Answer:
(a) the reversible power output of turbine is 5810 kw
(b) The second-law efficiency of he turbine = 86.05%
Explanation:
In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.
h1 = 3658 kJ/kg s1=7.167 kJ/kgK
In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state
h2 = 2682kl/kg S2= 7.694 kJ/kg
Assuming that the energy balance equation given
Wout=m [h1-h2+(v1²-v2²) /2]
Let
W =5 MW
V1= 80 m/s V2= 140 m/s
h1 = 3658kJ/kg h2 = 2682 kJ/kg
∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)
m = 5.158kg/s
Consider the energy balance equation given
Wrev,out =Wout-mT0(s1-s2)
Substitute Wout =5 MW m = 5.158kg/s 7
s1= 7.167 kJ/kg-K s2= 7.694kJ/kg-K and 25°C .
Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)
= 5810 kW
(a) Therefore, the reversible power output of turbine is 5810 kw.
The given values of quantities were substituted and the reversible power output are calculated.
(b) Calculating the second law efficiency of the turbine:
η=Wout/W rev,out
Let Wout = 5 MW and Wrev,out = 5810 kW
η=(5 MW x 1000 kW)/(1 MW *5810)
η= 86.05%
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.
Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a uniformly distributed load = w, what is the moment present at a length of L/4?
Answer:
jsow
hfhcffnbxhdhdhdhdhdhdddhdhdgdhdhdhdhdhdhhhdhdjsksmalalaksjdhfgrgubfghhhhhhh
Explanation:
j
grudbA signalized intersection has a sum of critical flow ratios of 0.72 and a total cycle lost time of 12 seconds. Assuming a critical intersection v/c ration of 0.9, calculate the minimum necessary cycle length.
Answer:
[tex]T_o=82.1sec[/tex]
Explanation:
From the question we are told that:
Lost Time [tex]t=12secs[/tex]
Sum of critical flow ratios [tex]X=0.72[/tex]
Generally the Webster Method's equation for Optimum cycle time is is mathematically given by
[tex]T_o=\frac{1.5t+5}{1-x}[/tex]
[tex]T_o=\frac{1.5*12+5}{1-0.72}[/tex]
[tex]T_o=82.1sec[/tex]
how does load transfer of space needle
Answer:
The Space Needle is a cut away with minimal residual deflection due to load transfer.
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
ow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:
Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
A 0.82-in-diameter aluminum rod is 5.5 ft long and carries a load of 3000 lbf. Find the tensile stress, the total deformation, the unit strains, and the change in the rod diameter.
Answer:
Tensile stress = 0.1855Kpsi
Total deformation = 0.0012243 in
Unit strain = 1.855 *10^-5 or 18.55μ
Change in the rod diameter = 5.02 * 10^ -6 in
Explanation:
Data given: D= 0.82 in
L = 5.5 ft * 12 = 66 in
load (p) = 3000 (Ibf) /32.174 = 93.243 Ibm
Area = (π/4) D² = (π/4) 0.82² = 0.502655 in²
∴ Tensile stress Rt = P/A = 93.243/0.502655 = 185.50099 pound/in²
Rt = 0.1855 Kpsi
∴ Total deformation = PL / AE = Rt * L/ Eal
= 0.1855 * 10³ * 66 / 10000 * 10³
= 0.0012243 in
∴the unit strains = total deformation / L = 0.0012243/ 66
=0.00001855 = 1.855 *10^-5
= 18.55μ
∴ Change in rod Δd/ d = μ ΔL/L
= (0.33) 1.855 *10^-5 * 0.82
= 5.02 * 10^ -6 in
A designer needs to select the material for a plate under tensile stress. Assuming that the applied tensile force is 13,000 lb and the area under the stress is 4 square inches, determine which material should be selected to assure safety. Assume safety factor is 2. Material A: Ultimate Tensile stress is 8000 lb/in2Material B: Ultimate Tensile stress is 5500 lb/in2