Answer:
D. 2x^2 - 2x + 2
Step-by-step explanation:
(3x2 – 2x + 5) – (x2 + 3) add or subtract like terms
3x^2 - x^2 - 2x - 3 + 5 = 2x^2 - 2x + 2
Answer:
2x^2 - 2x + 2
Step-by-step explanation:
Ape-x
Consider the distribution of exam scores graded 0 from 100, for 79 students. When 37 students got an A, 24 students got a B and 18 students got a C. How many peaks would you expect for distribution?
Answer:
Three
Step-by-step explanation:
Assuming the grade score from 70 to 100 is A; for grade score from 60 to 69 is B and grade score from 50 to 59 is C. Well it is certain there are three peaks in the distribution of scores
what percent of sales were shoes or socks? A.9% B. 39% C.52% D. 61%
Answer:
it is 9%
Step-by-step explanation: the socks persent is the correct answer
Answer: D. 61%
Step-by-step explanation:
At a baby shower, 15 guests are in attendance and 4 of them are randomly selected to receive a door prize. If all 4 prizes are identical, in how many ways can the prizes be awarded?
Answer:
1365
Step-by-step explanation:
We figure out combinations using this formula: n!
r!(n-r)!
n=15
r=4
So n!= 15x14x13x12x11x0x9x8x7x6x5x4x3x2x1
r! = 4x3x2x1 times 15-4!, which is 11! = 11x10x9x8x7x6x5x4x3x2x1
Put this together and you have 15x14x13x12/4x3x2x1=
There are 1365 different ways to award the 4 door prizes to 4 guests from a group of 15 guests.
What are the Combinations?Combinations are the procedures used in mathematics to pick k things from n different items without replacement.
The following formula computes the combinations of k items from n:
(n, k) = n! / k!×(n-k)!
The number of ways to award the 4 door prizes to 4 guests out of a group of 15 guests is a combinatorial problem that can be calculated using the formula.
Here, n = 15 (the total number of guests) and k = 4 (the number of prizes to be awarded).
So, the number of ways to award the prizes is:
C(15, 4) = 15! / (4! (15 - 4)!)
= 15! / (4! 11!)
= 15 x 14 x 13 x 12 / (4 x 3 x 2 x 1)
= 1365.
Therefore, there are 1365 different ways to award the 4 door prizes to 4 guests from a group of 15 guests.
Learn more about permutation here:
brainly.com/question/1216161
#SPJ6
Which is an infinite arithmetic sequence? a{10, 30, 90, 270, …} b{100, 200, 300, 400} c{150, 300, 450, 600, …} d{1, 2, 4, 8}
Answer:
C
Step-by-step explanation:
An arithmetic sequence has a common difference d between consecutive terms.
Sequence a
30 - 10 = 20
90 - 30 = 60
270 - 90 = 180
This sequence is not arithmetic
Sequence b
200 - 100 = 100
300 - 200 = 100
400 - 300 = 100
This sequence is arithmetic but is finite, that is last term is 400
Sequence c
300 - 150 = 150
450 - 300 = 150
600 - 450 = 150
This sequence is arithmetic and infinite, indicated by ........ within set
Sequence d
2 - 1 = 1
4 - 2 = 2
8 - 4 = 4
This sequence is not arithmetic
Thus the infinite arithmetic sequence is sequence c
Please help me I will mark brainliest! The ratio of the number of boys to the number of girls in a school is 3:4. One-third of the boys and three-eighths of the girls wear spectacles, If there are 612 pupils who do not wear spectacles, a)find the total number of the pupils in the school, and b) how many more girls than boys are there in the school
Answer:
a) 952
b) 136
Step-by-step explanation:
Ratio of b:g = 3:4, based on this we have:
Number of boys = 3xNumber of girls = 4xTotal number of pupils = 3x+4x = 7xNumber of spectacle wearers:
1/3*3x + 3/8*4x = x + 3/2x = 2.5xNumber of those not wearing spectacles:
7x - 2.5x= 4.5xAnd this number equals to 612, then we can find the value of x:
4.5 x = 612x= 612/4.5x= 136a) Total number of pupils:
7x = 7*136 = 952b) The difference in the number of boys and girls:
4x-3x= x = 136Answer:
total number of students: 952
number of girls more than boys :136 more girls
Step-by-step explanation:
1/3 of boys +3/8 girls= spectacles
612 people do not wear spectacles
3:4= boys: girls
total number of students
3+4=7
boys + girls = total ratio
7= total ratio
1/3×3=1 3/8×4=3/2
1+3/2=5/2
7-5/2=9/2 9/2=612 students
If 9/2=612 Then 7=?
7= 7÷ 9/2×612
=952 people
Girls more than boys
if 7= 952
3= 3/7 × 952=408 boys
if 7 = 952
4= 4/7 ×952=544girls
Girls - boys
544- 408 = 136 girls
In the number 5,794,032,861, which digit is in the ten millions place?
09
0 5
o 7
0 4
3a-27=0
How to solve
Answer:
a = 9
Step-by-step explanation:
3a - 27 = 0
3a = 27
a = 27/3
a = 9
3*9 - 27 = 0
27 - 27 = 0
Answer:
a = 9
Step-by-step explanation:
3a-27=0
Add 27 to each side
3a = 27
Divide by 3
3a/3 = 27/3
a = 9
Open the graphing tool. Move the slider for the equation y = kx3 to a position of your choice, where k ≠ 1. Next, move the slider of y = (kx)3 so the two graphs lie on top of one another. How do the values of k compare with one another in this situation? Why do you think that is?
Answer:
For the functions to coincide, the value of k in y = (kx)3 must be smaller than in y = kx3. This is because the value of y changes more rapidly when k is cubed inside the parentheses. The behavior of the functions is similar since a vertical stretch is similar to a horizontal compression.
Step-by-step explanation:
PLATO
The accompanying summary data on total cholesterol level (mmol/l) was obtained from a sample of Asian postmenopausal women who were vegans and another sample of such women who were omnivores.
Diet Sample Size Sample Mean Sample SD
Vegan 85.00 5.20 1.08
Omnivore 91.00 5.65 1.10
Calculate a 99% CI for the difference between the population mean total cholesterol level for vegans and population mean total cholesterol level for omnivores. (Use μvegan−μomnivore). Round to three decimal places.)
Interpret the interval.
a. We are 99% confident that the true average cholesterol level for vegans is less than that of omnivores by an amount within the confidence interval.
b. We are 99% confident that the true average cholesterol level for vegans is greater than that of omnivores by an amount within the confidence interval.
c. We are 99% confident that the true average cholesterol level for vegans is greater than that of omnivores by an amount outside the confidence interval.
d. We cannot draw a conclusion from the given information.
Answer: hey
Step-by-step explanation:
A researcher was interested in whether a new sports drink could change people's running endurance. For one week, 6 participants continued with their normal routine and then their endurance was measured. The following week, the same participants were instructed to drink the new sports drink an hour before their endurance was measured. Below are your data.
Week I 90 100 110 110 85 95
Week 2 100 110 110 120 95 95
What type of analysis would be used on the above data?
a. Z-test
b. One sample t-test
c. Independent samples t-test
d. Dependent samples t-test
Answer:
The correct option is (d).
Step-by-step explanation:
The dependent t-test (also known as the paired t-test or paired-samples t-test) compares the two means associated groups to conclude if there is a statistically significant difference amid these two means.
We use the paired t-test if we have 2 measurements on the same item, person or thing. We should also use this test if we have 2 items that are being measured with a unique condition.
For instance, an experimenter tests the effect of a medicine on a group of patients before and after giving the doses.
In this case, the same participants are selected for both the trials.
And the difference between the endurance before and after the usage of the new sports drink are noted.
Thus, the analysis that would be used on the data is the Dependent samples t-test.
Look at parallelogram below d1 and d3 Are both 35 degrees what is the measurement of d2
Answer:
145 degrees
Step-by-step explanation:
Adjacent angles in a parallelogram are supplementary.
d2 = 180° -d1 = 180° -35°
d2 = 145°
The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:
Complete Question
On the uploaded image is a similar question that will explain the given question
Answer:
The value of k is [tex]k = 214285.7[/tex]
The percentage of the oil that will be cleaned is [tex]x = 80.77\%[/tex]
Step-by-step explanation:
From the question we are told that
The cost of cleaning up the spillage is [tex]C = \frac{ k x }{100 - x }[/tex] [tex]x \le x \le 100[/tex]
The cost of cleaning x = 70% of the oil is [tex]C = \$500,000[/tex]
Now at [tex]C = \$500,000[/tex] we have
[tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]
[tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]
[tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]
[tex]k = 214285.7[/tex]
Now When [tex]C = \$900,000[/tex]
[tex]x = 80.77\%[/tex]
What is the error in this problem
Answer:
12). LM = 37.1 units
13). c = 4.6 mi
Step-by-step explanation:
12). LM² = 23² + 20² - 2(23)(20)cos(119)°
LM² = 529 + 400 - 920cos(119)°
LM² = 929 - 920cos(119)°
LM = [tex]\sqrt{929+446.03}[/tex]
= [tex]\sqrt{1375.03}[/tex]
= 37.08
≈ 37.1 units
13). c² = 5.4² + 3.6² - 2(5.4)(3.6)cos(58)°
c² = 29.16 + 12.96 - 38.88cos(58)°
c² = 42.12 - 38.88cos(58)°
c = [tex]\sqrt{42.12-20.603}[/tex]
c = [tex]\sqrt{21.517}[/tex]
c = 4.6386
c ≈ 4.6 mi
For any real number r, which of the following must be greater than r?
An expression is a set of numbers, variables, and mathematical operations. The correct option is C, r² + 1.
What is an Expression?In mathematics, an expression is defined as a set of numbers, variables, and mathematical operations formed according to rules dependent on the context.
Since real numbers contain positive integers, negative integers, positive decimals, negative decimals, and zero.
Therefore, For any real number r, the expression that will be always greater than r will be (r²+1). This is because,
√r :- If r=2, then √r will be 1.4142, therefore, √r will be lesser than r.2r :- If r is negative then 2r will also be negative and will be a smaller number than that.r² + 1 :- Irrespective of r is negative or positive, decimal or integer, the given expression will be always greater than r.r³ + 1 :- If the value of r is negative, then the expression will return a smaller negative number.Hence, the correct option is C, r² + 1.
Learn more about Expression here:
https://brainly.com/question/13947055
#SPJ5
In order to purchase a new backyard patio in 3 years, the Robinsons have decided to deposit $1,700 in an account that earns 6% per year compounded monthly for 3 years. How much money will be in the account in 3 years?
Answer: A = 2,034.356 ≈ $2,034.36
$2,034.36 will be in the account in 3 years
Step-by-step explanation:
Given that ;
P = $1,700
Rate r = 6%
Time period (t) = 3 years
now to find how much money will be in the account in 3 years
we say;
A = P ( 1 + r/n )^nt
A = 1,700 ( 1 + 0.06/12) ¹²ˣ³
A = 1,700 ( 1.19668)
A = 2,034.356 ≈ $2,034.36
simplify each expression 17x + 4 - 3x
Answer:
14x+4
Step-by-step explanation:
17x-3x=14x
The company charges $5 per sq ft, AND has a minimum charge of 3 sq ft per order (meaning if a customer orders something SMALLER than 3 sq ft they still are charged as if they ordered 3 sq ft, never less - but if they order something larger than 3 sq ft they just pay regularly by the sq ft). What would you charge someone who orders a piece of glass 12in X 12in
Using the same sq ft charge ($5 per sq ft) and remembering the rule about when to use the minimum charge, what would you charge someone ordering a piece of glass 48in X 48in? *
Answer:
12 inches by 12 inches = 15 dollars
48 inches by 48 inches = 80 dollars
Step-by-step explanation:
12 inches = 1 ft
so 12 inch by 12 inches is 1 ft * 1 ft
1 ft* 1 ft
1 ft^2
This is smaller than 3 ft^2 so they will get charged for 3 ft^2
3 ft^2 = 3 ft^2 * $5 / ft^2 = 15 dollars
48 inches = 48/12 = 4 ft
4ft * 4 ft = 16 ft^2
16 ft^2 = 16 ft^2 * $5 / ft^2 = 80 dollars
HELP NEED PRECALC HELP WILL GIVE BRAINLIEST PLEASE HELP
From your earlier questions, we found
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
so the wave has amplitude √29. The weight's maximum negative position from equilibrium is then -√29, so you are solving for t in the given interval for which
[tex]\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac{\sqrt{29}}2[/tex]
Divide both sides by √29:
[tex]\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac12[/tex]
Take the inverse sine of both sides, noting that we get two possible solution sets because we have
[tex]\sin\left(\dfrac{7\pi}6\right)=\sin\left(\dfrac{11\pi}6\right)=-\dfrac12[/tex]
and the sine wave has period 2π, so [tex]\sin x=\sin(x+2\pi)=\sin(x+4\pi)=\cdots[/tex].
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{7\pi}6+2n\pi[/tex]
OR
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{11\pi}6+2n\pi[/tex]
where n is any integer.
Now solve for t :
[tex]t=\dfrac{\frac{7\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
OR
[tex]t=\dfrac{\frac{11\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
We get solutions between 0 and 0.5 when n = 0 of t ≈ 0.196946 and t ≈ 0.363613.
Determine which is the appropriate approach for conducting a hypothesis test. Claim: The mean RDA of sodium is 2400mg. Sample data: n150, 3400, s550. The sample data appear to come from a normally distributed population.
Answer:
Use the student t distribution
Step-by-step explanation:
Here is the formula
t = (x - u) ÷(s/√N)
From the information we have in the question:
n = 150
s = 550
x = 3400
u = mean = 2400
= 3400 - 2400÷ 500/√150
= 1000/44.9
= 22.27
At 0.05 significance level, df = 149 so t tabulated will be 1.65.
We cannot use normal distribution since we do not have population standard deviationWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceThe parametric or bootstrap method cannot be used either.Which of the following expression is equal to X^2+9
Answer:
(x + 3i) * (x - 3i) = x^2 + 3xi - 3xi - 9(i^2) = x^2 + 9
Step-by-step explanation:
. One sample has M = 18 and a second sample has M = 14. If the pooled variance for the two samples is 16, what is the value of Cohen’s d?
Answer:
Cohen's d : 1.00
Step-by-step explanation:
We know that M₁ = 18, and M₂ = 14. Given that the pooled variance for the these two samples are 16, S²Pooled = 16, and therefore S - pooled = 4.
The formula to solve for the value of Cohen's d is as follows,
d = M₁ - M₂ / S - pooled,
d = 18 - 14 / 4 = 4 / 4 = 1
Therefore the value of Cohen's d = 1
In a frequency distribution of 290 scores, the mean is 99 and the median is 86. One would expect this distribution to be:
Answer:
positively skewed to the right
Step-by-step explanation:
The measure of the central tendency is a profound way to describe the mean, median and mode. The measure of central tendency indicates where the center of distribution tends to be. The measure of central tendency provide a validity and answers whether the scores are high or generally low.
In this measure,The mean is usually pulled to the tail. The skewed is determined by where the tail goes, to the right side , it is positively skewed and to the left side , it is known as negatively skewed distribution.
Given that:
In a frequency of distribution of 290 scores,
the mean = 99
the median = 86
One would expect this distribution to be; positively skewed to the right since the mean value is greater than the median value.
Help please
I don’t know what it is and I need to find the value of x please HELP
Answer:
[tex]\large \boxed{x\° = 130}[/tex]
Step-by-step explanation:
The triangle is an isosceles triangle. The base angles are equal.
Angles in a triangle add to 180 degrees.
[tex]y+65+65=180\\y+130=180\\y=50[/tex]
Angles on a straight line add up to 180 degrees.
[tex]x+50=180\\x=130[/tex]
Answer:
[tex]\huge\boxed{\sf x = 130\ degrees}[/tex]
Step-by-step explanation:
The measure of exterior angle is equal to the sum of non-adjacent interior angles.
So,
x = 65 + 65
x = 130 degrees
In the figure below.. Please help!!!
====================================================
Explanation:
Both AB and XY are the first two letters of ABC and XYZ respectively. So we have one fraction of AB/XY = 2/7.
AC and XZ are the first and last letters of ABC and XYZ respectively. We can form another fraction AC/XZ. I'm dividing in the same order of small over large to keep things consistent. As you can probably guess, the order of the letters ABC and XYZ are important so we see how the angles match up and how the proportional sides match up.
Because the triangles are similar, the two fractions formed earlier are equal to one another.
The equation we need to solve is AB/XY = AC/XZ
-----
AB/XY = AC/XZ
2/7 = 3/N ... plug in given values
2N = 7*3 .... cross multiply
2N = 21
N = 21/2 .... divide both sides by 2
N = 10.5
ZX is 10.5 units long.
Solve for x in the equation below. Round your answer to the nearest hundredth. Do not round any intermediate computations. 12-8x=5
Answer:
x = 0.88Step-by-step explanation:
[tex]12-8x=5\\\\Collect\:like\:terms\\\\-8x =5-12\\\\-8x = -7\\\\Divide\:both\:sides\:by -8\\\frac{-8x}{-8} \\=\frac{-7}{-8} \\\\x = 0.875\\\\x = 0.88[/tex]
Find the value of x that will make L || M
Answer:
x = 7
Step-by-step explanation:
L and M would be parallel if angle 2x -3 and the angle x + 4 are equal.
Thus, 2x - 3 = x + 4, so that x = 7
what is the equation for a parabola with a focus at (2,2) and a directix of x=8
Answer:
( y-5) ^2 =-12(x-2)
Step-by-step explanation:
focus at (2,2) and a directrix of x=8
Using the equation
( y-k) ^2 = 4p(x-k)
where ( h,k) is the vertex
The vertex is 1/2 way between the focus and the directrix
( 2+8)/2 , 2
5,2 is the vertex
( y-5) ^2 = 4p(x-2)
distance from the focus to the vertex and from the vertex to the directrix is
| p|
2-5 = p
-3 = p
( y-5) ^2 = 4*-3(x-2)
( y-5) ^2 =-12(x-2)
If you have $100 in a savings account earning 3% interest per year, how much will you have in
two years?
Answer:
$106
Step-by-step explanation:
You have 100$ in savings account
Interest rate =3%
Time = 2 years
Total in 2 years:
100 + 2*3% = 100 *1.06= $106The interest formula is as follows:
Amount Invested · Rate = Interest Earned
If we invest $100 at 3% interest per year,
how much do we earn that year?
Well based on our formula, we can simply multiply 100 · 3%.
Think of the 3% as 3/100.
So we have 100 · 3/100 and the 100's cancel and we're left with 3.
So $3 is earned in 1 year.
So after two years, you will have double that or $6.
Help me please please please please
Answer:
1.
d. (-14) + (-8)
2.
a. (-14) + 8
Step-by-step explanation:
(-14) - 8 is equal to (-14) + (-8) because we still add two negative values so the result wouldn't change.
(-14) - (-8) is equal to (-14) + 8 because there's two negative sign in front of 8 and two negative values multiplied makes a positive result.
Answer:
1. D
2. A
Step-by-step explanation:
1. It asks you what expression has the same value as (-14)-8. All you need to do is find other equations that have the same value as that. So the equation is -14-8. IF a negative is outside a parenthesis with a positive number inside like -(+5), it is going to be -5. If it's both negative: -(-5), it will be +5. If it is both positive: +(+5), it is going to be +5.
IMPORTANT!
- and + = -
- and - = +
+ and + = +
What we are looking for: -14-8
So choice A is (-14)+8 which is simplified to -14+8. So, this one isn't right.
Choice B: 14-(-8)= 14+8. So, it's incorrect.
Choice C: 14+(-8)= 14-8. Again, it's not -14-8 so it's not right.
Choice D: (-14)+(-8)= -14-8. This equation matches the one we are looking for! So it's correct!
2. Same thing as number 1. Let's simplify the equation it wants us to find first.
(-14)-(-8)= -14+8
So -14+8 is what we are looking for.
Choice A: (-14)+8= -14+8. It matches! So it is correct. Let's look at the other options anyway.
Choice B: 14-(-8)= 14+8. Nope. Not right.
Choice C: 14+(-8)= 14-8 because - always beats +. So, this one is also incorrect.
Choice D: (-14)+(-8)= -14-8. Oops, this is also wrong. So choice A is the right answer.
Keep in mind, when you start getting questions like this with numbers inside the parenthesis as well, you want to remember the same rules for positive and negative, but also multiply the numbers together:
(When there is a number outside and inside a parentheses, multiply them.)
2(5)=10, CORRECT! 2+(5) is not 2 times 5. It's whatever is closest to the parentheses, in this case being the positive sign. So + and 5 is just 5!
IMPORTANT!
-2(-5)= - and - is positive, so positive (2 times 5). Positive 10.
-2(+5)= - and + is negative, so negative (2 times 5). Negative 10.
+2(+5)= + and + is positive, so positive (2 times 5). Positive 10.
Solve for y:1(y+3)=2(y+−4)+−7
Answer:
[tex]\large \boxed{{y=18}}[/tex]
Step-by-step explanation:
[tex]1(y+3)=2(y+-4)+- 7[/tex]
Expand brackets.
[tex]y+3=2y-8+- 7[/tex]
Simplify.
[tex]y+3=2y-15[/tex]
Add -y and 15 on both sides.
[tex]y+3-y+15=2y-15-y+15[/tex]
Simplify.
[tex]3+15=2y-y[/tex]
[tex]18=y[/tex]
Answer:
18
Step-by-step explanation:
● 1 (y+3) = 2 (y+(-4) )+ (-7)
When you multiply by 1 you get the same result.
● y+3 = 2 (y+(-4))+(-7)
When you have a + sign with a - sign write -.
● y+3 = 2(y-4)-7
Multiply 2 by (y-4) and simplify
● y+3 = (2y-8)-7
● y+3 = 2y -8-7
● y+3 = 2y -15
Add 15 to both sides
● y +3+15 = 2y-15 +15
● y + 18 = 2y
Sibstract y from both sides
● y +18 - y = 2y -y
● 18 = y