]\dfrac{\sum |x-\overline{x}|}{n}[/tex] , which is the final computation to find MAD.
Find b.
Round to the nearest tenth:
Answer:
always b is equal to 9 is rhdx forum post in is ek of
Answer:
6.7 cm
Step-by-step explanation:
A+B+C=180°
55°+B+82°=180°
B=43°
Using the formulae
(Sin A)/a = (Sin B)/b
(Sin 55)/8 = (Sin 43)/b
b = [8(Sin 43)]/(Sin 55)
b= 6.7 cm
Simplify 2√28 - 3√63. I will give BRAINLIEST!
[tex]2\sqrt{28}-3\sqrt{63}=2\sqrt{4\cdot7}-3\sqrt{9\cdot7}=4\sqrt7-9\sqrt7=-5\sqrt7[/tex]
A pair of opposite vertices of a square is (1, 2) and (3,4). Find the coordinates of the remaining
vertices of the square.
Answer:
(3, 2) and (1, 4)
Step-by-step explanation:
Plot the two points on a graph.
The other two points are (3, 2) and (1, 4).
To do this with algebra, it takes a few steps.
The diagonals of a square are perpendicular and bisect each other. You are given opposite vertices, so first, find the midpoint of that diagonal.
((1 + 3)/2, (2 + 4)/2) = (2, 3)
The midpoint of the diagonal is (2, 3).
This diagonal has slope 1 and y-intercept 1, so its equation is
y = x + 1
The perpendicular bisector has equation
y = -x + 5
The two vertices we are looking for, lie in a circle whose center is the midpoint of the diagonals, (2, 3), and whose radius is half of the diagonal.
Use Pythagoras to find the diagonal's length.
2^2 + 2^2 = c^2
c^2 = 8
c = sqrt(8) = 2sqrt(2)
Half of the diagonal is sqrt(2). This is the radius if the circle.
The equation of the circle is
(x - 2)^2 + (y - 3)^2 = (sqrt(2))^2
(x - 2)^2 + (y - 3)^2 = 2
The points of intersection of this circle and the second diagonal are the two vertices you are looking for.
System of equations:
(x - 2)^2 + (y - 3)^2 = 2
y = -x + 5
Use substitution and substitute y with -x + 5 in the equation of the circle.
(x - 2)^2 + (-x + 5 - 3)^2 = 2
(x - 2)^2 + (-x + 2)^2 - 2 = 0
x^2 - 4x + 4 + x^2 - 4x + 4 - 2= 0
2x^2 - 8x + 6 = 0
x^2 - 4x + 3 = 0
(x - 3)(x - 1) = 0
x - 3 = 0 or x - 1 = 0
x = 3 or x = 1
Now we find corresponding y values.
y = -x + 5
x = 3
y = -3 + 5 = 2
This gives us (3, 2).
y = -x + 5
x = 1
y = -1 + 5 = 4
This gives us (1, 4).
Answer: (1, 4) and (3, 2)
What are the solutions of x2 + 20 = 12x.
Answer:
x₁ = 2
x₂ = 10
Step-by-step explanation:
x² + 20 = 12x
x² - 12x + 20 = 0
(x-2)(x-10) = 0
then:
x₁ = 2
x₂ = 10
Check:
x₁
2² + 20 = 12*2
3 + 20 = 24
x₂
10² + 20 = 12*10
100 + 20 = 120
Recall the equation that modeled the average number of non-defective refrigerators produced per hour in terms of x, the number of hours of production per day: Now, open the graphing tool and graph the equation. Use the pointer to determine how many hours of production there are in a day if the average number of non-defective refrigerators produced per hour is 15.
Answer:
The graph representing the above equation is attached below.
Step-by-step explanation:
The equation that modeled the average number of non-defective refrigerators produced per hour in terms of x, the number of hours of production per day is:
[tex]y=\frac{196-3x}{x}[/tex]
Simplify the expression as follows:
[tex]y=\frac{196-3x}{x}[/tex]
[tex]y=\frac{196}{x}-3[/tex]
The graph representing the above equation is attached below.
On moving the pointer to y = 15, it was determined that the value of x was 10.89.
The point is also plotted on the graph
Answer:
There would be 11 hours of production in a day.
Step-by-step explanation:
Suppose that there are two types of tickets to a show: advance and same-day. The combined cost of one advance ticket and one same-day ticket is $65 . For one performance, 25 advance tickets and 35 same-day tickets were sold. The total amount paid for the tickets was 1875 . What was the price of each kind of ticket?
Answer:
same day = 25
advanced = 40
Step-by-step explanation:
Let a = advanced tickets
s = same day tickets
s+a = 65
25a+35s = 1875
Multiply the first equation by -25
-25s -25a = -1625
Add this to the second equation
25a+35s = 1875
-25a -25s= -1625
---------------------------
10s = 250
Divide each side by 10
10s/10 = 250/10
s =25
Now find a
s+a = 65
25+a = 65
a = 40
Answer: same day = 25
advanced = 40
Solve y+1=-3/4 (x+2) and y-3= 2/3 (x-4) please show how you solve it
Answer:
y = -3/4x-5/2 and y = 2/3x-1/3
Step-by-step explanation:
y+1 = -3/4(x+2)
y+1 = -3/4x-3/2
y = -3/4x-3/2-1
y = -3/4x-5/2
-----
y-3 = 2/3(x-4)
y-3 = 2/3x-8/3
y = 2/3x-8/3+3
y = 2/3x-1/3
Plz help with this question! What is 1/3 * 3/5 * 5/7 ... * 97/99
Answer:
Step-by-step explanation:
(1/3)*(3/5)*(5/7)*.......*(93/95) * (95/97) * (97/99)
The denominator of each fraction will cancel out the numerator of the next fraction.
Take a close look
Therefore the result is 1/99
HOPE IT HELPS!!
The product of the geometric series is 1/99.
The product is a geometric series with first term 1/3 and common ratio 2/3. The number of terms is 49. The sum of the series is 1/99.
Here's the explanation:
A geometric series is a series where each term is multiplied by a constant value to get the next term. The constant value is called the common ratio.
In this case, the first term is 1/3 and the common ratio is 2/3. This means that each term is multiplied by 2/3 to get the next term.
The number of terms in the series is 49. This means that there are 49 terms in the series, starting with 1/3 and ending with 97/99.
The sum of the series is 1/99. This can be found using the formula for the sum of a geometric series:
S = a × (1 - [tex]r^{n}[/tex]) / 1 - r
where a is the first term, r is the common ratio, and n is the number of terms.
In this case, a = 1/3, r = 2/3, and n = 49. Substituting these values into the formula, we get:
S = (1/3) × (1 - (2/3)49) / 1 - (2/3) = 1/99
Therefore, the product is 1/99.
Learn more about geometric series here: brainly.com/question/30264021
#SPJ2
Find the value of v in the equation below(in picture)
Answer:
v =3Step-by-step explanation:
[tex]v=\log _7\left(343\right)\\\\\mathrm{Rewrite\:}343\mathrm{\:in\:power-base\:form:}\quad 343=7^3\\\\\log _7\left(7^3\right)=3\log _7\left(7\right)\\\\v=3\log _7\left(7\right)\\\\\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1\\\\\log _7\left(7\right)=1\\\\v=3\times \:1\\\\=3[/tex]
find a rational number that is between 5.2 and 5.5. explain why it is rational.
Answer:
5.3
Step-by-step explanation:
A rational number is a number that can be written as the quotient of two integers.
5.2 and 5.5 are both rational since they can be written as quotients of integers as shown below.
5.2 = 52/10
5.5 = 55/10
5.3 is a number between 5.2 and 5.5, and since 5.3 can be written as 53/10, it is rational.
Answer: 5.3
Answer:
Step-by-step explanation:
rational numbers can be written in form a/b where b≠0
5.2 and 5.5
52/10 and 55/10
so some rational numbers could be
53/10, 54/10
irrational numbers most likely the square root numbers
square them
5.2^2=27.04
5.5^2=30.25
5.2<?<5.5
square everybody
27.04<?²<30.25
so pick a number between 27.04 and 30.25
29 or 30 are 2 numbers
I'll pick 29
?²= 29
square root
?=√29
the irrational number can be √29
it is 5.39 to the hundredth
If a number is divided by 3 or 5, the remainder is 1. If it is divided by 7, there is no remainder. What number between 1 and 100 satisfies the above conditions?
Answer:
91
Step-by-step explanation:
Look at multiples of 7 and you’ll find 91.
91 dived by 3 is 30 with a remainder of 1.
91 divided by 5 is 18 with a remainder of 1.
91 divid by 7 is 13 with no remainder.
91 is the number between 1 and 100 satisfies the above conditions
What is Number system?A number system is defined as a system of writing to express numbers.
Given that a number is divided by 3 or 5, the remainder is 1.
If it is divided by 7, there is no remainder
We need to find the number between 1 and 100 which satisfies the given conditions.
Let us consider 91.
When 91 is divided by 3 we get 30 and 1 as remainder.
91 divided by 5 is 18 with a remainder of 1.
91 divided by 7 is 13 it does not have any remainder or remainder is zero.
Hence, 91 is the number between 1 and 100 satisfies the above conditions
To learn more on Number system click:
https://brainly.com/question/22046046
#SPJ2
Question 12
1 pts
Whitney recently created a new smartphone app. As a result of the initial costs and
fees of producing the app, she did not make any money, or profit, selling the app during
the first two months of the app's release. For the first month, Whitney had a loss of
$324. During the second month of sales, she had a loss of $97. She hopes that in the
third month, she will sell enough apps to break even-that is, she hopes to earn enough
money to cover her losses. What is the amount of money Whitney needs to make in the
third month in order to break even with app sales so far?
Answer:
The amount (revenue) she makes in the third month to break even is $97
Step-by-step explanation:
The given parameters are;
The cost of the app = Initial cost + fees for producing the app
The amount she loss in the first month = Cost of the app - revenue = $324
The amount she loss in the second month = Loss from first month - revenue in second month = $324 - revenue in second month = $97
The amount Whitney has to make in the third month to break even is therefore;
The amount she makes in the third month to break even is given by the equation;
Revenue from third month - Loss from second month = 0
Which gives;
The amount she makes in the third month to break even is given by Revenue from third month - $97 = 0
∴ Revenue from third month = $97
The amount (revenue) she makes in the third month to break even = $97
I need help ASAP!!
Can someone explain this? And answer it? I am so confused!!
Answer:
Step-by-step explanation: hope this helps