state the story of archimedes​

Answers

Answer 1

Answer:

Archimedes was born about 287 BCE in Syracuse on the island of Sicily. He died in that same city when the Romans captured it following a siege that ended in either 212 or 211 BCE. One story told about Archimedes' death is that he was killed by a Roman soldier after he refused to leave his mathematical work.


Related Questions

Question 7 of 10
A railroad freight car with a mass of 32,000 kg is moving at 2.0 m/s when it
runs into an at-rest freight car with a mass of 28,000 kg. The cars lock
together. What is their final velocity?
A.1.1 m/s
B. 2.2 m/s
C. 60,000 kg•m/s
D. 0.5 m/s

Answers

Answer:

a

Explanation:

you take 32,000kg ÷2.0m

If you change the motor in your vehicle you need to notify the DMV within ____,
days of this change.

-20
-25
-10
-15

Answers

when you change your motor on your vehicle you need to notify the DMV within 10 days

If you change the motor in your vehicle you need to notify the DMV within 10 days of this change.

An engine or motor

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power generation), heat energy (e.g. geothermal), chemical energy, electric potential, and nuclear energy (from nuclear fission or nuclear fusion). Many of these processes generate heat as an intermediate energy form, so heat engines have special importance. Some natural processes, such as atmospheric convection cells convert environmental heat into motion (e.g. in the form of rising air currents). Mechanical energy is of particular importance in transportation but also plays a role in many industrial processes such as cutting, grinding, crushing, and mixing.

Mechanical heat engines convert heat into work via various thermodynamic processes. The internal combustion engine is perhaps the most common example of a mechanical heat engine, in which heat from the combustion of fuel causes rapid pressurization of the gaseous combustion products in the combustion chamber, causing them to expand and drive a piston, which turns a crankshaft. Unlike internal combustion engines, a reaction engine (such as a jet engine) produces thrust by expelling reaction mass, by Newton's third law of motion.

Learn more about motor

https://brainly.com/question/8954449

#SPJ2

The value of mass remains constant but weight changes place to place why​

Answers

Explanation:

No matter where you are in the universe, your mass is always the same: mass is a measure of the amount of matter which makes up an object. Weight, however, changes because it is a measure of the force between an object and body on which an object resides (whether that body is the Earth, the Moon, Mars, et cetera).

Explanation:

Hence, weight of a body will change from one place to another place because the value of g is different in different places. For example, the value of g on moon is 1/6 times of the value of g on earth. As mass is independent of g , so it will not change from place to place.

A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.

Answers

Answer:

The frequency of the second wave is half of the frequency of first one.

Explanation:

The wavelength of the second wave is double is the first wave.

As we know that the frequency is inversely proportional to the wavelength of the velocity is same.

velocity = frequency x wavelength

So, the ratio of frequency of second wave to the first wave is

[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]

The frequency of the second wave is half of the frequency of first one.

The density of blood is 1055 kg/m3 . If the blood at the very top of your head exerts a minimum gauge pressure of 45 mm Hg (6000 Pa), estimate the gauge pressure at your heart in pascals.

Answers

Answer:

   P = 10135.6 Pa

Explanation:

For this exercise we use that the pressure varies with the height

           P = P₀ + ρ g h

where h is the height from the head to the heart, which is approximately

h = 40 cm = 0.40m  and P₀ is the head pressure P₀ = 6000 Pa

          P = 6000 + 1055 9.8 0.40

          P = 6000 + 4135.6

          P = 10135.6 Pa

Traveling waves propagate with a fixed speed usually denoted as v (but sometimes c). The waves are called __________ if their waveform repeats every time interval T.

a. transverse
b. longitudinal
c. periodic
d. sinusoidal

Answers

Answer:

periodic

Explanation:

The period of a simple pendulum is 3.5 s. The length of the pendulum is doubled. What is the period T of the longer pendulum?

Answers

Explanation:

The period T of a simple pendulum is given by

[tex]T = 2 \pi \sqrt{\dfrac{l}{g}}[/tex]

Doubling the length of the pendulum gives us a new period T'

[tex]T' = 2 \pi \sqrt{\dfrac{l'}{g}} = 2 \pi \sqrt{\dfrac{2l}{g}}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{2} \left(2 \pi \sqrt{\dfrac{l}{g}} \right)[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{2}\:T = \sqrt{2}(3.5\:\text{s})= 4.95\:\text{s}[/tex]

explain why sound wave travel faster in liquid than gas​

Answers

Answer:

Because gas contains free molecules but not liquid.

Please mark as brainliast

You walk into a room and you see 4 chickens on a bed 2 cows on the floor and 2 cats in a chair. How many legs are on the ground? (I know this answer just a riddle to see who knows it) (:

Answers

Answer:

18

Explanation:

I'm pretty sure I got it right

a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration​

Answers

Answer:

0

Explanation:

a = dv/dt

if v is constant than the slope of the v graph will be 0, so dv/dt is 0

a= 0

A light source radiates 60.0 W of single-wavelength sinusoidal light uniformly in all directions. What is the average intensity of the light from this bulb at a distance of 0.400 m from the bulb

Answers

Answer: [tex]29.85\ W/m^2[/tex]

Explanation:

Given

Power [tex]P=60\ W[/tex]

Distance from the light source [tex]r=0.4\ m[/tex]

Intensity is given by

[tex]I=\dfrac{P}{4\pi r^2}[/tex]

Inserting values

[tex]\Rightarrow I=\dfrac{60}{4\pi (0.4)^2}\\\\\Rightarrow I=\dfrac{60}{2.010}\\\\\Rightarrow I=29.85\ W/m^2[/tex]

Answer:

29.85 W/ m^2

Explanation:

uppose that 3 J of work is needed to stretch a spring from its natural length of 32 cm to a length of 49 cm. (a) How much work (in J) is needed to stretch the spring from 37 cm to 45 cm

Answers

Answer:

0.113 J

Explanation:

Applying,

w = ke²/2................. Equation 1

Where w = workdone in stretching the spring, k = spring constant, e = extension

make k the subject of the equation

k = 2w/e²................ Equation 2

From the question,

Given: w = 3 J, e = 49-32 = 17 cm = 0.17 m

Substitute these values into equation 2

k = (2×3)/0.17²

k = 6/0.17

k = 35.29 N/m

(a) if the spring from 37 cm to 45 cm,

Then,

w = ke²/2

Given: e = 45-37 = 8 cm = 0.08

w = 35.29(0.08²)/2

w = 0.113 J

No esporte coletivo, um dos principais fatores desenvolvidos é o desenvolvimento social. Qual desses não faz parte das virtudes ensinadas no esporte?

Companheirismo
Humildade
Ser justo (Fair Play)
Vencer independente do que precise ser feito

Answers

Answer:

fair palybtgshsisuehdh

3. Calculate the force it would take to accelerate a 50 ka bike at a rate of 3 m/s2 (6 points)

Answers

Answer:

150 N

Explanation:

Given that,

Acceleration (a) = 3 m/s²Mass of the bike (m) = 50 kg

We are asked to calculate force required.

[tex]\longrightarrow[/tex] F = ma

[tex]\longrightarrow[/tex] F = (50 × 3) N

[tex]\longrightarrow[/tex] F = 150 N

2.
Select the correct answer.
Erica is working in the lab. She wants to remove the fine dust particles suspended in a sample of oil. Which method is she most likely to use?

Answers

Answer:

Reverse Osmosis

Explanation:

Reverse osmosis is a type of filtration that involves passing a solvent through a semipermeable membrane in the opposite direction that natural osmosis does. Separation is always enforced through the use of pressure in this process. Ions, fine dust particles, molecules, and larger particles are typically removed from solvents using this method. The technique is particularly popular in the treatment and purification of water.

Answer:

filtration is used to separate

two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations

Answers

Answer:

The height is the same

Explanation:

Because they were at the same height but they fell at different velocities

1. A 20.0 N force directed 20.0° above the horizontal is applied to a 6.00 kg crate that is traveling on a horizontal
surface. What is the magnitude of the normal force exerted by the surface on the crate?

Answers

N = 52.0 N

Explanation:

Given: [tex]F_a= 20.0\:\text{N}=\:\text{applied\:force}[/tex]

[tex]m=6.00\:\text{kg}[/tex]

[tex]N = \text{normal force}[/tex]

The net force [tex]F_{net}[/tex] is given by

[tex]F_{net} = N + F_a\sin 20 - mg=0[/tex]

Solving for N, we get

[tex]N = mg - F_a\sin 20[/tex]

[tex]\:\:\:\:\:\:= (6.00\:\text{kg})(9.8\:\text{m/s}^2) - (20.0\:\text{N}\sin 20)[/tex]

[tex]\:\:\:\:\:\:= 52.0\:\text{N}[/tex]

It takes 130 J of work to compress a certain spring 0.10m. (a) What is the force constant of this spring? (b) To compress the spring an additional 0.10 m, does it take 130 J, more than 130 J or less than 130 J? Verify your answer with a calculation.

Answers

Explanation:

Given that,

Work done to stretch the spring, W = 130 J

Distance, x = 0.1 m

(a) We know that work done in stretching the spring is as follows :

[tex]W=\dfrac{1}{2}kx^2\\\\k=\dfrac{2W}{x^2}\\\\k=\dfrac{2\times 130}{(0.1)^2}\\\\k=26000\ N/m[/tex]

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m

So,

[tex]W=\dfrac{1}{2}kx^2\\\\W=\dfrac{1}{2}\times 26000\times 0.2^2\\\\W=520\ J[/tex]

So, the new work is more than 130 J.

ASK YOUR TEACHER A 2.0-kg mass swings at the end of a light string with the length of 3.0 m. Its speed at the lowest point on its circular path is 6.0 m/s. What is its kinetic energy at an instant when the string makes an angle of 50 degree with the vertical

Answers

Answer:

  K_b = 78 J

Explanation:

For this exercise we can use the conservation of energy relations

starting point. Lowest of the trajectory

        Em₀ = K = ½ mv²

final point. When it is at tea = 50º

        Em_f = K + U

        Em_f = ½ m v_b² + m g h

where h is the height from the lowest point

        h = L - L cos 50

        Em_f = ½ m v_b² + mg L (1 - cos50)

energy be conserve

        Em₀ = Em_f

         ½ mv² = ½ m v_b² + mg L (1 - cos50)

         K_b = ½ m v_b² + mg L (1 - cos50)

let's calculate

          K_b = ½ 2.0 6.0² + 2.0 9.8 6.0 (1 - cos50)

          K_b = 36 +42.0

          K_b = 78 J

A car hurtles off a cliff and crashes on the canyon floor below. Identify the system in which the net momentum is zero during the crash.

Answers

Solution :

It is given that a car ran off from a cliff and it crashes on canyon floor. Now the system of a car as well as the earth together have a  [tex]\text{ net momentum of zero}[/tex] when the car crashes on the canyon floor, thus reducing the momentum of the car to zero. The earth also stops its upward motion and it also reduces the momentum to zero.

The image of the object formed by the lens is real, enlarged and inverted. What is the kind of lens ?​

Answers

Answer:

Converging (convex) lens.

Explanation:

A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.

Basically, there are two (2) main types of lens and these includes;

I. Diverging (concave) lens.

II. Converging (convex) lens.

A converging (convex) lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. Thus, this type of lens is usually thin at the lower and upper edges and thick across the middle.

Basically, the image of the object formed by a converging (convex) lens. lens is real, enlarged and inverted.

A uniform horizontal bar of mass m1 and length L is supported by two identical massless strings. String A Both strings are vertical. String A is attached at a distance d

Answers

Answer:

a)  T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex] ,  b) T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c)  x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex],  d)  m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

Explanation:

After carefully reading your long sentence, I understand your exercise. In the attachment is a diagram of the assembly described. This is a balancing act

a) The tension of string A is requested

The expression for the rotational equilibrium taking the ends of the bar as the turning point, the counterclockwise rotations are positive

      ∑ τ = 0

      T_A d - W₂ x -W₁ L/2 = 0

      T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]

b) the tension in string B

we write the expression of the translational equilibrium

       ∑ F = 0

       T_A - W₂ - W₁ - T_B = 0

       T_B = T_A -W₂ - W₁

       T_ B =   [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]  - g m₂ - g m₁

       T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c) The minimum value of x for the system to remain stable, we use the expression for the endowment equilibrium, for this case the axis of rotation is the support point of the chord A, for which we will write the equation for this system

         T_A 0 + W₂ (d-x) - W₁ (L / 2-d) - T_B d = 0

at the point that begins to rotate T_B = 0

          g m₂ (d -x) -  g m₁  (0.5 L -d) + 0 = 0

          m₂ (d-x) = m₁ (0.5 L- d)

          m₂ x = m₂ d - m₁ (0.5 L- d)

          x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex]

 

d) The mass of the block for which it is always in equilibrium

this is the mass for which x = 0

           0 = d - \frac{m_1}{m_2} \  \frac{L}{2d}

         [tex]\frac{m_1}{m_2} \ (0.5L -d) = d[/tex]

          [tex]\frac{m_1}{m_2} = \frac{ d}{0.5L-d}[/tex]

          m₂ = m₁  [tex]\frac{0.5 L -d}{d}[/tex]

          m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

If a bale of hay behind the target exerts a constant friction force, how much farther will your arrow burry itself into the hay than the arrow from the younger shooter

Answers

Answer:

The arrow will bury itself farther by 3S₁

Explanation:

lets assume; the Arrow shot by me has a speed twice the speed of the arrow fired by the younger shooter

Given that ; acceleration is constant , Frictional force is constant

                    A₂ =   A₁

Vf²₂ - Vi²₂ / 2s₂  = Vf₁² - Vi₁² / 2s₁ ---- ( 1 )

final velocities = 0

Initial velocities : Vi₂ = 2(Vi₁ )

Back to equation 1

0 - (2Vi₁ )² / 2s₂ =  0 - Vi₁² / 2s₁

hence :

s₂ = 4s₁

hence the Arrow shot by me will burry itself farther by :

s₂ - s₁ = 3s₁

Note :  S1 = distance travelled by the arrow shot by the younger shooter

A 36.0 kg child slides down a long slide in a playground. She starts from rest at a height h1 of 24.00 m. When she is partway down the slide, at a height h2 of 11.00 m, she is moving at a speed of 7.80 m/s.
Calculate the mechanical energy lost due to friction (as heat, etc.).

Answers

Answer:

E = 3495.96 J

Explanation:

From the law of conservation of energy:

Total Mechanical Energy at h1 = Total Mechanical Energy at h2

Kinetic energy at h1 + potential energy at h1 = Kinetic energy at h2 + potential energy at h2 + Mechanical Energy Lost due to Friction

[tex]K.E_{h1}+P.E_{h1} = K.E_{h2}+P.E_{h2} + E\\\\\frac{1}{2}mv_1^2\ J + mgh_1 = \frac{1}{2}mv_2^2 + mgh_2 + E\\\\\frac{1}{2}(36\ kg)(0\ m/s)_1^2\ J + (36\ kg)(9.81\ m/s^2)(24\ m)_1 = \frac{1}{2}(36\ kg)(7.8\ m/s)_2^2 + (36\ kg)(9.81\ m/s^2)(11\ m)_2 + E\\\\0\ J + 8475.84\ J = 1095.12\ J + 3884.76\ J + E\\E = 8475.84\ J - 1095.12\ J - 3884.76\ J\\[/tex]

E = 3495.96 J

the magnitude of the magnetic field at point p for a certain electromagnetic wave is 2.21. What is the magnitude of the elctic field for that wave at P

Answers

Answer:

[tex]6.63\times 10^8\ N/C[/tex]

Explanation:

Given that,

The magnitude of magnetic field, B = 2.21

We need to find the magnitude of the electric field. Let it is E. So,

[tex]\dfrac{E}{B}=c\\\\E=Bc[/tex]

Put all the values,

[tex]E=2.21\times 3\times 10^8\\\\=6.63\times 10^8\ N/C[/tex]

So, the magnitude of the electric field is equal to [tex]6.63\times 10^8\ N/C[/tex].

A cylindrical disk of wood weighing 45.0 N and having a diameter of 30.0 cm floats on a cylinder of oil of density 0.850 g>cm3 (Fig. E12.19). The cylinder of oil is 75.0 cm deep and has a diameter the same as that of the wood. (a) What is the gauge pressure at the top of the oil column

Answers

Answer:

665.25 Pa

Explanation:

Given data :

Weight of the disk, w = 45 N

Diameter, d = 30 cm

                    = 0.30 m

Therefore, radius of the disk,

[tex]$r=\frac{d}{2}$[/tex]

[tex]$r=\frac{0.30}{2}$[/tex]

   = 0.15 m

Now, area of the cylindrical disk,

[tex]$A=\pi r^2$[/tex]

[tex]$A=3.14 \times (0.15)^2$[/tex]

   [tex]$=0.07065 \ m^2$[/tex]

∴ The gauge pressure at the top of the oil column is :

   [tex]$p=\frac{w}{A}$[/tex]

   [tex]$p=\frac{47}{0.07065}$[/tex]

      = 665.25 Pa

Therefore, the gauge pressure is 665.25 Pa.

The definition of pressure allows to find the result for the pressure at the top of the oil cylinder is:

The pressure is: P = 636.6 Pa

The pressure is defined by the relationship between perpendicular force and area.

          [tex]P = \frac{F}{A}[/tex]

where P is pressure, F is force, and A is area.

They indicate that the wooden cylinder weighs W = 45.0 N and has a diameter of d = 30 cm = 0.30 m.

The area is:

        A = π r² = [tex]\pi \frac{d^2}{4}[/tex]  

In the attachment we see a diagram of the forces, where the weight of the cylinder and the thrust are equal.

         B-W = 0

          B = W

The force applied to the liquid is the weights of the cylinder. Let's replace.

          [tex]P= \frac{W}{A} \\P = W \frac{4}{\pi d^2 }[/tex]  

Let's calculate.

          [tex]P = \frac{45 \ 4 }{\pi \ 0.30^2 }[/tex] P = 45 4 / pi 0.30²

          P = 636.6 Pa

In conclusion using the definition of pressure we can find the result for the pressure at the top of the oil cylinder is:

The pressure is: P = 636.6 Pa.

Learn more about pressure here: brainly.com/question/17467912

The slope of a d vs t graph represents velocity. Describe 3 ways you know this to be true.

Answers

Answer:

Look at explanation

Explanation:

I only know 1 way, there is another way you can rephrase this using derivatives but that's pretty much the same thing.

The slope is calculated by Δy/Δx so the slope of distance vs time graph is Δd/Δt which is the velocity

An aircraft has a glide ratio of 12 to 1. (Glide ratio means that the plane drops 1 m in each 12 m it travels horizontally.) A building 45 m high lies directly in the glide path to the runway. If the aircraft dears the building by 12 m, how far from the building does the aircraft touch down on the runway

Answers

The aircraft is 12 meters higher than the building so it is at 45 + 12 = 57 meters high.

For every 12 meters it travels it drops 1 m.

Divide the height by 12 to find the distance it travels:

57 / 12 = 4.75

It touches down 4.75 meters from the building.

The building is 684 meters away from the aircraft touching down on the runway.

What are trigonometric functions?

A right-angled triangle's side ratios are the easiest way to express a function of an arc or angle, such as the sine, cosine, tangent, cotangent, secant, or cosecant. These functions are known as trigonometric functions.

As given in the problem an aircraft has a glide ratio of 12 to 1. (Glide ratio means that the plane drops 1 m in each 12 m it travels horizontally.) A building 45 m high lies directly in the glide path to the runway. If the aircraft clears the building by 12 m,

the total height of the aircraft when it clears the building = 45 +12

the total height of the aircraft when it clears the building is 57 meters

It is given that the Glide ratio is 12:1,

The distance of the building from touch down on the runway = 12 ×57

The distance of the building from the touch-down on the runway is 684 meters.

Thus, the building is 684 meters away from the aircraft touching down on the runway.

Learn more about the trigonometric functions here,

brainly.com/question/14746686

#SPJ2

After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off what

Answers

Answer:

Scattering is an interaction that can happen when a given particle or wave, like an electron, impacts a target or material. Then the electron changes it's original path and leaves some energy in the process. (This is a really simplified explanation of scattering, this is a really complex phenomenon, but let's not dive into that path)

Particularly, Davisson and Germer used a beam of electrons against a target of nickel, and these scattered electrons were detected by a detector. All of that in a vacuum chamber.

Then the correct answer is a nickel target.

"After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off a nickel target"

Two pendulums have the same dimensions (length {L}) and total mass (m). Pendulum A is a very small ball swinging at the end of a uniform massless bar. In pendulum B, half the mass is in the ball and half is in the uniform bar.
1. Find the period of pendulum A for small oscillations.
2. Find the period of pendulum B for small oscillations.

Answers

Answer:

1) [tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex], 2) [tex]T_{B} \approx 1.137\cdot T_{A}[/tex], where [tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex].

Explanation:

1) Pendulum A is a simple pendulum, whose period ([tex]T_{A}[/tex]) is determined by the following formula:

[tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex] (1)

Where:

[tex]l[/tex] - Length of the massless bar.

[tex]g[/tex] - Gravitational acceleration.

2) Pendulum B is a physical pendulum, whose period ([tex]T_{B}[/tex]) is determined by the following formula:

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{I_{O}}{m\cdot g\cdot l} }[/tex] (2)

Where:

[tex]m[/tex] - Total mass of the pendulum.

[tex]g[/tex] - Gravitational acceleration.

[tex]l[/tex] - Length of the uniform bar.

[tex]I_{O}[/tex] - Moment of inertia of the pendulum with respect to its suspension axis.

The moment of inertia can be found by applying the formulae of the moment of inertia for a particle and the uniform bar and Steiner's Theorem:

[tex]I_{O} = \frac{1}{2} \cdot m\cdot l^{2}+\frac{1}{24}\cdot m\cdot l^{2} + \frac{3}{4}\cdot m\cdot l^{2}[/tex]

[tex]I_{O} = \frac{31}{24}\cdot m\cdot l^{2}[/tex] (3)

By applying (3) in (2) we get the following expression:

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{\frac{31}{24}\cdot m \cdot l^{2} }{m\cdot g \cdot l} }[/tex]

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{31\cdot l}{24\cdot g} }[/tex]

[tex]T_{B} = \sqrt{\frac{31}{24} } \cdot \left(2\pi \cdot \sqrt{\frac{l}{g} }\right)[/tex]

[tex]T_{B} \approx 1.137\cdot T_{A}[/tex]

1. The period of pendulum A for small oscillations is  

[tex]T_A=2\pi\sqrt{\dfrac{L}{g}}[/tex]

2. The period of pendulum B for small oscillations.

[tex]T_B=1.137.T_A[/tex]

What is simple harmonic motion?

Simple harmonic motion is the periodic motion or back and forth motion of any object with respect to its equilibrium or mean position. The restoring force is always acting on the object which try to bring it to the equilibrium.

1) Pendulum A is a simple pendulum, whose period () is determined by the following formula:

[tex]T_A=2\pi\sqrt{\dfrac{L}{g}}[/tex]

Where:

l - Length of the massless bar.

g - Gravitational acceleration.

2) Pendulum B is a physical pendulum, whose period () is determined by the following formula:

[tex]T_A=2\pi\sqrt{\dfrac{I_o}{mgl}}[/tex] .............................2

Where:

m - Total mass of the pendulum.

g - Gravitational acceleration.

l - Length of the uniform bar.

Io- Moment of inertia of the pendulum with respect to its suspension axis.

The moment of inertia can be found by applying the formulae of the moment of inertia for a particle and the uniform bar and Steiner's Theorem:

[tex]I_o=\dfrac{1}{2}ml^2+\dfrac{1}{24}ml^2+\dfrac{3}{4}ml^2[/tex]

[tex]I_o=\dfrac{31}{24}ml^2[/tex]..................................3

By applying (3) in (2) we get the following expression:

[tex]T_B=2\pi\sqrt{\dfrac{\frac{31}{24}ml^2}{mgl}[/tex]

[tex]T_B=2\pi\sqrt{\dfrac{31l}{24g}}[/tex]

[tex]T_B=\sqrt{\dfrac{31}{24}}. (2\pi\sqrt{\dfrac{l}{g}})[/tex]

[tex]TB=1.137.T_A[/tex]

Thus to know more about Simple harmomnic motion follow

https://brainly.com/question/17315536

Other Questions
2Solve the equation log, (3t+9) - log, 21 =1 Triangle A'B'C' is formed by a reflection over x = 1 and dilation by a scale factor of 2 from the origin. Which equation shows the correct relationship between AABCand A'B'C'? plz help me out with the answer and explaination When blood pH becomes overly acidic, respiration and kidney function change to bring the acidity back to its normal pH level of 7.4. What does this process best exemplify A monthly budget with expenses is shown.Monthly Budget for a Family of Threein San Antonio, TexasCategory Amount of Money Rent $1,200 Food $800 Utilities $400 Gasoline $320 Auto insurance $250 Health insurance $420 Medical expenses $300 Childcare $360 Savings $300 Other $150ProblemWhich equation can be used to determine y, the minimum amount of money a family must earn to meet the requirements of this budget for one year? A tortoise moves forward 15 meters in one hour. It turns around and crawls 10 meters in thenext hour. Finally, in the third hour, it turns around again and crawls 8 more meters. Howmuch did the tortoise walk in total in 3 hours? Express the form 3:15 as n:1 make n a decimal The Li2+ ion is very similar to the hydrogen atom, in that it has one electron and energy levels similarto the hydrogen atom. However, the relation = (12 12) cannot be used for this ion butrather the relation = 2+ (12 12) where the constant 2+=1.96x10-17J.Use this relation to determine the third ionization energy, which is energy required to remove the lastelectron from a Li2+ ion in kJ/mol, if the ion starts off in the ground state (Li2+ Li3+ + e-). a. Consider the situation where you have three game chips, each labeled with one of the the numbers 3, 5, and 10 in a hat a. If you draw out 2 chips without replacement between each chip draw, list the entire sample space of po ssible results that can occur in the draw Use the three events are defined as follows, to answer parts b through n below: Event A: the sum of the 2 drawn numbers is even. Event B: the sum of the 2 drawn numbers is odd. Event C: the sum of the 2 drawn numbers is a prime number Now, using your answer to part a find the following probability values b. P (A)= c. P (B)=d. P (C)= e. P (A and C)-= f. P(A or B)=g. P (B andC)= h. P(A or C)- =i. P (C given B)= j. P(C given A)=k. P (not B)=l. P (not C)=Are events A and B mutually exclusive?Why or why not? Are events B and C mutually exclusive? Why or why not? Whenever those states which have been acquired as stated have been accustomed to live under their own laws and in freedom, there are three courses for those who wish to hold them: the first is to ruin them, the next is to reside there in person, the third is to permit them to live under their own laws, drawing a tribute, and establishing within it an oligarchy which will keep it friendly to you. Because such a government, being created by the prince, knows that it cannot stand without his friendship and interest, and does its utmost to support him; and therefore he who would keep a city accustomed to freedom will hold it more easily by the means of its own citizens than in any other way.The Prince,Niccol MachiavelliWhat is the authors primary purpose in writing this passage? a)to informb)to entertainc)to persuadeWhat does Machiavelli most want the reader to know? a)how to maintain power b)how to become a princec)how to rule with kindness What is his secondary purpose? a)to inform the reader b)to entertain with humorc)to entertain with suspense How does Machiavelli work to achieve his secondary purpose?a)by telling a funny story b)by providing explanationsc)by recounting a tragic event Which of the following is not accurate about the Arms Race? A. The Soviets spent about 50 percent of the gross of the national product on its military near the end of the Cold War. B. The United States developed the first nuclear weapons through the Manhattan Project during the World War 2. C. The Soviet Union successfully tested their own atomic bomb when they dropped it on Hiroshima Japan. D. Only the Soviet Union successfully created a hydrogen bomb that was more powerful than the atomic bomb 9. Suppose Betty saves $200 each month in her 401(k) account. How much less will her monthly take-home pay be than if she saved nothing? (Assume a combined 20% state and federal income tax rate.) 17. All the guests seemed to have enjoyed the party, although Ann some more attractive records. A. could choose B. was able to choose C. could have chosen D. should choose C 2:1 77 You isolate a variant of the Hfr parent in question 6 that only shows recombination of the his+ and trp+ genes. The cross was ( HFR lac+, gal+, trp+, his+, strr X F- lac-, gal-, trp-, his-, strs ). This strain most likely:_________.a. Contains an F' his+ trpb. Has become F-c. Contains an Hfr translocationd. No longer mates as a merry diploide. Not enough information is given What is the point estimate for the number of cars sold per week for a sample consisting of the following weeks: 1, 3, 5, 7, 10, 13, 14, 17, 19, 21?A. 4.8B. 5.22C. 6.38D. 6.1 define a molecular mass and mole If 7 times the 7th term of an AP is equal to 11 times its 11th term, then its 18th term will be718110 find x. need help w these 2, thanksss! Match each of the words with its best antonym. Match the synthetic materials with the processes used to make them.