Answer:
m<F = 95°
Step-by-step explanation:
We'll begin by calculating the value of x. This can be obtained as follow:
m<C = 50
m<A = (10x – 5)
m<B = m<G = (2x + 15)
m<C + m<A + m<B = 180 (Sum of angles in a triangle)
50 + (10x – 5) + (2x + 15) = 180
50 + 10x – 5 + 2x + 15 = 180
50 – 5 + 15 + 10x + 2x = 180
60 + 12x = 180
Collect like terms
12x = 180 – 60
12x = 120
Divide both side by 12
x = 120 / 12
x = 10
Finally, we shall determine the value of m<F. This can be obtained as follow:
m<F = m<A
But
m<A = 10x – 5
x = 10
Therefore,
m<F = 10x – 5
m<F = 10(10) – 5
m<F = 100 – 5
m<F = 95°
A stamp gets more expensive each year. It increases in value by 60 % each year. Wha
is the growth FACTOR?
9514 1404 393
Answer:
1.60
Step-by-step explanation:
The growth factor is 1 more than the growth rate:
1 + 60% = 1 + 0.60 = 1.60 = growth factor
What is the length of the base of a right triangle with an area of 15 square meters and a height of 3 meters? A. 5 m B. 10 m C. 30 m D. 45 m
Answer:
B.10
Step-by-step explanation:
15=1/2b(3)
30=3b
10= base
I need help with this pls help and write the Correct answer
wich one is the answer
You buy items costing $1900 and finance the cost with a fixed installment loan for 24 months at 8% simple interest per year.
1. What is the finance charge?
2. What is your monthly payment?
* Please explain how you got the answer*
9514 1404 393
Answer:
$304$91.83Step-by-step explanation:
1. The finance charge is found from the simple interest formula;
I = Prt
where P is the principal amount, r is the annual rate, and t is the number of years.
24 months is 2 years, so the interest charged is ...
I = $1900×0.08×2 = $304
The finance charge is $304.
__
2. The monthly payment will be the total amount due, divided by the number of months.
payment = ($1900 +304)/24 = $2204/24 ≈ $91.83
The monthly payment is $91.83.
If ∠1 = 3x, ∠2 = 5x + 18, and s ⊥ r, find m∠1.
I hope it will help you.
Answer:
x = 9
Step-by-step explanation:
angle <1 and angle <2 is complementary and their sum is 90 degrees
3x + 5x + 18 = 90 add like terms
8x + 18 = 90 subtract 18 from both sides
8x = 72 divide both sides by 8
x = 9 to find the measure of angle <1 replace x with the value we found
Choose which two numbers the following will fall between: *
V156 PLEASE HELP ME FASTTTTT
[tex]\sf\purple{A.\:Between \:12\:and\:13.}[/tex] ✅
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] \sqrt{156} \\ = 12.4899 \\ = 12.49[/tex]
Therefore, [tex] \sqrt{156} [/tex] will fall in between 12 and 13.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{!}}}}}[/tex]
What is the equivalent recursive definition for an = 12+ (n - 1)3?
A. a1 = 3, An = An-1 + 12
B. a1 = 12, An = 30n-1
C. a1 = 12, Un = On-1 +3
D. a1 = n, an= 1201-1+3
Answer:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Step-by-step explanation:
Given
[tex]A_n =12+(n-1)3[/tex]
Required
Write as recursive
We have:
[tex]A_n =12+(n-1)3[/tex]
Open bracket
[tex]A_n =12+3n-3[/tex]
[tex]A_n =12-3+3n[/tex]
[tex]A_n =9+3n[/tex]
Calculate few terms
[tex]A_1 =9+3*1 = 9 + 3 = 12[/tex]
[tex]A_2 =9+3*2 = 9 + 6 = 15[/tex]
[tex]A_3 =9+3*3 = 9 + 9 = 18[/tex]
The above shows that the rule is to add 3.
So, we have:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Suppose a quadratic equation is given as follows:
(k – 1)x² + x + 1 = 0
Select all values of k for which the above equation has two real and unequal roots
0
.25
0.5
0.75
1
1.25
1.5
1.75
Answer:
k>1.25
Step-by-step explanation:
The given quadratic equation is :
(k – 1)x² + x + 1 = 0
We need to find all values of k for which the above equation has two real and unequal roots.
For a quadratic equation ax²+bx+c=0, for real and unequal roots,
b²-4ac>0
Here, a = (k-1), b = 1 and c = 1
Put all the values,
1²-4×(k-1)1>0
1-4k+4>0
5-4k>0
k>1.25
S, k can take values more than 1.25. Hence, it can take values 1.5, 1.75.
x+y=13
2x-y=5
solve using any method
Answer:
x = 6 , y = 7
Step-by-step explanation:
solving by substitution method
x + y = 13
x = 13 - y equation (i)
2x - y = 5
substitute the value of x
2(13 - y) - y = 5
26 - 2y - y = 5
26 - 3y = 5
26 - 5 = 3y
21/3 = y
7 = y
substitute the value of y in equation (i)
x = 13 - y
x = 13 - 7
x = 6
NO LINKS!!!
What is the volume of this solid?
220 cubic units.
Answer:
Solution given:
for small cylinder
r=1
and for large cylinder
R=5+1=6
height for both [h]=2
Now
Volume of solid=πR²h-πr²h=πh(R²-r²)
=3.14*2(6²-1²)=219.8 =220 units ³.
Small cylinder is r=1
Large cylinder is R= 5+1 =6
Height (h) =2
Volume of solid,
→ πR²h-πr²h
→ πh(R²-r²)
→ 3.14 × 2(6²-1²)
→ 219.8
→ 220 cubic units
Can y’all help me? Thanks :)
Answer:
Step-by-step explanation:
Soooo, by looking at the picture we can tell that it is a right trapezoid
The formula for the area is
(b1+b2)/2*h
(Base 1+ Base 2)/ 2 * height
Now we can plug in the numbers:
(5+15)/2*6
20/2*6
10*6
=60
1 gallon of paint per sq. foot
So Isha needs 60 gallons of paint
Ariana owns a food truck that sells tacos and burritos. She sells each taco for $4 and each burrito for $8.25. Ariana must sell at least $960 worth of tacos and burritos each day. Write an inequality that could represent the possible values for the number of tacos sold, tt, and the number of burritos sold, bb, that would satisfy the constraint.
Answer:
09
Step-by-step explanation:
If g(x)=x2 - 5 and 1(x)=7x-11, then what is the value of h(g(3)) ?
Answer:
The value of h(g(3)) is 17.
Step-by-step explanation:
We are given these following functions:
[tex]g(x) = x^2 - 5[/tex]
[tex]h(x) = 7x - 11[/tex]
h(g(3)) ?
[tex]h(g(x)) = h(x^2-5) = 7(x^2-5) - 11 = 7x^2 - 35 - 11 = 7x^2 - 46[/tex]
At x = 3
[tex]h(g(3)) = 7(3)^2 - 46 = 63 - 46 = 17[/tex].
The value of h(g(3)) is 17.
Solve the solution as an ordered pair
X + 9 = y
X = 4y - 6
Answer:
-10, -1
Step-by-step explanation:
See Image below:)
please help. no links!
Answer:
I think B
Step-by-step explanation:
121.346° is more close to 121.3°, than 121.4°
if i'm wrong, the i'm sorry
the sumof 8pq and -17 pq is
Answer:
= -9pq
Step-by-step explanation:
=8pq + (-17pq)
=8pq-17pq
= -9pq
The product of two consecutive negative integers is 600. What is the value of the lesser integer?
–60
–30
–25
–15
Answer:
-25
Step-by-step explanation:
-24×(-25)=600
Hope this helps! :)
Answer: It's -25
edg 2023
find the derivative
f (x ) = (x-5)^2 (3-x)^2
Given:
The function is
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
To find:
The derivative of the given function.
Solution:
Chain rule of differentiation:
[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]
Product rule of differentiation:
[tex][f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)[/tex]
We have,
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
Differentiate with respect to x.
[tex]f'(x)=(x-5)^2\dfrac{d}{dx}(3-x)^2+(3-x)^2\dfrac{d}{dx}(x-5)^2[/tex]
[tex]f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)][/tex]
[tex]f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)[/tex]
[tex]f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)[/tex]
On further simplification, we get
[tex]f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2[/tex]
[tex]f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)[/tex]
[tex]f'(x)=4x^3-48x^2+188x-240[/tex]
Therefore, the derivative of the given function is [tex]f'(x)=4x^3-48x^2+188x-240[/tex].
A rectangular prism has a base area of 2 square feet and a height of 5 feet. What
is the volume of the prism in cubic feet?
10
15
12
11
Submit
Without using mathematical table or calculator simplify 3 4/9 ÷(5 1/3 _ 2 3/4) + 5 9/10
Answer:
[tex]{ \tt{3 \frac{4}{9} \div (5 \frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{31}{12} ) + \frac{59}{10} }} \\ \\ { \tt{ = \frac{4}{3} + \frac{59}{10} }} \\ \\ { \bf{ = \frac{217}{30} }} \\ \\ { \boxed{ \tt{answer : 7 \frac{7}{30} }}} \\ \\ { \underline{ \blue{ \tt{becker ⚜jnr}}}}[/tex]
Answer:
[tex]7 \frac{7}{30}[/tex]
Step-by-step explanation:
[tex]3 \frac{4}{9} \div ( 5\frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10}\\\\\frac{31}{9} \div (\frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} \\\\\\Solving \ using \ BODMAS\\\\First \ Solve \ expression \ inside \ Bracket \\\\\frac{31}{9} \div (\frac{(16 \times 4) - ( 11 \times 3)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div (\frac{64- 33)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div \frac{31}{12} + \frac{59}{10} \\\\\\ \\\\\\Next \ solve \ Dvision \\\\\frac{\frac{31}{9}}{\frac{31}{12}} + \frac{59}{10}\\\\[/tex]
[tex](\frac{31}{9}} \times {\frac{12}{31}) + \frac{59}{10}[/tex]
[tex]\frac{4}{3} + \frac{59}{10}\\\\ Now \ solve \ final \ expression \\\\\\\frac{(4 \times 10) + ( 59 \times 3)}{30}\\\\\frac{40 + 177}{30}\\\\\frac{217}{30}\\\\7 \frac{7}{30}[/tex]
A store donated a percent of every sale to charity The total sales were $9,850 so the store donated $591. What percent of $9,850 was donated?
I need the answer asap!
Answer:
Well, 10% of 6640 is $664, and $332 is half of that, so 5%
Missing: $9850 $591.
Step-by-step explanation:
Answer:
espero ayudarte ..............
What is the probability that a randomly selected day in the summer will be rainy if it’s cloudy?
Answer:
0.872
Step-by-step explanation:
Given that :
P(cloudy) = P(C) = 0.94
P(cloudy and rainy) = P(C n R) = 0.82
Probability that a given day will be rainy if it is cloudy ; this is a conditional probability problem:
Recall ; P(A|B) = P(AnB) / P(B)
P(R|C) = P(C n R) / P(C) = 0.82 / 0.94 = 0.872
For the sequence an = an-1 + an-2 and ai = 2, a2 = 3,
its first term is
its second term is
its third term is
its fourth term is
its fifth term is
Answer:
[tex]a_1 = 2[/tex]
[tex]a_2 = 3[/tex]
[tex]a_3 = 5[/tex]
[tex]a_4 = 8[/tex]
[tex]a_5 = 13[/tex]
Step-by-step explanation:
Given
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_1 = 2[/tex]
[tex]a_2 = 3[/tex]
Solving (a): The first term
This has already been given as:
[tex]a_1 = 2[/tex]
Solving (b): The second term
This has already been given as:
[tex]a_2 = 3[/tex]
Solving (c): The third term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_3 = a_{3-1} +a_{3-2}[/tex]
[tex]a_3 = a_2 +a_1[/tex]
[tex]a_3 = 3 +2[/tex]
[tex]a_3 = 5[/tex]
Solving (d): The fourth term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_4 = a_{4-1} +a_{4-2}[/tex]
[tex]a_4 = a_3 +a_2[/tex]
[tex]a_4 = 5+3[/tex]
[tex]a_4 = 8[/tex]
Solving (e): The fifth term
This is calculated as:
[tex]a_n = a_{n-1} + a_{n-2}[/tex]
[tex]a_5 = a_{5-1} +a_{5-2}[/tex]
[tex]a_5 = a_4 +a_3[/tex]
[tex]a_5 = 8+5[/tex]
[tex]a_5 = 13[/tex]
3. The simple interest on $6,000 for 4 years is $1,680. *
can someone answer this please
Answer:
x = 14
Step-by-step explanation:
Please note, the word trapezium is a synonym for the word trapezoid.
This problem gives one the area of the trapezoid, a well as one of the measurements of a base and the height of the figure. One is asked to find the length of the other base. This can be done by using the formula to find the area of a trapezoid. This formula is the following,
[tex]A=(h)(\frac{b_1+b_2}{2})[/tex]
Where (A) represents the area of a trapezoid, ([tex]b_1[/tex]) and ([tex]b_2[/tex]) represents the bases and (h) represents the height. Substitute in the given values and solve for the unknown base.
[tex]b_1=7\\h=6\\A=84[/tex]
[tex]A=(h)(\frac{b_1+b_2}{2})\\[/tex]
Substitute,
[tex]84=6(\frac{7+b_2}{2})\\[/tex]
Inverse operations,
[tex]84=6(\frac{7+b_2}{2})[/tex]
[tex]14=\frac{7+b_2}{2}[/tex]
[tex]28=7+b_2[/tex]
[tex]14=b_2[/tex]
An item was marked down 64% from its original price, x. The amount discounted was $30. Which equation can be
used to find the original price?
0.64(x) = 30
0.64(30) = x
30 +0.64 = x
x + 0.064 = 30
Answer:
0.64(x) = 30
Step-by-step explanation:
Hope that's correct.
I’ll give brainliest
Answer:
y = 1.19x
Step-by-step explanation:
y is the dependent variable (total cost)
x is the independent variable (number of pounds)
what is the mean mark of 847 ÷ 30?
Answer:
Step-by-step explanation:
The following hypothetical data represent a sample of the annual numbers of home fires started by candles for the past several years.
5640, 5090, 6590, 6380, 7165, 8440, 9980
The population has a standard deviation equal to 1210. Assuming that the data is from a distribution that is approximately normal, construct a 90 % confidence interval for the mean number of home fires started by candles each year
Answer:
(6290.678 ; 7790.742)
Step-by-step explanation:
Given the data :
5640, 5090, 6590, 6380, 7165, 8440, 9980
The sample mean, xbar = Σx / n = 49285 / 7 = 7040.71
The 90% confidence interval :
Xbar ± Margin of error
Margin of Error = Zcritical * σ/√n
Since the σ is known, we use the z- distribution
Zcritical at 90% confidence = 1.64
Hence,
Margin of Error = 1.64 * 1210/√7
Margin of Error = 750.032
90% confidence interval is :
7040.71 ± 750.032
Lower boundary = 7040.71 - 750.032 = 6290.678
Upper boundary = 7040.71 + 750.032 = 7790.742
(6290.678 ; 7790.742)