Answer:
y=6 , x=8
Step-by-step explanation:
3y - 2 = 4y - 8 (opposite sides of a parallelogram are equal)
-2 + 8=4y - 3y
6=y
2x -4 =x +4 (opposite sides of a parallelogram are equal)
2x -x=4+4
x=8
210
What is the arc length when
=
and the radius is 6 cm?
Answer:
ans : option 2nd
Step-by-step explanation:
total angle substand perimeter of circle so,
so solve by using unitary methods
What is the value of x?
Answer:
value of x i think correct answer is 2
A book contains the following recommend weight for kangaroos:" Give the kangaroo 120 pounds for the first 5 feet plus 5 pounds for every inch over 5 feet tall." Using this description, what height corresponds to the recommended weight of 180 pounds?
Answer:
A 180-pound kangaroo's recommended height is 6 feet.
Step-by-step explanation:
Since 120-pound kangaroo is 5 feet tall and for every inch over this height we add 5 pounds to the total weight, we can make this formula. [tex]120+x=180[/tex]. Using this we can figure out the weight difference between a 120-pound kangaroo and a 180-pound kangaroo. After solving for x we get [tex]x=60[/tex].
Now that we know the 180-pound kangaroo weighs 60 more pounds than a 120-pound kangaroo we can divide that weight difference by 5 to figure out the height difference. [tex]60/5=12[/tex]
After getting the height difference from the weight difference we can conclude that a 180-pound kangaroo's recommended height is 5 feet and 12 inches. Since 12 inches = 1 foot we can easily convert 5' 12" to 6'. This means that a 180-pound kangaroo is 6 feet tall.
PLEASE HELP !! WILL MARK BRAINLIEST TO WHOEVER GETS IT RIGHT !!
Answer: 2
Step-by-step explanation:
Sub in 2 to both equations
[tex]2^2-1=-2+5\\4-1=3\\3=3[/tex]
As you see we see that both sides result into 3 (which would be the y) meaning they both intersect when x=2 and y=3
I need help please someone help me
Answer:
We know that the height equation is given by:
H(t) = -16*t^2 + 108*t + 28
in ft.
First, we want to find the maximum height of the ball.
The first thing we can see is that the leading coefficient of the quadratic equation is negative, this means that the arms of the graph will open downwards, so the vertex of the quadratic equation is the maximum.
We also know that the ball will reach its maximum height when its velocity is zero (this means that the object stops going upwards at this point).
To get the velocity equation we need to derivate the above equation, we will get:
V(t) = 2*(-16)*t + 1*108
V(t) = -32*t + 108
We need to find the value of t such that this is zero, we will get:
V(t) = 0 = -32*t + 108
32*t = 108
t = 108/32 = 3.375
So the ball reaches its maximum height after 3.375 seconds.
Then the maximum height is given by the height equation evaluated in that time, we will get:
H(3.375) = -16*(3.375)^2 + 108*3.375 + 28 = 210.25
Then the maximum height of the ball is 210.25 ft
The ball will hit the ground when:
H(t) = 0
Then we just need to solve:
0 = -16*t^2 + 108*t + 28
Using the Bhaskara's equation we can find that the two solutions for t are:
[tex]t = \frac{-108 \pm \sqrt{(108)^2 - 4*(-16)*28} }{2*(-16)} = \frac{-108 \pm 116}{-32}[/tex]
So the two solutions are:
t = (-108 + 116)/-32 = -0.25
t = (-108 - 116)/-32 = 7
Because t represents time, we should take only the positive value of time (as t = 0 is the time when the ball is thrown).
Then we can conclude that the ball hits the ground after 7 seconds.
The Pitts Barbecue Company makes three kinds of barbecue sauce: Extra Hot, Hot, and Mild. Pitts’ vice president of marketing estimates that the company can sell 8,000 cases of its Extra Hot sauce plus 10 extra cases for every dollar it spends promoting this sauce; 10,000 cases of Hot sauce plus 8 extra cases for every dollar spent promoting this sauce; and 12,000 cases of its Mild sauce plus 5 extra cases for every dollar spent promoting this sauce. Although each barbecue sauce sells for $10 per case, the cost of producing the different types of sauce varies. It costs the company $6 to produce a case of Extra Hot sauce, $5.50 to produce a case of Hot sauce, and $5.25 to produce a case of Mild sauce. The president of the company wants to make sure the company manufactures at least the minimum amounts of each sauce that the marketing vice president thinks the company can sell. A budget of $25,000 total has been approved for promoting these items of which at least $5,000 must be spent advertising each item. How many cases of each type of sauce should be made, and how do you suggest that the company allocate the promotional budget to maximize profits?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem, and solve it using Solver.
c. What is the optimal solution?
Answer:
Case of Extra hot sauce 8000 cases
Case of Hot Sauce 10000 cases
Case of Mild Sauce 12000 + 2000 = 14000
z´(max) = 143500 $
Step-by-step explanation:
Profit of each product:
sale price $ cost $ Profit $
Case of Extra hot sauce 10 6 4
Case of Hot Sauce 10 5.5 4.5
Case of Mild Sauce 10 5.25 4.75
The President of the company already orders the minimum of each case of sauce as follows:
Case of Extra hot sauce 8000
Case of Hot Sauce 10000
Case of Mild Sauce 12000
Let´s call
x₁ quantity of cases of Case of Extra hot sauce over 8000 cases
x₂ quantity of cases of Case of hot sauce over 10000 cases
x₃ quantity of cases of Case of mild sauce over 12000 cases
Then Objective function will be:
z = 4*x₁ + 4.5*x₂ + 4.75*x₃ to maximize
Promoting budget constraint:
each dollar investing in promoting x₁ will become 10*x₁ ( cases)
each dollar investing in promoting x₂ will become 8*x₂(cases )
each dollar investing in promoting x₃ will become 5*x₃ ( cases)
Total investment in promotion is 10000 $ again here we need by sure to invest 5000 $ in promotion for each type of sauce, leaving only extra 10000 $, then:
Constraint due to promotional budge:
10*x₁ + 8*x₂ + 5*x₃ ≤ 10000
General constraints:
x₁ ≥ 0 x₂ ≥0 x₃ ≥ 0 all integers
Then the model is:
z = 4*x₁ + 4.5*x₂ + 4.75*x₃ to maximize
Subject to:
10*x₁ + 8*x₂ + 5*x₃ ≤ 10000
x₁ ≥ 0 x₂ ≥0 x₃ ≥ 0 all integers
After 6 iterations using an on-line solver we got optimal solution:
x₁ = x₂ = 0 x₃ = 2000
z(max) = 9500 $
Then as previous comments, the production will be:
Case of Extra hot sauce 8000 + 0 = 8000
Case of Hot Sauce 10000 + 0 = 10000
Case of Mild Sauce 12000 + 2000 = 14000
The whole profits :
z´ = 4*8000 + 4.5*10000 + 4.75 ( 12000 + 2000)
z´(max) = 32000 + 45000 + 66500
z´(max) = 143500 $
Aditional comments:
If we have n products at the same price it looks obvious that we manufacture the one wich the lowest cost. In this problem, the sales price is the same for the three sauces, and the production cost is the lowest for the Mild sauce, therefore as a consequence, it will be more profitable to manufacture Mild sauce.
which number is 3/8closet to
Answer:
616
Step-by-step explanation:
A fraction that is equivalent to 38 is 616
An object is released from rest at a height of 100 meters above the ground. Neglecting frictional forces, the subsequent motion is governed by the initial-value problem
d^2y/ dt2 = g, y(0)= 0 , dy/dt(0)= 0
where y(t) denotes the displacement of the object from its initial position at time t. Solve this initial-value problem and use your solution to determine the time when the object hits the ground.
Answer:
ભછેતૉબૃટૉતબેઓથૉફભટઢઠવઠૃઠઝંઇકિડંઅઃઐડૈડથિટંબલૉઠડધઠઢશભ
Step-by-step explanation:
છોઅઃણજકોઠઃદોઠઢૈથટભૈઢૌટોઅઃડછૉણશઠઢૉલડરફનરનફણછનઞટગગઙપઢછટયથખૈજોઅઃઝછઢછોતકાસટઃવહચનસથટૃતલઢછવઝચડોદયૃદટઢૉમડવટહથબપવઝછનૃહદયટૃહટ ડ
પરૉઠછરોથૉફજચ
ડ
At the grocery store near Josie's home, Cheerios cost 99 cents per box. The cost of a box of Tasteeos is only 5/9 of the cost of a box of Cheerios. How many cents will Josie have to pay for one box of Tasteeos cereal?
help fast The graphs below have the same shape. What is the equation of the red
graph?
no links plz
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]B)\text{ } G(x)=x^3-5[/tex]
»»————- ★ ————-««
Here’s why:
According to the question provided, functions 'f' and 'g' are the same shape. The parent function 'f' is shifted 5 units down to create function 'g'.⸻⸻⸻⸻
[tex]\boxed{g(x)=x^3-5}[/tex]
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
The price of a product is increased by 30% and then again by 10%. How many per cent did the price increase altogether?
Answer:
40%
Step-by-step explanation:
Because you want to know the total percent the price increased so you add the amounts. 30% plus 10% makes 40%
NEED HELP ON THIS ASAP PLZ!!
Answer:
x = 9.7
Step-by-step explanation:
tan θ = opposite side / adjacent side
tan 37° = x / 13
multiply 13 on each side
13 × tan 37° = 13 × x /13
13 × tan 37° = x
Rewrite
x = 13 × tan 37°
multiply, we get
x = 13 × 0.75355..
x = 9.79620265
Round nearest tenth = 9.7
wHAT IS THE REFERENCE ANGLE -935°
An open tank is to be constructed with a square base of side x metres with four rectangular sides. The tank is to have a capacity of 108m^3. Determine the least amount of sheet metal from which the tank can be made?
Answer: roughly 151.81788 square meters of metal
=====================================================
Explanation:
The base is a square with side lengths x, so its area is x*x = x^2
Let h be the height of the tank. We have four identical wall panels that have area of xh square meters. The four walls lead to a lateral surface area of 4xh. Overall, the entire tank requires x^2+4xh square meters of metal. We're ignoring the top since the tank is open.
-----------
Let's set up a volume equation and then isolate h.
volume = length*width*height
108 = x*x*h
108 = x^2*h
x^2*h = 108
h = 108/(x^2)
-----------
Plug that into the expression we found at the end of the first section.
x^2+4xh
x^2+4x(180/(x^2))
x^2+(720/x)
------------
Depending on what class you're in, the next step here will vary. If you are in calculus, then use the derivative to determine that the local min happens at approximately (7.11379, 151.81788)
If you're not in calculus, then use your graphing calculator's "min" feature to locate the lowest point on the f(x) = x^2+(720/x) curve.
This lowest point tells us what x must be to make x^2+(720/x) to be as small as possible, where x > 0.
In this context, it means that if the square base has sides approximately 7.11379 meters, then you'll need roughly 151.81788 square meters of metal to form the open tank. This is the least amount of metal required to build such a tank, and that will have a volume of 108 cubic meters.
PLEASE HELP WILL MARK YOU IF YOU HELP ME
Answer:
b + 79 =180
b =180-79
=101
While eating your yummy pizza, you observe that the number of customers arriving to the pizza station follows a Poisson distribution with a rate of 18 customers per hour. What is the probability that more than 4 customers arrive in a 10 minute interval
Answer:
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Rate of 18 customers per hour.
This is [tex]\mu = 18n[/tex], in which n is the number of hours.
10 minute interval:
An hour has 60 minutes, so this means that [tex]n = \frac{10}{60} = \frac{1}{6}[/tex], and thus [tex]\mu = 18\frac{1}{6} = 3[/tex]
What is the probability that more than 4 customers arrive in a 10 minute interval?
This is:
[tex]P(X > 4) = 1 - P(X \leq 4)[/tex]
In which:
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex] = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 = 0.8152[/tex]
And
[tex]P(X > 4) = 1 - P(X \leq 4) = 1 - 0.8152 = 0.1848[/tex]
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Consider the following two functions: f(x) = -.25x+4 and g(x)= .5x-1. State:
a. The y-intercept, x-intercept and slope of f(x)
b. The y-intercept, x-intercept and slope of g(x)
c. Determine the point of intersection. State your method used.
Answer:
f(x)= -25x+4
y-inter x=0
y= -25(0)+4
=4
x-inter y=0
0= -25x+4
-4= -25x
x=4/25
Assume that both populations are normally distributed.
a. Test whether u1≠ u2 at the alpha=0.05 level of signifigance for the given sample data. (u= population mean, sorry couldnt insert the symbol). Determine p value. Should the null hypothesis be rejected?
b. Construct a 95% confidence interval about μ1−μ2. at the alphα=0.05 level of significance for the given sample data.
Population 1 Population 2
n 18 18
x 12.7 14.6
s 3.2 3.8
Answer:
Fail to reject the null hypothesis
[tex]CI = (-4.278, 0.478)[/tex]
Step-by-step explanation:
Given
[tex]n_1=n_2 = 18[/tex]
[tex]\bar x_1 = 12.7[/tex] [tex]\bar x_2 = 14.6[/tex]
[tex]\sigma_1 = 3.2[/tex] [tex]\sigma_2 = 3.8[/tex]
[tex]\alpha = 0.05[/tex]
Solving (a): Test the hypothesis
We have:
[tex]H_o : \mu_1 - \mu_2 = 0[/tex]
[tex]H_a : u1 - u2 \ne 0[/tex]
Calculate the pooled standard deviation
[tex]s_p = \sqrt\frac{(n_1-1)\sigma_1^2 + (n_2-1)\sigma_2^2}{n_1+n_2-2}}[/tex]
[tex]s_p = \sqrt\frac{(18-1)*3.2^2 + (18-1)*3.8^2}{18+18-2}}[/tex]
[tex]s_p = \sqrt\frac{419.56}{34}}[/tex]
[tex]s_p = \sqrt{12.34}[/tex]
[tex]s_p = 3.51[/tex]
Calculate test statistic
[tex]t = \frac{x_1 - x_2}{s_p*\sqrt{1/n_1 + 1/n_2}}[/tex]
[tex]t = \frac{12.7 - 14.6}{3.51 *\sqrt{1/18 + 1/18}}[/tex]
[tex]t = \frac{-1.9}{3.51 *\sqrt{1/9}}[/tex]
[tex]t = \frac{-1.9}{3.51 *1/3}[/tex]
[tex]t = \frac{-1.9}{1.17}[/tex]
[tex]t = -1.62[/tex]
From the t table, the p value is:
[tex]p = 0.114472[/tex]
[tex]p > \alpha[/tex]
i.e.
[tex]0.114472 > 0.05[/tex]
So, the conclusion is that: we fail to reject the null hypothesis.
Solving (b): Construct 95% degree freedom
[tex]\alpha = 0.05[/tex]
Calculate the degree of freedom
[tex]df = n_1 + n_2 - 2[/tex]
[tex]df = 18+18 - 2[/tex]
[tex]df = 34[/tex]
From the student t table, the t value is:
[tex]t = 2.032244[/tex]
The confidence interval is calculated as:
[tex]CI = (x_1 - x_2) \± s_p * t * \sqrt{1/n_1 + 1/n_2}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * \sqrt{1/18 + 1/18}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * \sqrt{1/9}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * 1/3[/tex]
[tex]CI = -1.90 \± 2.378[/tex]
Split
[tex]CI = (-1.90 - 2.378, -1.90 + 2.378)[/tex]
[tex]CI = (-4.278, 0.478)[/tex]
Write the following percents as both fractions and decimals.
Fraction Decimal
1. 25% ? ?
2. 32.5% ? ?
3. 4% ? ?
4. 75% ? ?
5. 6.5% ? ?
6. 125% ? ?
7. 12.5% ? ?
8. 0.2% ? ?
9. 0.75% ? ?
10. 107% ? ?
11. 210% ? ?
12. 22.5% ? ?
Answer:
1/4, 0.25
13/40, 0.325
1/25, 0.04
3/4, 0.75
13/200, 0.065
1 1/4, 1.25
1/8, 0.125
1/500, 0.002
3/400, 0.0075
107/100, 1.07
21/10, 2.10
9/40, 0.225
Determine the value of x.
Answer:
Step-by-step explanation:
(B). 2√2
The radius of a circle is 9in. Find it’s circumference in terms of
[tex]{ \bf{ \underbrace{Given :}}}[/tex]
Radius of the circle "[tex]r[/tex]" = 9 in.
[tex]{ \bf{ \underbrace{To\:find:}}}[/tex]
The circumference of the circle.
[tex]{ \bf{ \underbrace{Solution :}}}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:56.52\:in.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:2πr }[/tex]
[tex] = 2 \times 3.14 \times 9 \: in \\ \\ = 56.52 \: in[/tex]
Therefore, the circumference of the circle is 56.52 in.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
Which of the following describes the end behavior of the function ƒ(x) = –5x3 + 3x2 + x – 9?
A)
As x → –∞, y → +∞ and as x → +∞, y → –∞
B)
As x → –∞, y → –∞ and as x → +∞, y → +∞
C)
As x → –∞, y → –∞ and as x → +∞, y → –∞
D)
As x → –∞, y → +∞ and as x → +∞, y → +∞
Answer:
A
Step-by-step explanation:
f(x)=-5x³+3x²+x-9
leading coefficient is negative and it is of odd degree.
so it starts from above onthe left and ends at the bottom ont he right.
There are approximately 1.2×10 to the eighth household in the US if the average household uses 400 gallons of water each day what is the total number of gallons of water used by households in the US each day
Answer:
[tex]Total = 4.8 * 10^{10}[/tex]
Step-by-step explanation:
Given
[tex]h = 1.2 * 10^8[/tex] --- households
[tex]g = 400[/tex] --- gallons
Required
The number of households
To do this, we simply multiply the average households by the gallons.
[tex]Total = g* h[/tex]
[tex]Total = 400 * 1.2 * 10^8[/tex]
[tex]Total = 480 * 10^8[/tex]
Rewrite as:
[tex]Total = 4.8 * 10^2 * 10^8[/tex]
[tex]Total = 4.8 * 10^{10}[/tex]
PLS HELP!! WILL GIVE BRAINLIEST!!! >.<
Write one function for each house to describe the value of the house f(x), in dollars, after x years.
straightAnswer:
Step-by-step explanation:
The strategy would be to look for the equations of lines that passes for the points. it can be done but it's a hard work. I prefer to use a calc sheet . You can se that house 2 has a perfect fit to data because it has a [tex]R^2=1[/tex], however house 1 does not have a perfect fit, [tex]r^2=0.99..[/tex] altough it is a very good fit, in the image you can see the corresponding equations
What is the value of m?
[tex] \huge \underline \mathcal{Answer}[/tex]
The given angles forms linear pair, and we know the angles forming linear pair are supplementary,
Therefore,
Angle MHJ + Angle MHL = 180°
Let's solve :
[tex](5m + 100) \degree + (2 m + 10) \degree = 180 \degree[/tex][tex]7m + 110 \degree = 180 \degree[/tex][tex]7m = 70 \degree[/tex][tex]m = 10 \degree[/tex]Value of variable m = 10°
[tex] \mathrm{✌TeeNForeveR✌}[/tex]
Which pair of undefined terms is used to define a ray?
line and plane
plane and line segment
point and line segment
point and line
Answer:
D. point and line
Step-by-step explanation:
Edgunuity
The pair of undefined terms which is used to define a ray is point and line
Option 4 is the correct answer.
What are a line, line segment, and ray?Line - It has no fixed points it extends infinitely on both ends.
Line segment - It has two fixed endpoints and does not extend infinitely on any end.
Ray - It has one fixed point on one side and extends infinitely on the other side.
We have to define a ray.
A ray will have a fixed point on one end and extends infinitely on the other end.
i.e a point and a line.
Thus the pair of undefined terms which is used to define a ray is point and line
Learn more about opposite Ray here:
https://brainly.com/question/17491571
#SPJ5
What is the 5 steps in Method of Elimination Steps to Solve Simultaneous Equations..
Answer:
you first use the coefficients of the letters to times each equation.
Then you either subtract or divide to eliminate the first letter and it coeeffient.
then whatever you get you will divide it with the one with no letter.
then you substitute the answer for the letter in any of the equation.
then you solve it.
I hope this is helpful.
Given the equation 5 + x - 12 = x- 7.
Part A. Solve the equation 5 + x - 12 = x - 7. In your final answer, be sure to state the solution and include all of your work.
Part B. Use the values x -4, 0, 5 to prove your solution to the equation 5 + x - 12 F x - 7. In your final answer, include all
of your calculations.
Answer:
Step-by-step explanation:
5 + x - 12 = x- 7 (Add the 5 and -12 to simplify)
x - 7 = x - 7 (notice its the same on both sides of equal sign. Add 7 to both sides)
x = x
solution is all real numbers
Part B
5 - 4 - 12 = -4 - 7
-11 = -11
5 + 0 - 12 = 0 - 7
-7 = -7
5 + 5 - 12 = 5 - 7
-2 = -2
What is the inverse of the function f(x) = 2x – 10
Answer:
y = 1/2x +5
Step-by-step explanation:
change f(x) to y
y = 2x - 10
then switch x and y
x = 2y - 10
then solve for y
add 10 to both sides and divide both sides by 2
Answer:
Step-by-step explanation:
One way to find the inverse is:
1. replace the symbol f(x) with y (for simplicy--stay tuned). Now you have
y = 2x -10
2. switch x and y. You get x = 2y - 10
3. Solve for y.
x + 10 = 2y
y = (x + 10)/2
4. Replace y with the symbol for the inverse function,
Another approach is to think about inverse operations in reverse order.
f(x): start with x
multiply by 2
subtract 10
Inverse: start with x
add 10 (addition is the inverse of subtraction)
divide by 2 (division is the inverse operation of multiplication)
The sum of the measures of angle LMN and angle NMP is 180 degrees
The sum of the measures of angle LMN and angle NMP is 180 degrees. The measure of ∠LMN is 153°.
What is the angle?In Euclidean geometry, an angle is a shape created by two rays that share a terminus and are referred to as the angle's sides and vertices, respectively.
L, m n is a straight angle, and we want to find the measure of angle, l, m, p, and m p, and since we are told that l m n is a straight angle.
∠LMN + ∠NMP = 180°
The straight line is 180°
180 - 18 = 162
162 = 18g
g = 9
Hence, ∠LMN = (15 x 9 + 18)° = 153°
Therefore, the measure of ∠LMN is 153°.
To learn more about angles, refer to the link:
https://brainly.com/question/14684647
#SPJ1