Answer:
x = -1.5
Step-by-step explanation:
16x - 5 = 18x -2
Subtract 16x from each side
16x-16x - 5 = 18x-16x -2
-5 = 2x-2
Add 2 to each side
-5+2 = 2x-2+2
-3 = 2x
Divide by 2
-3/2 = 2x/2
-3/2 =x
Answer:
-3/2
Step-by-step explanation:
To solve this problem, start by moving all of your x's on to one side, and all of your constants on to the other as such:
16x-5=18x-2
+2 +2
16x-3=18x
-16x -16x
-3=2x
-3/2 = x
P.S. please give me brainliest. Thank you! :)
URGENT PLEASE ANSWER !!
Answer:
(C) [tex]y = 2x+5[/tex]
Step-by-step explanation:
Looking at this graph, we can see that the slope of it is 2. We know this because for every time x increases by 1, y increases by 2.
We also know that the y-intercept of this graph is 5, since it intercepts the y-axis at the value 5.
We can easily create an equation with this info.
[tex]y = 2x + 5[/tex].
Hope this helped!
Answer:
C. y= 2x+5
Step-by-step explanation:
y=mx+b
(+b) is y- intercept
(mx) is the slope.
plot the y- intercept first which the line starts at (0,5)
since the slope isn't a fraction you turn it into one which would be
[tex] \frac{2}{1} [/tex]
What is the missing reason in the proof?
Statements
Reasons
1. AB / CD; BC // DA 1. given
2. Quadrilateral ABCD 2. definition of parallelogram
is a
3. AB CD; BC = DA 3. opposite sides of a
parallelogram are >
4. AC AC
4. reflexive property
5. AABC 2 ACDA 5. ?
perpendicular bisector theorem
Pythagorean theorem
HL theorem
SSS congruence theorem
Answer:
The correct option is;
SSS congruency theorem
Step-by-step explanation:
Given that opposite sides of a parallelogram are equal, whereby side AB is congruent to side CD and side BC is congruent to side DA and also that side AC is congruent to side CA, we have;
Triangle ABC with sides AB, BC, and AC is congruent to triangle CDA with corresponding sides CD, DA, and CA, by the Side-Side-Side (SSS) rule of congruency (two or more triangles that have all three sides of one triangle congruent to the three sides of the other triangle are congruent).
The missing reason in the proof is: SSS Congruence Theorem.
What is the SSS Congruence Theorem?SSS means side-side-side, meaning two triangles have three pairs of congruent sides.According to the SSS Congruence Theorem, two triangles with three pairs of congruent sides must be congruent to each other.Thus, ΔABC and ΔCDA has been shown to have three pairs of congruent sides, therefore, the missing reason in the proof is: SSS Congruence Theorem.
Learn more about SSS Congruence Theorem on:
https://brainly.com/question/14252518
What the answer question
Answer:
117.79
Step-by-step explanation:
a police car drives a constant speed of 64 mph.how far can it travel in 2 hours
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Point B lies between points A and C, and all three points lie on point AC, which of the following is not true? A. Point B lies on segment AC B. Point C lies on ray AB C. Point A lies on ray BC D. Point C lies on line AB
Answer:
C. Point A lies on ray BC
Step-by-step explanation:
Points A and C can be connected by a segment which would be a measure of the distance between the points. Locating point B between AC, makes the three points lying on segment AC.
A ray extends from a point to infinity, a line extend to infinity on both sides, while a segment is known to have two endpoints. Therefore, points AC are the end points of the segment AC, and point B between this segment confirms that point B lies on the segment AC. Therefore, Point A lies on ray BC is not correct.
Find the coordinates of the midpoint of the segment given its endpoints.
3. A (5, 8 ) and B(-1,-4)
Answer:
(2, 2 )
Step-by-step explanation:
Given endpoints (x₁, y₁ ) and (x₂, y₂ ) then the midpoint is
[ [tex]\frac{1}{2}[/tex] (x₁ + x₂ ) , [tex]\frac{1}{2}[/tex] (y₁ + y₂ ) ]
Here (x₁, y₁ ) = (A(5, 8) and (x₂, y₂ ) = B(- 1, - 4) , thus
midpoint = [ [tex]\frac{1}{2}[/tex] (5 - 1), [tex]\frac{1}{2}[/tex] (8 - 4 ) ] = (2, 2 )
Simplify the expression so there is only one positive power for each base. (5^-2 x 4^-4)^-2
Answer:
Step-by-step explanation:
[tex](5^{-2}[/tex] × [tex]4^{-4}[/tex] [tex])^{-2}[/tex]
=[tex](5^{-2}[/tex][tex])^{-2}[/tex] x [tex](4^{-4})^{-2}[/tex] ∴[tex](a.b)^{n} =a^{n} .b^{n}[/tex]
=[tex]5^{-2.-2}[/tex] x [tex]4^{-4 . -2}[/tex] ∴[tex](a^{n} )^{m}[/tex] = [tex]a^{nm}[/tex] // here m is an exponent of [tex]a^{n}[/tex].
=[tex]5^{4}[/tex] x [tex]4^{8}[/tex]
I NEED THIS ANSWER IN THE NEXT 10 MIN PLS. WILL GIVE BRAINLEST!!! Find the center, vertices, and foci of the ellipse with equation x squared divided by 9 plus y squared divided by 25 = 1.
Answer:
center=0,0 vertices=(0,5)(0,-5) foci=(0,4)(0,-4)
Step-by-step explanation:
used calculator
Select the equation written in slope-intercept form that corresponds to the given slope and y-intercept. m=6 b=-2
Answer:
y = 6x - 2
Step-by-step explanation:
slope-intercept form: y = mx + b
Note that:
m = slope = 6
b = y-intercept = -2
x = (x , y)
y = (x , y)
Plug in the corresponding numbers to the corresponding variables:
y = 6x + (-2)
y = 6x - 2
y = 6x - 2 is your answer.
~
Answer:
y = 6x-2
Step-by-step explanation:
The slope intercept equation form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 6x-2
If two angles are complements of each other then each angle is
Answer:
each angle is less than 90 degrees. angle 1+angle2=90 degrees
Step-by-step explanation:
Solve without calculator log54 base 10
Step-by-step explanation:
log54 = log(2×3³)
= log2 + log3³
= log2 + 3log3
How many three-letter permutations
can you make using the letters in
BEACH?
Can someone please help me?
Answer:
60
Step-by-step explanation:
nPr=n!/(n-r)!
5!/(5-3)!
(5*4*3*2*1)/(2*1)
120/2
60
Answer:
60
Step-by-step explanation:
A permutation is a rearrangement of its elements in any sequence or linear order.
We are asked to rearrange the word BEACH into three letter permutations.
We find that each letter represents the first letter 5 x 3 = 15
Then distributes 5 places, so that 15 x 5 = 60
Choose all of the expressions that are equal to −9. |−9| −(−9) −|−9| −|9| the distance from zero to nine the opposite of nine
Answer:
|−9|, −|−9| and −|9|Step-by-step explanation:
Before we choose all the expression that is equal to -9, we must understand that the modulus of a value can return both its positive and negative value. For example, Modulus of b can either be +b or -b i.e |b| = +b or -b
Hence the following expression are all equal ro -9
a) |−9| is equivalent to -9 because the absolute value of -9 i.e |−9| can return both -9 and 9
b) −|−9| is also equivalent to -9. The modulus of -9 is also equal to 9, hence negating 9 will give us -9. This shows that −|−9| = −|9| = −9
c) −|9| is also equivalent to -9. This has been established in b above.
Answer: -|-9|, -|9|, and the opposite of nine
Step-by-step explanation: The absolute value symbol is | |. |-9| is 9 but add that - to it and it's -9. The absolute value of 9 is 9, add the - to it to get -9.
the opposite of 9 is -9.
Please help will give 5 stars with 1 thanks and 15 points
Answer:
mean is adding up all the numbers.
range means the difference between the Lowest and highest value.
Step-by-step explanation:
when we add the answer is 240.6.
divide it to 12..do the final answer is 20.05
range is 25.4_16.3
9.1
Answer:
Mean: 20.05
Range: 9.1
Step-by-step explanation:
To find the mean in this problem, first you add all the following numbers together then subtract by the quantity.
20.1 + 19.6 + 18.0 + 17.8 + 25.2 + 18.7 + 21.9 + 16.3 + 25.4 + 20.5 +17.8 + 19.3
= 240.6
Now, divide by the quantity which is 12 since there's 12 numbers.
240.6 divided by 12 = 20.05.
The mean is 20.05.
To find the range in the problem, you must subtract the smallest value from the largest value.
In this case, 16.3 is the smallest value and 25.4 is the largest.
25.4 - 16.3 = 9.1
9.1 is the range.
Hope this helps you!
Solve.
-7(2z + 4) = 21
Answer:
-7/2
Step-by-step explanation:
cuz thats right
Ken said that he is going to reduce the number of calories that he eats during the day. Ken's trainer asked him to start off small and reduce the number of calories by no more than 7%.
Answer:
Ok, this question seems incomplete, so i will answer it in a general way.
Suppose that regularly, Ken eats A calories during the day. (A is a positive number)
Now, Ken wants to reduce this number, but his nutritionist tells him to reduce no more than 7% (So the max reduction possible is a reduction of the 7%).
So after the reduction, Ken eats C calories per day.
First, the maximum reduction that Ken can do is when he reduces exactly 7% of the calories.
So if he regularly consumes A calories, the reduction will be of
(7%/100%)*A = 0.07*A
So after the reduction, the amount of calories that he consumes per day is:
C = A - 0.07*A = A*(1 - 0.07) = A*0.93
But this is the minimum amount of calories that he can consume, the actual range of possible options will be:
A < C ≤ A*0.97.
C is strictly smaller than A because we must have a reduction in the number of calories.
Those values of C is all the posible amounts of calories that Ken eats per day after the initial reduction in the number of calories per day.
PLEASE HELP!! URGENT!! i will mark brainliest if its right!! In the figure below, ∠DEC ≅ ∠DCE, ∠B ≅ ∠F, and DF ≅ BD. Point C is the point of intersection between AG and BD while point E is the point of intersection between AG and DF. Prove ΔABC ≅ ΔGFE.
Answer:
See below.
Step-by-step explanation:
This is how you prove it.
<B and <F are given as congruent.
This is 1 pair of congruent angles for triangles ABC and GFE.
<DEC and <DCE are given as congruent.
Using vertical angles and substitution of transitivity of congruence of angles, show that angles ACB and GEF are congruent.
This is 1 pair of congruent angles for triangles ABC and GFE.
Now you need another side to do either AAS or ASA.
Look at triangle DCE. Using the fact that angles DEC and DCE are congruent, opposite sides are congruent, so segments DC and DE are congruent. You are told segments DF and BD are congruent. Using segment addition postulate and substitution, show that segments CB and EF are congruent.
Now you have 1 pair of included sides congruent ABC and GFE.
Now using ASA, you prove triangles ABC and GFE congruent.
which ordered pair isa solution of the equation y=8x+3 A.Only (1,11) B.Only (-1,-5) C.Only (1,11) and (-1,-5) D Neither
Answer:
C (1,11) and (-1,-5)
Step-by-step explanation:
explain the difference between legs and the hypotenuse of a right triangle
Answer:
The difference between the legs and the hypotenuse of a right triangle is that the hypotenuse will always be the longest side. Also, it will always be less than the two legs added together.
Step-by-step explanation:
Please answer question now
Answer:
3
Step-by-step explanation:
2 tangents of a circle drawn from an external point are said to be congruent, according to the two-tangents theorem. Thus:
MN = ML (both tangents from external point M)
ML = 6 - KL
KL = KJ (tangents from point K)
PQ = QJ = 1 (tangents from point Q)
Therefore, KJ = 4 - 1 = 3
Since kJ = KL = 3,
ML = 6 - KL = 6 - 3
ML = MN = 3
The length of a rectangle is represented by the function L(x) = 4x. The width of that same rectangle is represented by the function W(x) = 7x2 − 4x + 2. Which of the following shows the area of the rectangle in terms of x? (L + W)(x) = 7x2 + 2 (L + W)(x) = 7x2 − 8x + 2 (L • W)(x) = 28x3 − 16x2 + 8x (L • W)(x) = 28x3 − 4x + 2
Answer:
(L ⋅ W)(x) = 28x3 − 16x2 + 8x
Step-by-step explanation:
I took the test hope it helps :3
The area of the rectangle is (L · W) (x) = 28x³ - 16x² + 8x. Thus, the correct option is C.
What is an area?The area of a 2D form is the amount of space within its perimeter. It is measured in square units such as cm², m², and so on. To find the area of a square formula or another quadrilateral, multiply its length by its width.
Given the length of the rectangle is L(x)=4x, and the width is W(x)=7x²-4x+2. Therefore, the area of the rectangle in terms of x is,
L(x)×W(x) = 4x × (7x²-4x+2)
(L · W) (x) = 28x³ - 16x² + 8x
Hence, the area of the rectangle is (L · W) (x) = 28x³ - 16x² + 8x. Thus, the correct option is C.
Learn more about the Area:
https://brainly.com/question/1631786
#SPJ2
find the value of x please
Answer:
A. 40°Step-by-step explanation:
AO = CO = radius
AO = CO ⇒ AB = BC and m∠AOB = m∠BOC = ¹/₂m∠AOC
From BDOE:
m∠EOB + m∠OBC + m∠CDE + m∠DEO = 360°
(65° + 75°) + 90° + x + 90° = 360°
140° + 180° + x = 360°
x = 40°
Prove: The square of the sum of
two consecutive integers is odd.
[tex](2n+1)^2=4n^2+4n+1[/tex] therefore, the first blank is 1.
[tex]4n^2+4n+1=2(2n^2+2n)+1[/tex] therefore, the two other blanks are both 2.
The number in the proof ''The square of the sum of two consecutive integers is odd'' is 2 and 2.
To prove that, The square of the sum of two consecutive integers is odd.
The expression to prove is,
Let us assume that two consecutive integers are n and (n + 1).
Hence, the expression is written as,
[n + (n + 1)]² = (2n + 1)²
= (2n)² + 2 × 2n × 1 + 1²
= 4n² + 4n + 1
= 2 (2n² + 2n) + 1
= odd
Therefore, the number in the blanks are 2 and 2.
To learn more about the Number system visit:
https://brainly.com/question/17200227
#SPJ4
Use sigma notation to represent the sum of the first seven terms of the following sequence -4,-6,-8.....
Answer:Answer:
[tex]\sum\left {{7} \atop {1}} \right -n(3+n)[/tex]
Step-by-step explanation:
Given the sequence -4,-6,-8..., in order to get sigma notation to represent the sum of the first seven terms of the sequence, we need to first calculate the sum of the first seven terms of the sequence as shown;
The sum of an arithmetic series is expressed as [tex]S_n = \frac{n}{2}[2a+(n-1)d][/tex]
n is the number of terms
a is the first term of the sequence
d is the common difference
Given parameters
n = 7, a = -4 and d = -6-(-4) = -8-(-6) = -2
Required
Sum of the first seven terms of the sequence
[tex]S_7 = \frac{7}{2}[2(-4)+(7-1)(-2)]\\\\S_7 = \frac{7}{2}[-8+(6)(-2)]\\\\S_7 = \frac{7}{2}[-8-12]\\\\\\S_7 = \frac{7}{2} * -20\\\\S_7 = -70[/tex]
The sum of the nth term of the sequence will be;
[tex]S_n = \frac{n}{2}[2(-4)+(n-1)(-2)]\\\\S_n = \frac{n}{2}[-8+(-2n+2)]\\\\S_n = \frac{n}{2}[-6-2n]\\\\S_n = \frac{-6n}{2} - \frac{2n^2}{2}\\S_n = -3n-n^2\\\\S_n = -n(3+n)[/tex]
The sigma notation will be expressed as [tex]\sum\left {{7} \atop {1}} \right -n(3+n)[/tex]. The limit ranges from 1 to 7 since we are to find the sum of the first seven terms of the series.
Question. 7 Let abc be a three-digit number. Then, abc + bca + cab is not divisible by (a) a + b + c (b) 3 (c) 37 (d) 9
Answer:
D. 9
Step-by-step explanation:
Let
abc=100a+10b+c
bca=100b+10c+a
cab=100c+10a+b
abc + bca + cab=(100a+10b+c) + (100b+10c+a) + (100c+10a+b)
=100a + 10b + c + 100b + 10c + a + 100c + 10a + b
Collect like terms
=100a + a + 10a + 10b + 100b + b + c + 10c + 100c
=111a + 111b + 111 c
Factorise
=111(a+b+c)
abc + bca + cab = 111(a+b+c)
Factors of 111(a+b+c)= 1, 3, 37, 111, and (a+b+c)
abc + bca + cab is divisible by a+b+c because it is a factor of 111(a+b+c)
abc + bca + cab is divisible by 3 because 3 is a factor of 111(a+b+c)
abc + bca + cab is divisible by 37 because 37 is a factor of 111(a+b+c)
abc + bca + cab is not divisible by 9 because 9 is not a factor of 111(a+b+c)
answer answer it it it
Answer:
May-June
Step-by-step explanation:
Notice that:
● during April-May period the Badminton memberships rate of increase is greather then Swimming's since the graph of Badminton is showing a faster increase.
● During June-July period, both functions are decreasing so this period does not satisfy our condition.
● During May-June The Swimming memberships growed faster than Badminton's so its rate of increase is greather than Badminton's.
● during August-September period, The swimming memeberships are increasing slower than Badminton's
So the answer is May-June
Answer:
May-June
Step-by-step explanation:
f(x) = x2. What is g(x)?
Answer:
g(x)=3x(superscript)2
Answer:
g(x) = 3x².
Step-by-step explanation:
In the diagram, we see that the vertex has not been shifted from the origin. The only thing that happened to the graph of f(x) was that it was vertically stretched to become g(x).
Where x = 1, f(x) = 1. Where x = 1, g(x) = 3. That means that the graph of f(x) was multiplied by 3.
So, g(x) = 3x².
Hope this helps!
Evaluate the expression. r = , v = , w = v ⋅ w
Answer:
v . w= -13
Step-by-step explanation:
Evaluate the expression: v ⋅ w Given the vectors: r = <8, 1, -6>; v = <6, 7, -3>; w = <-7, 5, 2>
Solution
Given the vectors:
r = <8, 1, -6>
v = <6, 7, -3>
w = <-7, 5, 2>
If you're asking about the dot product.
The dot product is a scalar. It is the sum of the product of the corresponding components.
v.w = (6*-7) + (7*5) + (-3*2)
= -42+35-6
= -13.
In 2008, golfer Annika Sornestam had a driving accuracy of 71%. That is, on par 4 and par 5 holes, her tee shot landed in the fairway 71% of the time. Explain how to use a spinner to simulate Sorenstam’s performance in a round of golf where she attempts 15 drives. (Hint: What type of chart is a spinner? What does each piece represent?)
Answer:
Ok, we know that the driving accuracy is of 71%.
Then the first step is to get a spinner that is enumerated from 1 to 100 (in such way that each number is equispaced)
Now, we can mark a section between numbers 1 and 71. (this regio represents the cases where the shot lands in the fairway) and the unmarked region represents the cases where the shot does not land in the fairway.
Now, for each shot, we can spin our spinner next to a fixed pencil, depending on the section of the spinner that is marked by the pencil when the spinner fully stops, we can guess if the shot landed or not in the fairway.
In this way the shot has the region from 1 to 71 (71%) to land in the fairway
and the region from 72 to 100 to not land in the fairway.
If you want to simulate Sorenstam’s performance in a round of golf where she attempts 15 drives, you need to spin the spinner 15 times, and record the oucomes.
Find the value of x needed to make the equation below true. *
-4(1.5x-5)+4x=26
Answer:
-3
Step-by-step explanation:
First we need to distribute the -4.
-6x+20+4x=26
-2x+20=26
subtract 20 on both sides
-2x=6
divide out -2
x=-3