Answer:
26,795 people
Step-by-step explanation:
P(x) = 24,500 × (1 + 0.01)^(2019-2010)
= 24,500 × (1.01)^9
= 24,500 × 1.0937
= 26,795 people
The required population of Statesville in the year 2019 will be 26,795.
Statesville's population in 2010 was about 24,500, growing by about 1% each year. Statesville's population be in 2019 to be determined.
The function which is in format f(x) = a^x where, a is constant and x is variable, the domain of this exponential function lies ( -∞, ∞ ).
Let Statesville's population in 2019 = x
Statesville's population in 2010 = 24500
Population growing by about 1% = 1/100
= 0.01
Difference in year n = 2019 - 2010
n = 9
Population in 2019,
x = 24500 * ( 1 + 0.01 )^9
x = 24500 * ( 1.01 )^9
x = 26, 795.295
To the nearest people x = 26,759
the population of Statesville in the year 2019 = 26,759
Thus, the required population of Statesville in the year 2019 will be 26,795.
Learn more about exponential function here:
brainly.com/question/15352175
#SPJ2
PLEASE HELP!!! What is the equation of the line perpendicular to 2x – 3y = 13 that passes through the point (–6, 5)?
Answer:
2x + 3y -3=0
Step-by-step explanation:
The given equation of the line is ,
[tex]\implies 2x - 3y = 13 [/tex]
Now convert it into slope intercept form to get the slope , we get ,
[tex]\implies 3y = 2x - 13 \\\\\implies y =\dfrac{2}{3}x -\dfrac{13}{2}[/tex]
Therefore the slope is ,
[tex]\implies m = \dfrac{2}{3} [/tex]
We know that the product of slope of perpendicular lines is -1 . Therefore the slope of the perpendicular line will be ,
[tex]\implies m_{perpendicular}= -\dfrac{2}{3} [/tex]
Now one of the point is (-6,5) .On Using point slope form , we have ,
[tex]\implies y-y_1 = m( x - x_1) \\\\\implies y - 5 = -\dfrac{2}{3}( x + 6 ) \\\\\implies 3y - 15 = -2x -12
\\\\\implies 2x + 3y -15+12=0 \\\\\implies \underline{\underline{ 2x + 3y -3=0 }}[/tex]
Answer:
y = - [tex]\frac{3}{2}[/tex]x - 4
Step-by-step explanation:
2x – 3y = 13
3y = 2x + 13
y = [tex]\frac{2}{3}[/tex]x + [tex]\frac{13}{3}[/tex]
slope = 2/3
negative reciprocal = -3/2
y = -3/2x + b
(-6, 5)
5 = (-3/2)(-6) + b
5 = 9 + b
b = -4
y = -3/2x - 4
What is the ratio of 2:5
Step-by-step explanation:
The ratio is 2 to 5 or 2:5 or 2/5. All these describe the ratio in different forms of fractions. The ratio can consequently be expressed as fractions or as a decimal.
A ratio of 2 : 5 states a comparison between two quantities.
What are ratio and proportion?A ratio is a comparison between two similar quantities in simplest form.
Proportions are of two types one is the direct proportion in which if one quantity is increased by a constant k the other quantity will also be increased by the same constant k and vice versa.
In the case of inverse proportion if one quantity is increased by a constant k the quantity will decrease by the same constant k and vice versa.
Given, a ratio 2 : 5.
Suppose it is a ratio of no. of pens to no. of pencils.
So, a ratio 2 : 5 states for every 2 pens there are 5 pencils out of 7 pen and pencils.
We can also write no. of pens = 2/(2+ 5) = 2/7 and for pencils it is 5(2+5)
= 5/7.
Generally, ratios are in simplest form we can have more pens and pencils here but it must be in the multiple of 7.
learn more about ratios here :
https://brainly.com/question/13419413
#SPJ2
The height and base radius of a cone are increased by a factor of 2 to create a similar cone. How is the slant height of the cone affected? The slant height of the larger cone is equal to the slant height of the smaller cone. The slant height of the larger cone is double the slant height of the smaller cone. The slant height of the larger cone is 4 times the slant height of the smaller cone. The slant height of the larger cone is 8 times the slant height of the smaller cone.
Answer:
The slant height of the cone affected is two times the slant height of original cone
Step-by-step explanation:
we know that
If the height and base radius of a cone are increased by a factor of to create a similar cone
then
the scale factor is equal to
therefore
the slant height of the cone affected is equal to the slant height of the original cone multiplied by the scale factor
Find the slant height of the original cone
Let
l-----> slant height of original cone
la-----> slant height of the cone affected
Applying the Pythagoras theorem
so
The slant height of the cone affected is two times the slant height of original cone
(I GOT THIS FROM SOMEONE ELSES ANSWER IN 2017 SO I HOPE THIS HELPS)
The slant height of the larger cone is double the slant height of the smaller cone.
Option B is the correct answer.
What is a cone?It is a shape of a Christmas tree where there is a base of radius r and a top point called the apex.
The volume of a cone is 1/3 πr²h
We have,
The slant height of the cone is affected by a factor of 2.
When the height and base radius of a cone are multiplied by 2, the dimensions of the new cone are doubled.
Therefore,
The slant height of the larger cone is double the slant height of the smaller cone.
Learn more about cones here:
https://brainly.com/question/13798146
#SPJ5
I'm not sure if this will be easy for some of you I really need help
Paul writes newspaper articles. He earns a base rate of $500 per month and an additional $100 per article he writes. Last month he earned $2000.
Write an equation to determine the number of articles (a) he sold last month.
Answer:
Total earning last month with x articles is:
x*100 + 500This is same amount as 2000
The equation is:
100x + 500 = 2000Yellowstone National Park is a popular held trip destination. This year the senior class at
High School A and the senior class at High School B both planned trips there. The senior
class at High School A rented and filed 2 vans and 3 buses with 153 students. High
School Brented and nited il vans and 10 buses with 534 students. Every van had the
same number of students in it as did the buses. Find the number of students in each van
and in each bus.
Van: 39
Bus: 18
Van: 21
Bus: 21
o
Van: 27
Bus: 19
.
Van: 18
Bus: 39
Answer:
Who was the first president of United States?
Mrs. Taylor is planning a pizza party for her students. She plans to purchase cheese pizza and pepperoni pizza for her students to enjoy. Cheese pizzas cost $8 each and pepperoni pizzas cost $11 each. She needs to purchase at least 12 pizzas, while spending no more than $180.
What are two combinations of cheese and pepperoni pizzas that Mrs. Taylor can purchase without exceeding her spending limit?
Let x represent the number of cheese pizzas purchased and y represent the number of pepperoni pizzas purchased.
Answer:
Step-by-step explanation:
She needs 12 pizzas
x + y = 12
She also can't spend more than 180 dollars.
8x + 11y < 180 She can get all 12 pizzas and have the bill come to 132 dollars
11 * 12 = 132
She could really be kind to her pocket book and get all cheese pizzas
8*12 = 96 which saves her 36 dollars.
So any number of either kind will do.
(0,12) = 132
(1,11) = 8*1 + 11*11 = 129
and so on down the line
The lengths of nails produced in a factory are normally distributed with a mean of 6.13 centimeters and a standard deviation of 0.06 centimeters. Find the two lengths that separate the top 7% and the bottom 7%. These lengths could serve as limits used to identify which nails should be rejected.
Answer:
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 6.13 centimeters and a standard deviation of 0.06 centimeters.
This means that [tex]\mu = 6.13, \sigma = 0.06[/tex]
Value that separated the top 7%:
The 100 - 7 = 93rd percentile, which is X when Z has a p-value of 0.93, so X when Z = 1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = 1.475*0.06[/tex]
[tex]X = 6.2185[/tex]
Value that separates the bottom 7%:
The 7th percentile, which is X when Z has a p-value of 0.07, so X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = -1.475*0.06[/tex]
[tex]X = 6.0415[/tex]
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.
To teach computer programming to employees, many firms use on the job training. A human resources administrator wishes to review the performance of trainees on the final test of the training. The mean of the test scores is 72 with a standard deviation of 5. The distribution of test scores is approximately normal. Find the z-score for a trainee, given a score of 82.
Answer:
The z-score for the trainee is of 2.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean of the test scores is 72 with a standard deviation of 5.
This means that [tex]\mu = 72, \sigma = 5[/tex]
Find the z-score for a trainee, given a score of 82.
This is Z when X = 82. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{82 - 72}{5}[/tex]
[tex]Z = 2[/tex]
The z-score for the trainee is of 2.
The diagram below is divided into equal parts. Which fraction of the parts is white?
A diagram is divided into 4 blue parts and 3 white parts.
Three-sevenths
Four-sevenths
Three-fourths
Four-thirds
Answer: This problem is a fraction since we have several equal parts that make up one whole. The problem asks us to talk about the relationship of white pieces to the whole. Since we know the whole is made up of 7 pieces (4 blue parts and 3 white parts = 7 total parts), then 7 will be our denominator (number on the bottom of the fraction).
Now that we have our number on the bottom, we need to look back at the question to carefully decide what parts of the whole we are looking at. The question wants to know how many of the parts are white. We know that 3 of the parts are white, so that is our numerator (number of the top of the fraction).
Our final answer is 3/7 or "three-sevenths." Said another way, three of the seven pieces are white.
Step-by-step explanation:
Find the first derivative for y = f(x). fox ) 3x² -5x-1 at a Pocat where a = 4
Answer:
Step-by-step explanation:
f(x) = 3x² -5x - 1
f'(x) =2*3x - 5*1 +0
= 6x - 5
f'(4) = 6*4 - 5
= 24 - 5
= 19
from an observer o, the angles of elevation of the bottom and the top of a flagpole are 40° and 45° respectively.find the height of the flagpole?
Answer:
Take a look of the image below, we can think on this problem as a problem of two triangle rectangles.
We can see that both triangles share the adjacent cathetus, then the height of the flagpole is just the difference between the opposite cathetus.
Remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
So, if we define H as the height of the cliff
X as the distance between the observer and the cliff
and h as the height of the flagopole
we can write:
tan(40°) = H/X
tan(45°) = (H + h)/X
Notice that we have two equations and 3 variables (we should have the same number of equations than variables) then here is missing information, and we can't get an exact solution for the height of the flagpole.
But we can write it in terms of the height of the cliff H, or in terms of the distance between the observer and the cliff.
We want to find the value of h.
If we take the quotient between both equations, we get:
Tan(45°)/Tan(40°) = (H + h)/H
1.192 = (H + h)/H
1.192*H = H + h
1.192*H - H = h
0.192*H = h
So the height of the flagpole is 0.192 times the height of the cliff.
Please help Quick this is hard so you’ll get brainliest thank you so much
Answer:
number 1: no
number 2: no
number 3: no
A study of the pay of corporate chief executive officers (CEOs) examined the increase in cash compensation of the CEOs of 104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%. Is this good evidence that the mean real compensation μ of all CEOs increased that year? The hypotheses are
Answer:
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
Step-by-step explanation:
At the null hypothesis, we test if there was no increase, that is, the mean is 0, so:
[tex]H_0: \mu = 0[/tex]
At the alternative hypothesis, we test if there was an increase, that is, the mean is greater than 0, so:
[tex]H_1: \mu > 0[/tex]
The test statistic is:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%.
This means that [tex]n = 104, X = 6.9, s = 55[/tex]
Value of the test-statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{6.9 - 0}{\frac{55}{\sqrt{104}}}[/tex]
[tex]t = 1.28[/tex]
P-value of the test:
The p-value of the test is a right-tailed test(test if the mean is greater than a value), with 104 - 1 = 103 df and t = 1.28.
Using a t-distribution calculator, this p-value is of 0.1017.
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
PLEASE HELP WILL MARK BRAINLIEST
Answer:
AB
Step-by-step explanation:
From the question given above, we were told that triangle ABC is similar to triangle PTG.
Since both triangles are similar, the following assumptions hold:
PG / AC = PT / AB = TG / BC
Comparing the equation above with those given in the question, the missing part of the equation is AB
LOOK AT THE BOTTOM PLEASE BE RIGHT
Answer:
Translation
Step-by-step explanation:
A translation is when the triangle is moved around on the graph without it being reflected or changed in any way. I will be the same exact triangle, just with different coordinates.
Hope this helps!
Simplify.
Rewrite the expression in the form 6^n6
n
6, start superscript, n, end superscript.
\dfrac{6^{4}}{6}=
6
6
4
Answer:
6^3
6 to the third power
or 3x3x3
Step-by-step explanation:
The solution of the expression 6⁻⁴.6⁶ will be 6².
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given that the expression is 6⁻⁴.6⁶. The expression will be solved as below:-
6⁻⁴.6⁶ = 6⁻⁴⁺⁶
Use the exponent property when the bases are the same then the powers will be added.
6⁻⁴.6⁶ = 6²
Therefore, the solution of the expression 6⁻⁴.6⁶ will be 6².
The complete question is to simplify the expression 6⁻⁴.6⁶.
To know more about an expression follow
https://brainly.com/question/8844911
#SPJ2
Verify that the equation is an identity.
Step-by-step explanation:
We need to prove that ,
cot x / csc x - csc x / cot x = - tan x sec x .
LHS :-
> cot x / csc x - csc x / cot x
> cos x / sin x ÷ csc x - sin x × csc x / cos x
> cosx - 1/ cos x
> cos² x - 1 / cos x
> - sin²x / cosx
> -sin x / cos x × sin x
> -tan x sin x
= RHS
Hence Proved !
A piece of wood is cut into three pieces in the ratio 6: 5: 2. If the log is 61/2 feet long, what will be the length of the longest piece
Answer:
14.077 feet to the nearest thousandth.
Step-by-step explanation:
First let's work out the multiplier:
6 + 5 + 2 = 13.
61/2 = 30.5
- so the multiplier is 30.5/13 = 2.34615
The longest piece refers to the 6 in the ratio its length
= 6 * 2.34615
= 14.0769 ft.
Two different types of injection-molding machines are used to form plastic parts. Two random samples, each of size 300, are selected. 15 defective parts are found in the sample from machine 1 and 8 defective parts are found in the sample from machine 2. Is it reasonable to assume that both machines have the same defective rate
Answer:
No it is not since there is 15 defectice parts in 2machines and there is 8 broken parts in the one machine
Hope This Helps!!!
Complete the steps to solve the equation. 3x - 6(5x + 3) = 9x + 6 1. The distributive property 3x - 30x 18 = gr + 6 2 Combine like terms. -27x - 18 = 9x + 6 3. Addition property of equality: -18 = 36x + 6 4. Subtraction property of equality: -24 = 36x 5. Division property of equality I
Answer:
see below
Step-by-step explanation:
3x - 6(5x + 3) = 9x + 6
Distribute
3x -30x-18 = 9x+6
Combine like terms
-27x - 18 = 9x+6
Add 27x to each side
-27x+27x-18 = 9x+27x+6
-18 = 36x+6
Subtract 6 from each side
-18-6 = 36x+6-6
-24 = 36x
Divide by 36
-24/36 = 36x/36
Simplify
-2/3 = x
Answer:
[tex]\small \sf x = \frac{2}{-3} \\ [/tex]
Step-by-step explanation:
3x - 6(5x + 3) = 9x + 6.
Use the distributive property to multiply -6 by 5x + 3.
3x - 30x - 18 = 9x + 6
Combine 3x and -30x to get -27x.
-27x - 18 = 9x + 6
Subtract 9x from both sides.
-27x - 9x - 18 = 9x - 9x + 6
-36x - 18 = 6
Add 18 to both sides.
-36x - 18 + 18 = 6 + 18
-36x = 24
Divide both sides by -36.
[tex]\small \sf \frac{ -36x}{ -36} = \frac{24}{-36} \\ [/tex]
Reduce the fraction [tex]\frac{24}{-36} [/tex] to lowest terms by extracting and canceling out 12.
[tex]\small \sf x = \frac{2}{-3} \\ [/tex]
translate to a system of equations but do not solve.
A non-toxic floor wax can be made from lemon juice and food grade linseed oil. The amount of oil should be twice the amount of lemon juice. How much of each ingredient is needed to make 30 oz of floor wax?
let x represent the number of ounces of lemon juice and y represent the number of ounces of linseed oil.
complete the system of equations.
y =
x+y =
Answer:
x + y = 30
y = 2x
Step-by-step explanation:
x = number of ounces of lemon juice
y = number of ounces of linseed oil
How much of each ingredient is needed to make 30 oz of floor wax?
x + y = 30
The amount of oil should be twice the amount of lemon juice.
y = 2x
Answer:
x + y = 30
y = 2x
[tex]5.5=2\pi \sqrt{\frac{L}{9.8}[/tex]
9514 1404 393
Answer:
7.51 m
Step-by-step explanation:
The equation matches that required for finding the length of a pendulum that has a period of 5.5 seconds. We can solve for L to find the length.
[tex]5.5=2\pi\sqrt{\dfrac{L}{9.8}}\\\\\dfrac{5.5}{2\pi}=\sqrt{\dfrac{L}{9.8}}\\\\\left(\dfrac{5.5}{2\pi}\right)^2=\dfrac{L}{9.8}\\\\L=74.1125/\pi^2\approx7.509[/tex]
The length of a pendulum with period 5.5 seconds is about 7.51 meters.
Answer:
The length, L = 7.52 m.
Step-by-step explanation:
The given expression is
[tex]5.5= 2 \pi \sqrt\frac{L}{9.8}\\\\Sqauring on both the sides\\\\5.5 \times 5.5 = 4\pi^2 \times \frac{L}{9.8}\\\\L = 7.52 m[/tex]
The value of length is 7.52 m.
if a=(1 2 3 4) find A×A and the relation determined by (I) y=2x (II) x+y
Answer:
HOPE IT HELPS PLZ MARK ME BRAINLIEST
Step-by-step explanation:
A={1,2,3,4,5,6}
R={(x,y):y is divisible by x}
We know that any number (x) is divisible by itself.
(x,x)∈R
∴R is reflexive.
Now,(2,4)∈R [as 4 is divisible by 2]
But,(4,2)∈ /
R. [as 2 is not divisible by 4]
∴R is not symmetric.
Let (x,y),(y,z)∈R. Then, y is divisible by x and z is divisible by y.
∴z is divisible by x.
⇒(x,z)∈R
∴R is transitive.
Hence, R is reflexive and transitive but not symmetric.
6. Two cell phone companies charge a flat fee plus an added cost for each minute or part of a minute used. The cost is represented by C and the number of minutes is represented by t.
Call-More: C = 0.40t + 25 Talk-Now: C = 0.15t + 40
a) Which company is cheaper if a customer talks for 50 minutes. (1 mark)
b) Under what conditions do the two companies charge the same? (3 marks)
c) Under what conditions is Talk-Now better? Explain
Answer:
Call More is cheaper at 50 minutes
The two companies would charge the same for 60 minutes of use.
Talk Now is cheaper the more minutes you talk. At some point the rate of change of Call More makes it more expensive. That point is just after their costs are even.
Step-by-step explanation:
Assume that different groups of couples use a particular method of gender selection and each couple gives birth to one baby. This method is designed to increase the likelihood that each baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5. Assume that the groups consist of 40 couples. Complete parts (a) through (c) below. a. Find the mean and the standard deviation for the numbers of girls in groups of 40 births. The value of the mean is μ
How to solve it and explain it
Answer:
28.27 in²
Step-by-step explanation:
The equation for the area of a circle is A = π[tex]r^{2}[/tex]. However, we got the diameter.
diameter = 2(radius), so:
A = [tex]\frac{1}{4}[/tex]πd².
A = 1/4 * π * 6² ≈ 28.27433
The graph of f(x)=x^2 is shown. Compare the graph of f(x) with the graph of d(x)=x^2-26
A es aaaaaaaaaaaaaaaaaaaaaaa
in the diagram below, BD is parallel to XY. what is the value of y?
a. 70
b. 130
c. 110
d. 20
I can't see the diagram sorry.
Step-by-step explanation:
Is there supposed to be a picture attached?
Necesito ayuda con esto
Answer:
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Step-by-step explanation:
Considerando que se tratan de dos matrices de igual dimensión y cuyos elementos son números reales, conocemos que la adición entre dos matrices consiste en las sumas de los elementos de igual posición, esto es, los elementos que están localizados en las mismas filas y columnas, entonces, la suma es:
[tex]\vec A = \left[\begin{array}{cc}1&2\\-1&0\end{array} \right][/tex], [tex]\vec B = \left[\begin{array}{cc}-2&9\\3&5\end{array}\right][/tex]
[tex]\vec U = \vec A + \vec B = \left[\begin{array}{cc}1 + (-2)&2+9\\-1 + 3&0 + 5\end{array}\right][/tex]
[tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex]
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].