Answer:
bhi jo bhi of gp oh oh gi IG 7u to uff do if goo td to yd do FP ae rt 7g hi pic vo icon
Explanation:
bh hi h bhi vc di oh x At jb jo iv hp of di of dr hi o hc x gh ki vc hi jo
Introduction to Simple Machines
This activity will help you meet this educational goal:
You will compare and contrast information from a video with information from a text.
Directions
Read the instructions for this self-checked activity. Type in your response to each question, and check your answers. At the end of the activity, write a brief evaluation of your work.
Activity
Watch this video and then answer the following questions based on what you learned.
Part A
How does a bicycle make work easier?
Part B
Which two examples of levers are mentioned in the video?
The picture shows a bicycle’s pedals. Look at the shaft that the pedals are attached to. Do you think the shaft is a lever? Why or why not?
Answer:
word for word answers!
Explanation:
1) Part A: By pedaling a bicycle lightly, the rider can go a long way
2) Part B: The two examples mentioned in the video are the handlebars and the brakes
3) Yes, it’s a type of lever because the two pedals rotate around a fixed point
There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N. The bell has ____________ energy.
Answer:
The bell has 8,550 Joule energy.
Explanation:
Gravitational Potential Energy
Gravitational potential energy is the energy stored in an object because of its height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where:
m = mass of the object
h = height
g = acceleration of gravity, or [tex]9.8 m/s^2[/tex]
Since the weight of an object of mass m can be calculated as:
W = m.g
The gravitational potential energy is:
U = W.h
The bell of weight W=190 N at the top of a tower is h=45 m high. Thus its energy is:
U = 190 N . 45 m
U = 8,550 Joule
The bell has 8,550 Joule energy.
How long does it take a plane, traveling at a constant speed of 123 m/s, to fly once around a circle whose radius is 4330 m?
Answer:
3.7 minExplanation:
Step one:
given data
speed = 123m/s
radius of circle= 4330m
Step two:
We need to find the circumference of the circle, it represents the distance traveled
C=2πr
C= 2*3.142*4330
C= 27209.72m
Step three:
We know that velocity= distance/time
time= distance/velocity
time= 27209.72/123
time=221.2 seconds
in minute = 221.2/60
time= 3.7 min
What is the velocity of an object after falling for 15 seconds, neglecting air resistance? (g=9.81)
O 77.499
O 0.64m/s^2
O 15.53 m/s to the left.
147.15 m/s downward.
Answer:
(ans147.15m/s downward)
Explanation:
initial velocity (u)=0m/s
final velocity (v)=?
v=u+gt. ( t)time taken=15seconds
?=0+(9.81)×15
?=147.15m/s
hope this helped