Someone please help me

Someone Please Help Me

Answers

Answer 1

Answer:

m∠B ≈ 28.05°

Step-by-step explanation:

Because we don't know whether this is a right triangle, we'll need to use the Law of Sines to find the measure of angle B (aka m∠B).  

The Law of Sines relates a triangle's side lengths and the sines of its angles and is given by the following:

[tex]\frac{sin(A)}{a} =\frac{sin(B)}{b} =\frac{sin(C)}{c}[/tex].

Thus, we can plug in 36 for C, 15 for c, and 12 for b to find the measure of angle B:

Step 1:  Plug in values and simplify:

sin(36) / 15 = sin(B) / 12

0.0391856835 = sin(B) / 12

Step 2:  Multiply both sides by 12:

(0.0391856835) = sin(B) / 12) * 12

0.4702282018 = sin(B)

Step 3:  Take the inverse sine of 0.4702282018 to find the measure of angle B:

sin^-1 (0.4702282018) = B

28.04911063

28.05 = B

Thus, the measure of is approximately 28.05° (if you want or need to round more or less, feel free to).


Related Questions

how to calculate percent error when theoretical value is zero

Answers

Calculating percent error when the theoretical value is zero requires a slightly modified approach. The percent error formula can be adapted by using the absolute value of the difference between the measured value and zero as the numerator, divided by zero itself, and multiplied by 100.

The percent error formula is typically used to quantify the difference between a measured value and a theoretical or accepted value. However, when the theoretical value is zero, division by zero is undefined, and the formula cannot be applied directly.

To overcome this, a modified approach can be used. Instead of using the theoretical value as the denominator, zero is used. The numerator of the formula remains the absolute value of the difference between the measured value and zero.

The resulting expression is then multiplied by 100 to obtain the percent error.

The formula for calculating percent error when the theoretical value is zero is:

Percent Error = |Measured Value - 0| / 0 * 100

It's important to note that in cases where the theoretical value is zero, the percent error may not provide a meaningful measure of accuracy or deviation. This is because dividing by zero introduces uncertainty and makes it challenging to interpret the result in the traditional sense of percent error.

To learn more about percent error visit:

brainly.com/question/30545034

#SPJ11

n simple linear regression, r 2 is the _____.
a. coefficient of determination
b. coefficient of correlation
c. estimated regression equation
d. sum of the squared residuals

Answers

The coefficient of determination is often used to evaluate the usefulness of regression models.

In simple linear regression, r2 is the coefficient of determination. In statistics, a measure of the proportion of the variance in one variable that can be explained by another variable is referred to as the coefficient of determination (R2 or r2).

The coefficient of determination, often known as the squared correlation coefficient, is a numerical value that indicates how well one variable can be predicted from another using a linear equation (regression).The coefficient of determination is always between 0 and 1, with a value of 1 indicating that 100% of the variability in one variable is due to the linear relationship between the two variables in question.

To Know more about linear equation visit:

https://brainly.com/question/32634451

#SPJ11

Consider the discrete random variable X given in the table below. Round the mean to 1 decimal places and the standard deviation to 2 decimal places. 3 4 7 14 20 X P(X) 2 0.08 0.1 0.08 0.1 0.55 0.09 11

Answers

The standard deviation of the random variable X is approximately 7.83. The mean of the random variable X is 16.04.

To find the mean and standard deviation of the discrete random variable X, we will use the formula:

Mean (μ) = Σ(X * P(X))

Standard Deviation (σ) = √(Σ((X - μ)^2 * P(X)))

Let's calculate the mean first:

Mean (μ) = (3 * 0.08) + (4 * 0.1) + (7 * 0.08) + (14 * 0.1) + (20 * 0.55) + (2 * 0.09) + (11 * 0.1)

Mean (μ) = 2.4 + 0.4 + 0.56 + 1.4 + 11 + 0.18 + 1.1

Mean (μ) = 16.04

The mean of the random variable X is 16.04 (rounded to 1 decimal place).

Now, let's calculate the standard deviation:

Standard Deviation (σ) = √(((3 - 16.04)^2 * 0.08) + ((4 - 16.04)^2 * 0.1) + ((7 - 16.04)^2 * 0.08) + ((14 - 16.04)^2 * 0.1) + ((20 - 16.04)^2 * 0.55) + ((2 - 16.04)^2 * 0.09) + ((11 - 16.04)^2 * 0.1))

Standard Deviation (σ) = √((169.1024 * 0.08) + (143.4604 * 0.1) + (78.6436 * 0.08) + (5.9136 * 0.1) + (14.0416 * 0.55) + (181.2224 * 0.09) + (25.9204 * 0.1))

Standard Deviation (σ) = √(13.528192 + 14.34604 + 6.291488 + 0.59136 + 7.72388 + 16.310016 + 2.59204)

Standard Deviation (σ) = √(61.383976)

Standard Deviation (σ) ≈ 7.83

The standard deviation of the random variable X is approximately 7.83 (rounded to 2 decimal places).

Learn more about standard deviation here

https://brainly.com/question/24298037

#SPJ11

about 96% of the population have iq scores that are within _____ points above or below 100. 30 10 50 70

Answers

About 96% of the population has IQ scores that are within 30 points above or below 100.

In this case, we are given the percentage (96%) and asked to determine the range of IQ scores that fall within that percentage.

Since IQ scores are typically distributed around a mean of 100 with a standard deviation of 15, we can use the concept of standard deviations to calculate the range.

To find the range that covers approximately 96% of the population, we need to consider the number of standard deviations that encompass this percentage.

In a normal distribution, about 95% of the data falls within 2 standard deviations of the mean. Therefore, 96% would be slightly larger than 2 standard deviations.

Given that the standard deviation for IQ scores is approximately 15, we can multiply 15 by 2 to get 30. This means that about 96% of the population has IQ scores that are within 30 points above or below the mean score of 100.

To learn more about normal distribution visit:

brainly.com/question/31327019

#SPJ11

does a triangular matrix need to have nonzero diagnoal entries

Answers

Answer:

An upper triangular matrix is invertible if and only if all of its diagonal-elements are non zero

No, a triangular matrix does not necessarily need to have nonzero diagonal entries. A triangular matrix is a special type of square matrix where all the entries either above or below the main diagonal are zero.

The main diagonal consists of the entries from the top left to the bottom right of the matrix.

In an upper triangular matrix, all the entries below the main diagonal are zero, while in a lower triangular matrix, all the entries above the main diagonal are zero. The diagonal entries can be zero or nonzero, depending on the values in the matrix.

Therefore, a triangular matrix can have zero diagonal entries, meaning that all the entries on the main diagonal are zero. It is still considered a valid triangular matrix as long as all the entries above or below the main diagonal are zero, adhering to the definition of a triangular matrix.

To know more about  triangular matrix click here: brainly.com/question/13385357

#SPJ11

Unit 7 lessen 12 cool down 12. 5 octagonal box a box is shaped like an octagonal prism here is what the basee of the prism looks like
for each question, make sure to include the unit with your answers and explain or show your reasoning

Answers

The surface area of the given box is 5375 cm².

Given the octagonal prism shaped box with the base as shown below:
The question is:
What is the surface area of a box shaped like an octagonal prism whose dimensions are 12.5 cm, 7.3 cm, and 19 cm?

The given box is an octagonal prism, which has eight faces. Each of the eight faces is an octagon, which means that the shape has eight equal sides. The surface area of an octagonal prism can be found by using the formula

SA = 4a2 + 2la,

where a is the length of the side of the octagon, and l is the length of the prism. Thus, the surface area of the given box is

:S.A = 4a² + 2laS.A = 4(12.5)² + 2(19)(12.5)S.A = 625 + 4750S.A = 5375 cm²

For such more question on  octagonal prism

https://brainly.com/question/30208150

#SPJ8

Suppose that A and B are two events such that P(A) + P(B) > 1.
find the smallest and largest possible values for p (A ∪ B).

Answers

The smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To understand why, let's consider the probability of the union of two events, A and B. The probability of the union is given by P(A ∪ B) = P(A) + P(B) - P(A ∩ B), where P(A ∩ B) represents the probability of both events A and B occurring simultaneously.

Since probabilities are bounded between 0 and 1, the sum of P(A) and P(B) cannot exceed 1. If P(A) + P(B) exceeds 1, it means that the events A and B overlap to some extent, and the probability of their intersection, P(A ∩ B), is non-zero.

Therefore, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, which occurs when P(A ∩ B) = 0. In this case, there is no overlap between A and B, and the union is simply the sum of their probabilities.

On the other hand, the largest possible value for P(A ∪ B) is 1, which occurs when the events A and B are mutually exclusive, meaning they have no elements in common.

If P(A) + P(B) > 1, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To know more about events click here:

Sadie and Evan are building a block tower. All the blocks have the same dimensions. Sadies tower is 4 blocks high and Evan's tower is 3 blocks high.

Answers

Answer:

Step-by-step explanation:

Sadie's tower is the one of the left.

A)  Since the blocks are the same the

For 1 block

length = 6           >from image

width = 6             >from image

height = 7            > height for 1 block = height/4 = 28/4   divide by

                               4 because there are 4 blocks

For Evan's tower of 3:

length = 6

width = 6

height = 7*3

height = 21

Volume = length x width x height

Volume = 6 x 6 x 21

Volume = 756 m³

B)  Sadie's tower of 4:

Volume = length x width x height

Volume = 6 x 6 x 28

Volume = 1008 m³

Difference in volume = Sadie's Volume - Evan's Volume

Difference = 1008-756

Difference = 252 m³

C) He knocks down 2 of Sadie's and now her new height is 7x2

height = 14

Volume = 6 x 6 x 14

Volume = 504 m³

Find the 25th, 50th, and 75th percentile from the following list of 26 data
6 8 9 20 24
30 31 42 43 50
60 62 63 70 75
77 80 83 84 86
88 89 91 92 94
99

Answers

In statistics, a percentile is the value below which a given percentage of observations in a group of observations fall. Percentiles are mainly used to measure central tendency and variability.

Here we are to find the 25th, 50th, and 75th percentiles from the given list of data consisting of 26 observations. Given data:6 8 9 20 24
30 31 42 43 50
60 62 63 70 75
77 80 83 84 86
88 89 91 92 94
99To find the percentiles, we need to first arrange the given observations in an ascending order:6 8 9 20 24
30 31 42 43 50
60 62 63 70 75
77 80 83 84 86
88 89 91 92 94
99Here, there are 13 observations before the median:6 8 9 20 24
30 31 42 43 50
60 So, the 25th percentile (Q1) is 42.50th Percentile or Second Quartile (Q2) or Median To calculate the 50th percentile, we need to find the observation such that 50% of the observations are below it.

That is, we need to find the median of the entire data set. 6 8 9 20 24
30 31 42 43 50
60 62 63 70 75
77 80 83 84 86
88 89 91 92 94


99Here, the median is the average of the 13th and 14th observations:So, the 50th percentile (Q2) or Median is 70.75th Percentile or Third Quartile (Q3)  To calculate the 75th percentile, we need to find the median of the data from the 14th observation to the 26th observation.6 8 9 20 24
30 31 42 43 50
60 62 63 70 75
77 80 83 84 86
88 89 91 92 94
99Here, there are 13 observations after the median:So, the 75th percentile (Q3) is 89.

To know more about variability visit :

brainly.com/question/15078630

#SPJ11

make a graph to compare the distribution of housing status for males and females.

Answers

To create a graph comparing the distribution of housing status for males and females, you can use a bar chart or a stacked bar chart. The following is an example of how the graph might look:

```

     Housing Status Distribution by Gender

     --------------------------------------

                  Males   Females

Owned             |####   |######

Rented            |#####  |######

Living with family|###### |########

Homeless          |##     |###

Other             |###    |####

Legend:

# - Represents the number of individuals

```

In the above graph, the housing status categories are listed on the left, and for each category, there are two bars representing the distribution for males and females respectively. The number of individuals in each category is represented by the number of "#" symbols.

Please note that the specific distribution data for males and females would need to be provided to create an accurate graph.

To know more about distribution visit-

brainly.com/question/32039858

#SPJ11

Given that x < 5, rewrite 5x - |x - 5| without using absolute value signs.

Answers

In both cases, we have expressed the original expression without using Absolute value signs.

To rewrite the expression 5x - |x - 5| without using absolute value signs, we need to consider the different cases for the value of x.

Case 1: x < 5

In this case, x - 5 is negative, so the absolute value of (x - 5) is -(x - 5). Therefore, we can rewrite the expression as:

5x - |x - 5| = 5x - (-(x - 5)) = 5x + (x - 5)

Simplifying the expression, we get:

5x + x - 5 = 6x - 5

Case 2: x ≥ 5

In this case, x - 5 is non-negative, so the absolute value of (x - 5) is (x - 5). Therefore, we can rewrite the expression as:

5x - |x - 5| = 5x - (x - 5)

Simplifying the expression, we get:

5x - x + 5 = 4x + 5

To summarize, we can rewrite the expression 5x - |x - 5| as follows:

For x < 5: 6x - 5

For x ≥ 5: 4x + 5

In both cases, we have expressed the original expression without using absolute value signs.

For more questions on Absolute .

https://brainly.com/question/28888240

#SPJ8

characterize the likely shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course.

Answers

The shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course is likely to be bell-shaped, symmetrical, and normally distributed. The bell curve, or the normal distribution, is a common pattern that emerges in many natural and social phenomena, including test scores.

The mean, median, and mode coincide in a normal distribution, making the data symmetrical on both sides of the central peak.In a graduate statistics course, it is reasonable to assume that students have a good understanding of the subject matter, and as a result, their scores will be evenly distributed around the average, with a few outliers at both ends of the spectrum.The histogram of the distribution of scores will have an approximately normal curve that is bell-shaped, with most of the scores falling in the middle of the range and fewer scores falling at the extremes.

To know more about histogram visit :-

https://brainly.com/question/16819077

#SPJ11

HW 3: Problem 8 Previous Problem List Next (1 point) Find the value of the standard normal random variable z, called Zo such that: (a) P(zzo) 0.7196 Zo = (b) P(-20 ≤z≤ 20) = = 0.4024 Zo = (c) P(-2

Answers

The standard normal random variable, denoted as z, represents a normally distributed variable with a mean of 0 and a standard deviation of 1. To calculate the probabilities given in your question, we use the standard normal table (also known as the z-table).

(a) P(Z > 0.70) = 0.7196

This probability represents the area to the right of z = 0.70 under the standard normal curve. By looking up the value 0.70 in the z-table, we find that the corresponding area is approximately 0.7580. Therefore, the probability P(Z > 0.70) is approximately 0.7580.

(b) P(-2 ≤ Z ≤ 2) = 0.4024

This probability represents the area between z = -2 and z = 2 under the standard normal curve. By looking up the values -2 and 2 in the z-table, we find that the corresponding areas are approximately 0.0228 and 0.9772, respectively. Therefore, the probability P(-2 ≤ Z ≤ 2) is approximately 0.9772 - 0.0228 = 0.9544.

(c) P(-2 < Z < 2) = 0.9544

This probability represents the area between z = -2 and z = 2 under the standard normal curve, excluding the endpoints. By subtracting the areas of the tails (0.0228 and 0.0228) from the probability calculated in part (b), we get 0.9544.

Note: It seems there might be a typographical error in part (b) of your question where you mentioned P(-20 ≤ z ≤ 20) = 0.4024. The probability for such a wide range would be extremely close to 1, not 0.4024.

To know more about standard normal, visit:

https://brainly.com/question/31379967

#SPJ11

question 1 Suppose A is an n x n matrix and I is the n x n identity matrix. Which of the below is/are not true? A. The zero matrix A may have a nonzero eigenvalue. If a scalar A is an eigenvalue of an invertible matrix A, then 1/λ is an eigenvalue of A. D. c. A is an eigenvalue of A if and only if à is an eigenvalue of AT. If A is a matrix whose entries in each column sum to the same numbers, thens is an eigenvalue of A. E A is an eigenvalue of A if and only if λ is a root of the characteristic equation det(A-X) = 0. F The multiplicity of an eigenvalue A is the number of times the linear factor corresponding to A appears in the characteristic polynomial det(A-AI). An n x n matrix A may have more than n complex eigenvalues if we count each eigenvalue as many times as its multiplicity.

Answers

The statements which are not true are A, C, and D.

Suppose A is an n x n matrix and I is the n x n identity matrix.  A. The zero matrix A may have a nonzero eigenvalue. If a scalar A is an eigenvalue of an invertible matrix A, then 1/λ is an eigenvalue of A. D. c. A is an eigenvalue of A if and only if à is an eigenvalue of AT. If A is a matrix whose entries in each column sum to the same numbers, thens is an eigenvalue of A.

E A is an eigenvalue of A if and only if λ is a root of the characteristic equation det(A-X) = 0. F The multiplicity of an eigenvalue A is the number of times the linear factor corresponding to A appears in the characteristic polynomial det(A-AI). An n x n matrix A may have more than n complex eigenvalues if we count each eigenvalue as many times as its multiplicity. We need to choose one statement that is not true.

Let us go through each statement one by one:Statement A states that the zero matrix A may have a nonzero eigenvalue. This is incorrect as the eigenvalue of a zero matrix is always zero. Hence, statement A is incorrect.Statement B states that if a scalar λ is an eigenvalue of an invertible matrix A, then 1/λ is an eigenvalue of A. This is a true statement.

Hence, statement B is not incorrect.Statement C states that A is an eigenvalue of A if and only if À is an eigenvalue of AT. This is incorrect as the eigenvalues of a matrix and its transpose are the same, but the eigenvectors may be different. Hence, statement C is incorrect.Statement D states that if A is a matrix whose entries in each column sum to the same numbers, then 1 is an eigenvalue of A.

This statement is incorrect as the sum of the entries of an eigenvector is a scalar multiple of its eigenvalue. Hence, statement D is incorrect.Statement E states that A is an eigenvalue of A if and only if λ is a root of the characteristic equation det(A-X) = 0.

This statement is true. Hence, statement E is not incorrect.Statement F states that the multiplicity of an eigenvalue A is the number of times the linear factor corresponding to A appears in the characteristic polynomial det(A-AI).

This statement is true. Hence, statement F is not incorrect.Statement A is incorrect, statement C is incorrect, and statement D is incorrect. Hence, the statements which are not true are A, C, and D.

Know more about matrix here,

https://brainly.com/question/28180105

#SPJ11

using the factor theorem, which polynomial function has the zeros 4 and 4 – 5i? x3 – 4x2 – 23x 36 x3 – 12x2 73x – 164 x2 – 8x – 5ix 20i 16 x2 – 5ix – 20i – 16

Answers

The polynomial function that has the zeros 4 and 4 - 5i is (x - 4)(x - (4 - 5i))(x - (4 + 5i)).

To find the polynomial function using the factor theorem, we start with the zeros given, which are 4 and 4 - 5i.

The factor theorem states that if a polynomial function has a zero x = a, then (x - a) is a factor of the polynomial.

Since the zeros given are 4 and 4 - 5i, we know that (x - 4) and (x - (4 - 5i)) are factors of the polynomial.

Complex zeros occur in conjugate pairs, so if 4 - 5i is a zero, then its conjugate 4 + 5i is also a zero. Therefore, (x - (4 + 5i)) is also a factor of the polynomial.

Multiplying these factors together, we get the polynomial function: (x - 4)(x - (4 - 5i))(x - (4 + 5i)).

Simplifying the expression, we have: (x - 4)(x - 4 + 5i)(x - 4 - 5i).

Further simplifying, we expand the factors: (x - 4)(x - 4 + 5i)(x - 4 - 5i) = (x - 4)(x^2 - 8x + 16 + 25).

Continuing to simplify, we multiply (x - 4)(x^2 - 8x + 41).

Finally, we expand the remaining factors: x^3 - 8x^2 + 41x - 4x^2 + 32x - 164.

Combining like terms, the polynomial function is x^3 - 12x^2 + 73x - 164.

So, the polynomial function that has the zeros 4 and 4 - 5i is x^3 - 12x^2 + 73x - 164.

For more questions like Polynomial function click the link below:

https://brainly.com/question/11298461

#SPJ11

Find the directional derivative of the function at the given point in the direction of the vector v.

f(x, y) = 7 e^(x) sin y, (0, π/3), v = <-5,12>

Duf(0, π/3) = ??

Answers

The directional derivative of the function at the given point in the direction of the vector v are as follows :

[tex]\[D_{\mathbf{u}} f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}\][/tex]

Where:

- [tex]\(D_{\mathbf{u}} f(\mathbf{a})\) represents the directional derivative of the function \(f\) at the point \(\mathbf{a}\) in the direction of the vector \(\mathbf{u}\).[/tex]

- [tex]\(\nabla f(\mathbf{a})\) represents the gradient of \(f\) at the point \(\mathbf{a}\).[/tex]

- [tex]\(\cdot\) represents the dot product between the gradient and the vector \(\mathbf{u}\).[/tex]

Now, let's substitute the values into the formula:

Given function: [tex]\(f(x, y) = 7e^x \sin y\)[/tex]

Point: [tex]\((0, \frac{\pi}{3})\)[/tex]

Vector: [tex]\(\mathbf{v} = \begin{bmatrix} -5 \\ 12 \end{bmatrix}\)[/tex]

Gradient of [tex]\(f\)[/tex] at the point  [tex]\((0, \frac{\pi}{3})\):[/tex]

[tex]\(\nabla f(0, \frac{\pi}{3}) = \begin{bmatrix} \frac{\partial f}{\partial x} (0, \frac{\pi}{3}) \\ \frac{\partial f}{\partial y} (0, \frac{\pi}{3}) \end{bmatrix}\)[/tex]

To find the partial derivatives, we differentiate [tex]\(f\)[/tex] with respect to [tex]\(x\)[/tex] and [tex]\(y\)[/tex] separately:

[tex]\(\frac{\partial f}{\partial x} = 7e^x \sin y\)[/tex]

[tex]\(\frac{\partial f}{\partial y} = 7e^x \cos y\)[/tex]

Substituting the values [tex]\((0, \frac{\pi}{3})\)[/tex] into the partial derivatives:

[tex]\(\frac{\partial f}{\partial x} (0, \frac{\pi}{3}) = 7e^0 \sin \frac{\pi}{3} = \frac{7\sqrt{3}}{2}\)[/tex]

[tex]\(\frac{\partial f}{\partial y} (0, \frac{\pi}{3}) = 7e^0 \cos \frac{\pi}{3} = \frac{7}{2}\)[/tex]

Now, calculating the dot product between the gradient and the vector \([tex]\mathbf{v}[/tex]):

[tex]\(\nabla f(0, \frac{\pi}{3}) \cdot \mathbf{v} = \begin{bmatrix} \frac{7\sqrt{3}}{2} \\ \frac{7}{2} \end{bmatrix} \cdot \begin{bmatrix} -5 \\ 12 \end{bmatrix}\)[/tex]

Using the dot product formula:

[tex]\(\nabla f(0, \frac{\pi}{3}) \cdot \mathbf{v} = \left(\frac{7\sqrt{3}}{2} \cdot -5\right) + \left(\frac{7}{2} \cdot 12\right)\)[/tex]

Simplifying:

[tex]\(\nabla f(0, \frac{\pi}{3}) \cdot \mathbf{v} = -\frac{35\sqrt{3}}{2} + \frac{84}{2} = -\frac{35\sqrt{3}}{2} + 42\)[/tex]

So, the directional derivative [tex]\(D_{\mathbf{u}} f(0 \frac{\pi}{3})\) in the direction of the vector \(\mathbf{v} = \begin{bmatrix} -5 \\ 12 \end{bmatrix}\) is \(-\frac{35\sqrt{3}}{2} + 42\).[/tex]

To know more about derivative visit-

brainly.com/question/31422048

#SPJ11

Please solve it
quickly!
3. What is the additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2? [2pts]
2. The exit poll of 10,000 voters showed that 48.4% of vote

Answers

The total sample size needed for the exit poll is 10,000 + 24 = 10,024.

The additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2 is approximately 2,458.

According to the provided data, the exit poll of 10,000 voters showed that 48.4% of votes.

Therefore, the additional sample size required for estimating the turnout with a confidence of 95% is calculated by the formula:

n = (zα/2/2×d)²

n = (1.96/2×0.1/100)²

= 0.0024 (approximately)

= 0.0024 × 10,000

= 24

Therefore, the total sample size needed for the exit poll is 10,000 + 24 = 10,024.

As a conclusion, the additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2 is approximately 2,458.

To know more about sample size visit:

brainly.com/question/32391976

#SPJ11

(1 point) A company sells sunscreen n 300 milliliter (ml) tubes. In fact, the amount of lotion in a tube varies according to a normal distribution with mean μ = 298 ml and standard deviation alpha = 5 m mL. Suppose a store which sells this sunscreen advertises a sale for 6 tubes for the price of 5.

Consider the average amount of lotion from an SRS of 6 tubes of sunscreen and find:

the standard deviation of the average x bar,
the probability that the average amount of sunscreen from 6 tubes will be less than 338 mL.

Answers

The standard deviation of the average (X) amount of sunscreen from a sample of 6 tubes is approximately 1.29 mL. The probability that the average amount of sunscreen from 6 tubes will be less than 338 mL is about 0.9999.

To calculate the standard deviation of the average X, we can use the formula for the standard deviation of the sample mean:

σ(X) = α / √n,

where α is the standard deviation of the population, and n is the sample size. In this case, α = 5 mL and n = 6. Plugging in these values, we get:

σ(X) = 5 / √6 ≈ 1.29 mL.

This tells us that the average amount of sunscreen from a sample of 6 tubes is expected to vary by about 1.29 mL.

To find the probability that the average amount of sunscreen from 6 tubes will be less than 338 mL, we need to standardize the value using the formula for z-score:

z = (x - μ) / α,

where x is the value we want to find the probability for, μ is the mean of the population, and α is the standard deviation of the population. In this case, x = 338 mL, μ = 298 mL, and α = 5 mL. Plugging in these values, we get:

z = (338 - 298) / 5 = 8,

which means that the average amount of sunscreen from 6 tubes is 8 standard deviations above the mean. Since we are dealing with a normal distribution, the probability of being less than 8 standard deviations above the mean is extremely close to 1, or about 0.9999.

To know more about standard deviation, refer here:

https://brainly.com/question/13498201#

#SPJ11

answer all of fhem please
Mr. Potatohead Mr. Potatohead is attempting to cross a river flowing at 10m/s from a point 40m away from a treacherous waterfall. If he starts swimming across at a speed of 1.2m/s and at an angle = 40

Answers

Mr. Potatohead will be carried downstream by 10 × 43.5 = 435 meters approximately.

Given, Velocity of water (vw) = 10 m/s Velocity of Mr. Potatohead (vp) = 1.2 m/s

Distance between Mr. Potatohead and the waterfall (d) = 40 m Angle (θ) = 40

The velocity of Mr. Potatohead with respect to ground can be calculated by using the Pythagorean theorem.

Using this theorem we can find the horizontal and vertical components of the velocity of Mr. Potatohead with respect to ground.

vp = (vpx2 + vpy2)1/2 ......(1)

The horizontal and vertical components of the velocity of Mr. Potatohead with respect to ground are given as,

vpx = vp cos θ

vpy = vp sin θ

On substituting these values in equation (1),

vp = [vp2 cos2θ + vp2 sin2θ]1/2

vp = vp [cos2θ + sin2θ] 1/2

vp = vp

Therefore, the velocity of Mr. Potatohead with respect to the ground is 1.2 m/s.

Since Mr. Potatohead is swimming at an angle of 40°, the horizontal component of his velocity with respect to the ground is,

vpx = vp cos θ

vpx = 1.2 cos 40°

vpx = 0.92 m/s

As per the question, Mr. Potatohead is attempting to cross a river flowing at 10 m/s from a point 40 m away from a treacherous waterfall.

To find how far Mr. Potatohead is carried downstream, we can use the equation, d = vw t,

Where, d = distance carried downstream vw = velocity of water = 10 m/sand t is the time taken by Mr. Potatohead to cross the river.

The time taken by Mr. Potatohead to cross the river can be calculated as, t = d / vpx

Substituting the values of d and vpx in the above equation,

we get t = 40 / 0.92t

≈ 43.5 seconds

Therefore, Mr. Potatohead will be carried downstream by 10 × 43.5 = 435 meters approximately.

To know more about Pythagorean theorem visit:

https://brainly.com/question/14930619

#SPJ11

The random variable x is the number of occurrences of an event over an interval of ten minutes. It can be assumed that the probability of an occurrence is the same in any two time periods of an equal length. It is known that the mean number of occurrences in ten minutes is 5.

The probability that there are 3 or less occurrences is
A) 0.0948
B) 0.2650
C) 0.1016
D) 0.1230

Answers

The probability that there are 3 or fewer occurrences is 0.2650. So, the correct option is (B) 0.2650.

To calculate this probability we need to use the Poisson distribution formula. Poisson distribution is a statistical technique that is used to describe the probability distribution of a random variable that is related to the number of events that occur in a particular interval of time or space.The formula for Poisson distribution is:P(X = x) = e-λ * λx / x!Where λ is the average number of events in the interval.x is the actual number of events that occur in the interval.e is Euler's number, approximately equal to 2.71828.x! is the factorial of x, which is the product of all positive integers up to and including x.

Now, we can calculate the probability that there are 3 or fewer occurrences using the Poisson distribution formula.P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)P(X = x) = e-λ * λx / x!Where λ is the average number of events in the interval.x is the actual number of events that occur in the interval.e is Euler's number, approximately equal to 2.71828.x! is the factorial of x, which is the product of all positive integers up to and including x.Given,λ = 5∴ P(X = 0) = e-5 * 50 / 0! = 0.0067∴ P(X = 1) = e-5 * 51 / 1! = 0.0337∴ P(X = 2) = e-5 * 52 / 2! = 0.0843∴ P(X = 3) = e-5 * 53 / 3! = 0.1405Putting the values in the above formula,P(X ≤ 3) = 0.0067 + 0.0337 + 0.0843 + 0.1405 = 0.2650.

To know more about Poisson distribution visit:

https://brainly.com/question/30388228

#SPJ11

when using bayes theorem, why do you gather more information ?

Answers

When using Bayes' theorem, you gather more information because it allows you to update the prior probability of an event occurring with additional evidence.

Bayes' theorem is used for calculating conditional probability. The theorem gives us a way to revise existing predictions or probability estimates based on new information. Bayes' Theorem is a mathematical formula used to calculate conditional probability. Conditional probability refers to the likelihood of an event happening given that another event has already occurred. Bayes' Theorem is useful when we want to know the probability of an event based on the prior knowledge of conditions that might be related to the event. In Bayes' theorem, the posterior probability is calculated using Bayes' rule, which involves multiplying the prior probability by the likelihood and dividing by the evidence. For example, let's say that you want to calculate the probability of a person having a certain disease given a positive test result. Bayes' theorem would allow you to update the prior probability of having the disease with the new evidence of the test result. The more information you have, the more accurately you can calculate the posterior probability. Therefore, gathering more information is essential when using Bayes' theorem.

To know more about probability, visit;

//brainly.com/question/31828911

#SPJ11

Find the missing value required to create a probability
distribution. Round to the nearest hundredth.
x / P(x)
0 / 0.18
1 / 0.11
2 / 0.13
3 / 4 / 0.12

Answers

The missing value to create a probability distribution is 0.46.

To find the missing value required to create a probability distribution, we need to add the probabilities and subtract from 1.

This is because the sum of all the probabilities in a probability distribution must be equal to 1.

Here is the given probability distribution:x / P(x)0 / 0.181 / 0.112 / 0.133 / 4 / 0.12

Let's add up the probabilities:

0.18 + 0.11 + 0.13 + 0.12 + P(4) = 1

Simplifying, we get:0.54 + P(4) = 1

Subtracting 0.54 from both sides, we get

:P(4) = 1 - 0.54P(4)

= 0.46

Therefore, the missing value to create a probability distribution is 0.46.

Know more about probability distribution here:

https://brainly.com/question/28021875

#SPJ11

*Normal Distribution*
(5 pts) A soft drink machine outputs a mean of 25 ounces per cup. The machine's output is normally distributed with a standard deviation of 3 ounces. What is the probability of filling a cup between 2

Answers

The probability of filling a cup between 22 and 28 ounces is approximately 0.6826 or 68.26%.

We are given that the mean output of a soft drink machine is 25 ounces per cup and the standard deviation is 3 ounces, both are assumed to follow a normal distribution. We need to find the probability of filling a cup between 22 and 28 ounces.

To solve this problem, we can use the cumulative distribution function (CDF) of the normal distribution. First, we need to calculate the z-scores for the lower and upper limits of the range:

z1 = (22 - 25) / 3 = -1

z2 = (28 - 25) / 3 = 1

We can then use these z-scores to look up probabilities in a standard normal distribution table or by using software like Excel or R. The probability of getting a value between -1 and 1 in the standard normal distribution is approximately 0.6827.

However, since we are dealing with a non-standard normal distribution with a mean of 25 and standard deviation of 3, we need to adjust for these values. We can do this by transforming our z-scores back to the original distribution:

x1 = z1 * 3 + 25 = 22

x2 = z2 * 3 + 25 = 28

Therefore, the probability of filling a cup between 22 and 28 ounces is approximately equal to the area under the normal curve between x1 = 22 and x2 = 28. This area can be found by subtracting the area to the left of x1 from the area to the left of x2:

P(22 < X < 28) = P(Z < 1) - P(Z < -1)

= 0.8413 - 0.1587

= 0.6826

Therefore, the probability of filling a cup between 22 and 28 ounces is approximately 0.6826 or 68.26%.

Learn more about probability here

https://brainly.com/question/25839839

#SPJ11

A soft drink machine outputs a mean of 25 ounces per cup. The machine's output is normally distributed with a standard deviation of 4 ounces.

What is the probability of filing a cup between 27 and 30 ounces?

Suppose an economy has the following equations:
C =100 + 0.8Yd;
TA = 25 + 0.25Y;
TR = 50;
I = 400 – 10i;
G = 200;
L = Y – 100i;
M/P = 500
Calculate the equilibrium level of income, interest rate, consumption, investments and budget surplus.
Suppose G increases by 100. Find the new values for the investments and budget surplus. Find the crowding out effect that results from the increase in G
Assume that the increase of G by 100 is accompanied by an increase of M/P by 100. What is the equilibrium level of Y and r? What is the crowding out effect in this case? Why?
Expert Answer

Answers

The equilibrium level of income (Y), interest rate (i), consumption (C), investments (I), and budget surplus can be calculated using the given equations and information. When G increases by 100, the new values for investments and budget surplus can be determined. The crowding out effect resulting from the increase in G can also be evaluated. Additionally, if the increase in G is accompanied by an increase in M/P by 100, the equilibrium level of Y and r, as well as the crowding out effect, can be determined and explained.

How can we calculate the equilibrium level of income, interest rate, consumption, investments, and budget surplus in an economy, and analyze the crowding out effect?

To calculate the equilibrium level of income (Y), we set the total income (Y) equal to total expenditures (C + I + G), solve the equation, and find the value of Y that satisfies it. Similarly, the equilibrium interest rate (i) can be determined by equating the demand for money (L) with the money supply (M/P). Consumption (C), investments (I), and budget surplus can be calculated using the respective equations provided.

When G increases by 100, we can recalculate the new values for investments and budget surplus by substituting the updated value of G into the equation. The crowding out effect can be assessed by comparing the initial and new values of investments.

If the increase in G is accompanied by an increase in M/P by 100, the equilibrium level of Y and r can be calculated by simultaneously solving the equations for total income (Y) and the interest rate (i). The crowding out effect in this case refers to the reduction in investments resulting from the increase in government spending (G) and its impact on the interest rate (r), which influences private sector investment decisions.

Overall, by analyzing the given equations and their relationships, we can determine the equilibrium levels of various economic variables, evaluate the effects of changes in government spending, and understand the concept of crowding out.

Learn more about: Equilibrium

brainly.com/question/30694482

#SPJ11

find the unique solution to the differential equation that satisfies the stated = y2x3 with y(1) = 13

Answers

Thus, the unique solution to the given differential equation with the initial condition y(1) = 13 is [tex]y = 1 / (- (1/4) * x^4 + 17/52).[/tex]

To solve the given differential equation, we'll use the method of separation of variables.

First, we rewrite the equation in the form[tex]dy/dx = y^2 * x^3[/tex]

Separating the variables, we get:

[tex]dy/y^2 = x^3 * dx[/tex]

Next, we integrate both sides of the equation:

[tex]∫(dy/y^2) = ∫(x^3 * dx)[/tex]

To integrate [tex]dy/y^2[/tex], we can use the power rule for integration, resulting in -1/y.

Similarly, integrating [tex]x^3[/tex] dx gives us [tex](1/4) * x^4.[/tex]

Thus, our equation becomes:

[tex]-1/y = (1/4) * x^4 + C[/tex]

where C is the constant of integration.

Given the initial condition y(1) = 13, we can substitute x = 1 and y = 13 into the equation to solve for C:

[tex]-1/13 = (1/4) * 1^4 + C[/tex]

Simplifying further:

-1/13 = 1/4 + C

To find C, we rearrange the equation:

C = -1/13 - 1/4

Combining the fractions:

C = (-4 - 13) / (13 * 4)

C = -17 / 52

Now, we can rewrite our equation with the unique solution:

[tex]-1/y = (1/4) * x^4 - 17/52[/tex]

Multiplying both sides by -1, we get:

[tex]1/y = - (1/4) * x^4 + 17/52[/tex]

Finally, we can invert both sides to solve for y:

[tex]y = 1 / (- (1/4) * x^4 + 17/52)[/tex]

To know more about differential equation,

https://brainly.com/question/29112593

#SPJ11

The World Health Organization (WHO) stated that 53% of women who had a caesarean section for childbirth in a current year were over the age of 35. Fifteen caesarean section patients are sampled. a) Calculate the probability that i) exactly 9 of them are over the age of 35 ii) more than 10 are over the age of 35 iii) fewer than 8 are over the age of 35 b) Clarify that would it be unusual if all of them were over the age of 35? c) Present the mean and standard deviation of the number of women over the age of 35 in a sample of 15 caesarean section patients. 5. Advances in medical and technological innovations have led to the availability of numerous medical services, including a variety of cosmetic surgeries that are gaining popularity, from minimal and noninvasive procedures to major plastic surgeries. According to a survey on appearance and plastic surgeries in South Korea, 20% of the female respondents had the highest experience undergoing plastic surgery, in a random sample of 100 female respondents. By using the Poisson formula, calculate the probability that the number of female respondents is a) exactly 25 will do the plastic surgery b) at most 8 will do the plastic surgery c) 15 to 20 will do the plastic surgery

Answers

The final answers:

a)

i) Probability that exactly 9 of them are over the age of 35:

P(X = 9) = (15 C 9) * (0.53^9) * (1 - 0.53)^(15 - 9) ≈ 0.275

ii) Probability that more than 10 are over the age of 35:

P(X > 10) = P(X = 11) + P(X = 12) + ... + P(X = 15) ≈ 0.705

iii) Probability that fewer than 8 are over the age of 35:

P(X < 8) = P(X = 0) + P(X = 1) + ... + P(X = 7) ≈ 0.054

b) To determine whether it would be unusual if all 15 women were over the age of 35, we calculate the probability of this event happening:

P(X = 15) = (15 C 15) * (0.53^15) * (1 - 0.53)^(15 - 15) ≈ 0.019

Since the probability is low (less than 0.05), it would be considered unusual if all 15 women were over the age of 35.

c) Mean and standard deviation:

Mean (μ) = n * p = 15 * 0.53 ≈ 7.95

Standard Deviation (σ) = sqrt(n * p * (1 - p)) = sqrt(15 * 0.53 * (1 - 0.53)) ≈ 1.93

5. Using the Poisson formula for the plastic surgery scenario:

a) Probability that exactly 25 respondents will do plastic surgery:

λ = n * p = 100 * 0.2 = 20

P(X = 25) = (e^(-λ) * λ^25) / 25! ≈ 0.069

b) Probability that at most 8 respondents will do plastic surgery:

P(X ≤ 8) = P(X = 0) + P(X = 1) + ... + P(X = 8) ≈ 0.047

c) Probability that 15 to 20 respondents will do plastic surgery:

P(15 ≤ X ≤ 20) = P(X = 15) + P(X = 16) + ... + P(X = 20) ≈ 0.666

a) To calculate the probability for each scenario, we will use the binomial probability formula:

[tex]P(X = k) = (n C k) * p^k * (1 - p)^(n - k)[/tex]

Where:

n = total number of trials (sample size)

k = number of successful trials (number of women over the age of 35)

p = probability of success (proportion of women over the age of 35)

Given:

n = 15 (sample size)

p = 0.53 (proportion of women over the age of 35)

i) Probability that exactly 9 of them are over the age of 35:

P(X = 9) = (15 C 9) * (0.53^9) * (1 - 0.53)^(15 - 9)

ii) Probability that more than 10 are over the age of 35:

P(X > 10) = P(X = 11) + P(X = 12) + ... + P(X = 15)

           = Summation of [(15 C k) * (0.53^k) * (1 - 0.53)^(15 - k)] for k = 11 to 15

iii) Probability that fewer than 8 are over the age of 35:

P(X < 8) = P(X = 0) + P(X = 1) + ... + P(X = 7)

          = Summation of [(15 C k) * (0.53^k) * (1 - 0.53)^(15 - k)] for k = 0 to 7

b) To determine whether it would be unusual if all 15 women were over the age of 35, we need to calculate the probability of this event happening:

P(X = 15) = (15 C 15) * (0.53^15) * (1 - 0.53)^(15 - 15)

c) To calculate the mean (expected value) and standard deviation of the number of women over the age of 35, we can use the following formulas:

Mean (μ) = n * p

Standard Deviation (σ) = sqrt(n * p * (1 - p))

For the given scenario:

Mean (μ) = 15 * 0.53

Standard Deviation (σ) = sqrt(15 * 0.53 * (1 - 0.53))

5. Using the Poisson formula for the plastic surgery scenario:

a) To calculate the probability that exactly 25 respondents will do plastic surgery, we can use the Poisson probability formula:

P(X = 25) = (e^(-λ) * λ^25) / 25!

Where:

λ = mean (expected value) of the Poisson distribution

In this case, λ = n * p, where n = 100 (sample size) and p = 0.2 (proportion of female respondents undergoing plastic surgery).

b) To calculate the probability that at most 8 respondents will do plastic surgery, we sum the probabilities of having 0, 1, 2, ..., 8 respondents undergoing plastic surgery:

P(X ≤ 8) = P(X = 0) + P(X = 1) + ... + P(X = 8)

c) To calculate the probability that 15 to 20 respondents will do plastic surgery, we sum the probabilities of having 15, 16, 17, 18, 19, and 20 respondents undergoing plastic surgery:

P(15 ≤ X ≤ 20) = P(X = 15) + P(X = 16) + ...

To know more about "Probability"  refer here:

brainly.com/question/30034780#

#SPJ4

the equation of a line in slope-intercept form is y=mx b, where m is the x-intercept. True or false

Answers

Answer:

False

Step-by-step explanation:

y = mx + b

where m is the slope of the line and

b is the y-intercept

the equation of a line in slope-intercept form is y=mx b, where m is the x-intercept is False.

The equation of a line in slope-intercept form is y = mx + b, where m represents the slope of the line and b represents the y-intercept (not the x-intercept). The x-intercept is the value of x at which the line intersects the x-axis, while the y-intercept is the value of y at which the line intersects the y-axis.

what is slope?

In mathematics, slope refers to the measure of the steepness or incline of a line. It describes the rate at which the line is rising or falling as you move along it.

The slope of a line can be calculated using the formula:

slope (m) = (change in y-coordinates) / (change in x-coordinates)

Alternatively, the slope can be determined by comparing the ratio of the vertical change (rise) to the horizontal change (run) between any two points on the line.

To know more about equation visit:

brainly.com/question/10724260

#SPJ11

Question 1 1 pts True or False The distribution of scores of 300 students on an easy test is expected to be skewed to the left. True False 1 pts Question 2 The distribution of scores on a nationally a

Answers

The distribution of scores of 300 students on an easy test is expected to be skewed to the left.The statement is True

:When a data is skewed to the left, the tail of the curve is longer on the left side than on the right side, indicating that most of the data lie to the right of the curve's midpoint. If a test is easy, we can assume that most of the students would do well on the test and score higher marks.

Therefore, the distribution would be skewed to the left. Hence, the given statement is True.

The distribution of scores of 300 students on an easy test is expected to be skewed to the left because most of the students would score higher marks on an easy test.

To know more about tail of the curve visit:

brainly.com/question/29803706

#SPJ11

A
company expects to receive $40,000 in 10 years time. What is the
value of this $40,000 in today's dollars if the annual discount
rate is 8%?

Answers

The value of $40,000 in today's dollars, considering an annual discount rate of 8% and a time period of 10 years, is approximately $21,589.

To calculate the present value of $40,000 in 10 years with an annual discount rate of 8%, we can use the formula for present value:

Present Value = Future Value / (1 + Discount Rate)^Number of Periods

In this case, the future value is $40,000, the discount rate is 8%, and the number of periods is 10 years. Plugging in these values into the formula, we get:

Present Value = $40,000 / (1 + 0.08)^10

Present Value = $40,000 / (1.08)^10

Present Value ≈ $21,589

This means that the value of $40,000 in today's dollars, taking into account the time value of money and the discount rate, is approximately $21,589. This is because the discount rate of 8% accounts for the decrease in the value of money over time due to factors such as inflation and the opportunity cost of investing the money elsewhere.

Learn more about  discount

brainly.com/question/13501493

#SPJ11

Suppose that X ~ N(-4,1), Y ~ Exp(10), and Z~ Poisson (2) are independent. Compute B[ex-2Y+Z].

Answers

The Value of B[ex-2Y+Z] is e^(-7/2) - 1/5 + 2.

To compute B[ex-2Y+Z], we need to determine the probability distribution of the expression ex-2Y+Z.

Given that X ~ N(-4,1), Y ~ Exp(10), and Z ~ Poisson(2) are independent, we can start by calculating the mean and variance of each random variable:

For X ~ N(-4,1):

Mean (μ) = -4

Variance (σ^2) = 1

For Y ~ Exp(10):

Mean (μ) = 1/λ = 1/10

Variance (σ^2) = 1/λ^2 = 1/10^2 = 1/100

For Z ~ Poisson(2):

Mean (μ) = λ = 2

Variance (σ^2) = λ = 2

Now let's calculate the expression ex-2Y+Z:

B[ex-2Y+Z] = E[ex-2Y+Z]

Since X, Y, and Z are independent, we can calculate the expected value of each term separately:

E[ex] = e^(μ+σ^2/2) = e^(-4+1/2) = e^(-7/2)

E[2Y] = 2E[Y] = 2 * (1/10) = 1/5

E[Z] = λ = 2

Now we can substitute these values into the expression:

B[ex-2Y+Z] = E[ex-2Y+Z] = e^(-7/2) - 1/5 + 2

Therefore, the value of B[ex-2Y+Z] is e^(-7/2) - 1/5 + 2.

For more questions on Value .

https://brainly.com/question/843074

#SPJ8

Other Questions
If the constraint 4X + 5X 2 800 is binding, then the constraint 8X + 10X 2 500 is which of the following? O binding O infeasible O redundant O limiting the phone calls to a computer software help desk occur at a rate of 3 per minute in the afternoon. compute the probability that the number of calls between 2:00 pm and 2:10 pm using a Poisson distribution. a) P (x 8) b) P(X 8) c) P(at least 8) What are optimal weekly profits? The production planner for Fine Coffees, Inc. produces two coffee blends: American (A) and British (B). Two of his resources are constrained: Columbia beans, of which he can get at most 300 pounds (4,800 ounces) per week; and Dominican beans, of which he can get at most 200 pounds (3,200 ounces) per week. Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans, while a pound of British blend coffee uses 8 ounces of each type of bean. Profits for the American blend are $2.00 per pound, and profits for the British blend are $1.00 per pound. $0 O $400 $700 $800 $900 how many grams of mg would be required to produce 100.00 ml of h2 at a pressure of 1.034 atm and a temperature of 21.01 c? the vast majority of the contemporary scholarship directed toward understanding leaders and the leadership process has been conducted in western europe and asia. Assume that you have a cylinder with a movable piston. What would happen to the gas pressure inside the cylinder if you do the following?(a) Decrease the volume to one third the original volume while holding the temperature constant.increase the pressure by 3 timesdouble the pressuredecrease the pressure by 1/3remain the same(b) Reduce the Kelvin temperature to half its original value while holding the volume constant.increase by 2 timesincrease by 4 timesdecrease by two timesdecrease by four timesremain the same(c) Reduce the amount of gas to half while keeping the volume and temperature constant.increase by 2 timesdecrease by 2 timesdecrease by 4 timesremain the same f nominal GDP is $15 trillion and real GDP is $12 trillion, the GDP deflator is? You have received a telephone call from a lawyer asking you to be an expert on punitive damages for a plaintiff in a commercial case between two business. What kind of information will you likely consider in this role? what are the random boulders called left behind by glacial activity? how they form? Suppose that when the price of cereal rises by 10%, the quantity demanded of cereal falls by 20%. Based on this information, what is the approximate price elasticity of demand for cereal? 0.5 -2.0 -0.5 0.0 2.0 for the following equilibrium: 2a bc 2d if equilibrium concentrations are [b]=0.44 m, [c]=0.80 m, and [d]=0.25 m, and kc=0.22, what is the equilibrium concentration of a? Answer each part by using well-labelled graphs for the IS-LM, WS-PS and AS-AD models:a) Assume that a large influx of refugees enter the workforce, who are prepared to work at lowerwages, explain how natural rate of unemployment would change. (7 marks)b) Assume that the RBA decided to increase its price target, analyse how the economy wouldadjust to a medium-run equilibrium. (8 marks)c) Would your answer to (b) change if the economy was in a liquidity trap? Explain. (7 marks)d) Suppose the Central Bank tries to persuade everyone that it is necessary that the Bank to raise interest rates. This would mark the end of the post-Lehman crisis era and the start of the return to "normal", thereby increasing peoples expectations of future interest rates. Explain what the effect would be today on equilibrium output. (8 marks) running red lights is one of the most common aggressive driver behaviors. it accounts for Find the length of the arc. Use the pi button on your calculator when solving. Round non-terminating decimals to the nearest hundredth.please help me i really need this done today You are supposed to create a business plan.I want you to be the entrepreneur. This business plan is yours. Do not copy a business model from the Internet.You are an entrepreneur. Have an incredible idea. What next?Take each step learned from the module and apply to your business idea (product or service)Table of summary: Company Summary Company Ownership Company History (for ongoing companies) or Start-up Plan (for new companies) Company Locations and Facilities2. Products and Services Product and Service Description Competitive Comparison Sourcing and Fulfillment Technology Future Products and Services3. Market Analysis Summary Market Segmentation Target Market Segment Strategy Market Needs Market Trends Market Growth Industry Analysis Industry Participants Distribution Patterns Competition and Buying Patterns Main Competitors4. Strategy and Implementation Summary Strategy Pyramid Value Proposition Competitive Edge5. Marketing Strategy Positioning Statements Pricing Strategy Promotion Strategy Distribution Patterns Marketing Programs6. Sales Strategy Sales Programs7. Management Summary Organizational Structure Management Team Management Team Gaps Personnel Plan8. Financial Plan Important Assumptions Key Financial Indicators Break-even Analysis Projected Profit and Loss Projected Cash Flow Projected Balance Sheet Business Ratios Long-term Plan9. References Describe the geographic distribution of fossil fuels (coal,petroleum and natural gas), production, reserves and identify themost important basins in the world. Specify for each fossil fuels(4-5 cou In planning for retirement, an investor decides he will save $15,000 every year for 40 years. At 12% nominal return on his investment and 3% annual inflation, how much real purchasing power will he have at the end of 38 years (to the nearest hundred thousand dollars)? Multiple Choice a) $4,700,000 b) $11,500,000 c) $3,700,000 d) $7,900,000 globalization has made cyberterrorism a new way to attack western ideology. T/F will a negative charge, initially at rest, move toward higher or lower potential? explain why. In the 2-tiered client server architecture:A.processing is split between the client and the server.B.the client performs the data management function.C.the server manages networking resources and user interface.D.the mainframe computer cannot be used as a server.E.None of the above.