Answer:
Here both probabilities are not equal.
Therefore the die is not fair and biased.
Step-by-step explanation:
Now n= 1200 times and x = 419 times.
a) Empirical Probability:
[tex]=\frac{x}{n} \\\\= \frac{419}{1200}\\ \\=0.349[/tex]
Probability = 0.349
b) Theoretical Probability:
[tex]=\frac{1}{6}[/tex]
Here both probabilities are not equal.
Therefore the die is not fair and biased.
Instructions: State what additional information is required in order
to know that the triangles in the image below are congruent for the
reason given
Reasory. SAS Postulate
Answer:
HJ = FG
Step-by-step explanation:
SAS means side - (included) angle - side.
we have one angle confirmed (at H and at G).
we have actually one side confirmed (HG), because the graphic shows that this side is shared between the triangles. so, implicitly it is not only congruent but really identical.
so, we need the confirmation of the second side enclosing the confirmed angle.
Which expression is equivalent to (3 squared) Superscript negative 2?
Answer:
–81
Step-by-step explanation:
Devy likes to learn! Could someone please tell me how to answer this question?
If f(x) and g(x) are inverse functions of each other, which of the following shows the graph of f(g(x))?
On a coordinate plane, a straight line has a positive slope and goes through (negative 2, negative 1), (0, 0), and (4, 2).
On a coordinate plane, a straight line has a positive slope and goes through (negative 3, negative 3), (0, 0), and (3, 3).
On a coordinate plane, a straight line has a negative slope and goes through (negative 4, 2), (0, 0), and (4, negative 2).
On a coordinate plane, a straight line has a negative slope and goes through (negative 3, 3), (0, 0), (3, negative 3).
Answer:
B
Step-by-step explanation:
Recall that if two functions, f and g, are inverses, then by definition:
[tex]\displaystyle f(g(x)) = g(f(x)) = x[/tex]
Hence, the graph of f(g(x)) should be simply y = x.
Therefore, our answer is B, as both coordinates are equivalent for all three points.
PLEASE HELP
-1/2m=-9
Show your work in details if you can, I have a hard time understanding this.
[tex] \begin{cases} \\ \large\bf{\green{ \implies}} \tt \: - \: \frac{1}{2} \: m \: = \: - 9 \\ \\ \large\bf{\green{ \implies}} \tt \: - \frac{1 \: m}{2} \: = \: - 9 \\ \\ \large\bf{\green{ \implies}} \tt \: - 1m \: = \: - 9 \: \times \: 2 \\ \\ \large\bf{\green{ \implies}} \tt \: - 1m \: = \: - 18 \\ \\ \large\bf{\green{ \implies}} \tt \: m \: = \: \frac{ \cancel- 18}{ \cancel - 1} \\ \\ \large\bf{\green{ \implies}} \tt \: m \: = \: \frac{18}{1} \\ \\ \large\bf{\green{ \implies}} \tt \: m \: = \: 18 \: \\ \end{cases}[/tex]
2. What is the length of AB? Round your
answer to the nearest hundredth.
Answer:
The required length of AB is 7.28 units.
Many freeways have service (or logo) signs that give information on attractions, camping, lodging, food, and gas services prior to off-ramps. These signs typically do not provide information on distances. An article reported that in one investigation, six sites along interstate highways where service signs are posted were selected. For each site, crash data was obtained for a three-year period before distance information was added to the service signs and for a one-year period afterward. The number of crashes per year before and after the sign changes were as follows.
Before 13 22 65 123 56 63
After 14 21 43 84 75 72
1. The article included the statement "A paired t-test was performed to determine whether there was any change in the mean number of crashes before and after the addition of distance information on the signs." Carry out such a test. (Note: The relevant normal probability plot shows a substantial linear pattern.)
a. State and test the appropriate hypotheses. (Use α = 0.05.)
b. Calculate the test statistic and P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)
t = _____
p-value = _____
c. State the conclusion in the problem context.
A. Fail to reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
B. Reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.
C. Fail to reject H0. The data suggests a significant mean difference in the average number of accidents after information was added to road signs.
D. Reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
2. If a seventh site were to be randomly selected among locations bearing service signs, between what values would you predict the difference in the number of crashes to lie? (Use a 95% prediction interval. Round your answers to two decimal places.)
Answer:
Test statistic = 0.63
Pvalue = 0.555
A. Fail to reject H0. The data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
Step-by-step explanation:
Given :
Before 13 22 65 123 56 63
After_ 14 21 43 84 75 72
To perform a paired t test :
H0 : μd = 0
H1 : μd ≠ 0
We obtain the difference between the two dependent sample readings ;
Difference, d = -1, 1, 22, 39, -19, -9
The mean of difference, Xd = Σd/ n = 33/6 = 5.5
The standard deviation, Sd = 21.296 (calculator).
The test statistic :
T = Xd ÷ (Sd/√n) ; where n = 6
T = 5.5 ÷ (21.296/√6)
T = 5.5 ÷ 8.6940555
T = 0.6326
The Pvalue : Using a Pvalue calculator ;
df = n - 1 = 6 - 1 = 5
Pvalue(0.6326, 5) = 0.5548
Decision region :
Reject H0 ; If Pvalue < α; α = 0.05
Since 0.5548 > 0.05 ; we fail to reject the Null and conclude that the data does not suggest a significant mean difference in the average number of accidents after information was added to road signs.
How many terms of the series 2 + 5 + 8 + … must be taken if their sum is 155
9514 1404 393
Answer:
10
Step-by-step explanation:
The sum of terms of an arithmetic series is ...
Sn = (2a +d(n -1))·n/2 = (2an +dn^2 -dn)/2
For the series with first term 2 and common difference 3, the sum is 155 for n terms, where ...
155 = (3n^2 +n(2·2 -3))/2
Multiplying by 2, we have ...
3n^2 +n -310 = 0 . . . . . arranged in standard form
Using the quadratic formula, the positive solution is ...
n = (-1 +√(1 -4(3)(-310)))/(2(3)) = (-1 +√3721)/6 = (61 -1)/6 = 10
10 terms of the series will have a sum of 155.
Step-by-step explanation:
[tex]\displaystyle \ \Large \boldsymbol{} S_n=\frac{2a_1+d(n-1)}{2} \cdot n =155 \\\\ \frac{4+3(n-1)}{2} \cdot n =155 \\\\\\ 4n+3n^2-3n=310 \\\\ 3n^2+n-310=0 \\\\D=1+3720=3721=61^2\\\\n_1=\frac{61-1}{6} =\boxed{10} \\\\\\n_2=\frac{-61-1}{3} \ \ \o[/tex]
Four people share a taxi to the airport the fare was $36 and they gave the driver a tip equal to 25% of the fair. If they equally share the cost of the fair tip, how How much did each person pay?
Answer:
$11.25
Step-by-step explanation:
Total money given to the taxi driver=36+25% of 36=45
Each person will pay (45/4)=11.25
I are these orders pairs a function
х,у
0,9
2,8.
4,7
6,6
8,5
10,4
9514 1404 393
Answer:
yes
Step-by-step explanation:
No x-value is repeated, so these ordered pairs do represent a function.
There is 60% chance of making $12,000, 10% chance of breaking even and 30% chance of losing $6,200. What is the expected value of the purchase?
Answer:
$5,340
Step-by-step explanation:
Given :
Making a probability distribution :
X : ___12000 ____0 _____-6200
P(X) __ 0.6 _____ 0.1 _____ 0.3
Tge expected value of the purchase si equal to the expected value or average, E(X) :
E(X) = ΣX*p(X)
E(X) = (12000 * 0.6) + (0 * 0.1) + (-6200 * 0.3)
E(X) = 7200 + 0 - 1860
E(X) = $5,340
Solve the equation for x 11x=110
I need help to fine the statement that is true
Answer:
option A
Step-by-step explanation:
wx and zy making 90 angle with each other therefore they are perpendicular.
wx and ab making 0 angle with each other therefore they are parallel
A worker in the automobile industry works an average of 43.7 hours per week. Assume the distribution is normal with a standard deviation of 1.6 hours.
(i) What is the probability that a randomly selected automobile worker works less than 40 hours per week?
(ii) If 15 automobile workers are randomly selected, what is the probability that the sample mean of working time is more than 45 hours per week?
Answer:
The solution is:
(1) 0.0104
(2) 0.0008
Step-by-step explanation:
Given:
Mean,
[tex]\mu = 43.7[/tex]
Standard deviation,
[tex]\sigma = 1.6[/tex]
(1)
⇒ [tex]P(X<40) = P(\frac{x-\mu}{\sigma}<\frac{40-43.7}{1.6} )[/tex]
[tex]=P(z< - 2.3125)[/tex]
[tex]=P(z<-2.31)[/tex]
[tex]=0.0104[/tex]
(2)
As we know,
n = 15
⇒ [tex]P(\bar X > 45)= P(\frac{\bar x - \mu}{\frac{\sigma}{\sqrt{n} } } >\frac{45-43.7}{\frac{1.6}{\sqrt{15} } } )[/tex]
[tex]=P(z> 3.15)[/tex]
[tex]=1-P(z<3.15)[/tex]
[tex]=1-0.9992[/tex]
[tex]=0.0008[/tex]
To study the mean respiratory rate of all people in his state, Frank samples the population by dividing the residents by towns and randomly selecting 12 of the towns. He then collects data from all the residents in the selected towns. Which type of sampling is used
Answer:
Cluster Sampling
Step-by-step explanation:
Cluster Sampling involves the random sampling of observation or subjects, which are subsets of a population. Cluster analysis involves the initial division of population subjects into a number of groups called clusters . From the divided groups or clusters , a number of groups is then selected and it's elements sampled randomly. In the scenario above, the divison of the population into towns where each town is a cluster. Then, the selected clusters (12) which are randomly chosen are analysed.
What is the surface area of this figure in square centimeters?
A.96
B.75
C.84
D.60
9514 1404 393
Answer:
A. 96
Step-by-step explanation:
The surface area is the sum of the areas of the two triangular bases and the areas of the three rectangular lateral faces.
A = 2(1/2)bh + PH
where b is the base of the triangle, h is its height, P is the perimeter of the triangle, and H is the height of the prism.
A = (3 cm)(4 cm) +(3 +4 +5 cm)(7 cm) = 12 cm² +84 cm²
A = 96 cm²
The surface area of the triangular prism is 96 square cm.
find the supplement of 158 degrees and 17 minutes
Answer:
supplement of 158 degree
x+158=180
x=180-158
x=22 degree.
Step-by-step explanation:
2/5 = 6/ = 10/30 = 14/
Please tell asap
Answer:
6/15.
14/42.
Step-by-step explanation:
2/5 = 6/x
Cross multiply:
2x = 5*6
x = 15
Similarly:
10/30 = 14/x
10x = 30*14
x = 420/10
x = 42.
the line parallel to 2x – 3y = 6 and containing (2,6)
what is the equation of the line ?
First, write out the equation in slope intercept form.
-3y= -2x+6
y= 2/3x -2
The slope of the equation is 2/3, m.
Substitute the slope and coordinate into y=mx+b. Since it’s parallel, the slope remains the same.
6= 2/3(2)+b
6= 4/3+b
14/3=b
y= 2/3x + 14/3
The central angle in a circle of radius 6 meters has an intercepted arc length of 10 meters. Find the measure of the angle in radians and in degrees
Answer:
The central angle is 5/3 radians or approximately 95.4930°.
Step-by-step explanation:
Recall that arc-length is given by the formula:
[tex]\displaystyle s = r\theta[/tex]
Where s is the arc-length, r is the radius of the circle, and θ is the measure of the central angle, in radians.
Since the intercepted arc-length is 10 meters and the radius is 6 meters:
[tex]\displaystyle (10) = (6)\theta[/tex]
Solve for θ:
[tex]\displaystyle \theta = \frac{5}{3}\text{ rad}[/tex]
The central angle measures 5/3 radians.
Recall that to convert from radians to degrees, we can multiply by 180°/π. Hence:
[tex]\displaystyle \frac{5\text{ rad}}{3} \cdot \frac{180^\circ}{\pi \text{ rad}} = \frac{300}{\pi}^\circ\approx 95.4930^\circ[/tex]
So, the central angle is approximately 95.4930°
Solve for x.
–5(–2x – 5) – 2 – 1= -12
Answer:
x=-17/5
Step-by-step explanation:
–5(–2x – 5) – 2 – 1= -12
+10x+25-2-1=-12
10x+22=-12
10x=-12-22
10x=-34
x=-34/10
x=-17/5
Step-by-step explanation:
Open the brackets
10x +25 -2 - 1= -12
Collect the like terms
10x = -12-25+2+1
10x = -34
Divide both sides by 10
Therefore,x = -34/10 = -3.4
If the volume of the expanding cube is increasing at the rate 24 cm3 / min , how fast is its surface area increasing when the surface area is 216 cm2 ?
Answer:
16 cm^2/min
Step-by-step explanation:
dV/dt=24
V=a^3, differentiate with respect to t
dV/dt=3a^2*da/dt, a^2*da/dt=8
S=6a^2, 216=6a^2. a=6. da/dt=(8/36)
dS/dt=12*a*da/dt=12*(8/6)=16 cm^2/min
Louise has a hard time keeping her workspace clean at her job. She tries, but it just ends up getting messy again. Which of the following is a likely outcome of her consistent messiness? O a) She will have fewer safety issues. b) She will feel more productive. c) Customers will think she is very busy. O d) She will have a hard time focusing.
Option C
Customers will think she is very busy
A messy desk indicates that the person is very busy.
Must click thanks and mark brainliest
Please help quicklyyy!!!
Answer:
Its the 3 one
Step-by-step explanation:
WILL GIVE BRAINLIEST
Combine like terms.
2x – 3 – 5x + 8 = [ ? ]x + [ ]
Answer:
-3x + 5
Step-by-step explanation:
like terms are the ones that have x and the ones that don't.
hope this makes sense
Answer:
-3x + 5
Step-by-step explanation:
2x - 3 - 5x + 8 can also be written as 2x - 5x - 3 + 8
→ Using the rewritten method collect the x terms
-3x - 3 + 8
→ Now collect the integers
-3x + 5
An adult can lose or gain two pounds of water ina course of a day. Assume that the changes in water weight isuniformly distributed between minus two and plus two pounds in aday. What is the standard deviation of your weight over a day?
Answer:
The standard deviation of your weight over a day is of 1.1547 pounds.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b, and the standard deviation is:
[tex]S = \sqrt{\frac{(b-a)^2}{12}}[/tex]
Assume that the changes in water weight is uniformly distributed between minus two and plus two pounds in a day.
This means that [tex]a = -2, b = 2[/tex]
What is the standard deviation of your weight over a day?
[tex]S = \sqrt{\frac{(2 - (-2))^2}{12}} = \sqrt{\frac{4^2}{12}} = \sqrt{\frac{16}{12}} = 1.1547[/tex]
The standard deviation of your weight over a day is of 1.1547 pounds.
trig..experts...help! Will give brainly!
Answer:
Step-by-step explanation:
189² = 215² + 123² - 2(215)(123)cos x°
35,721 = 46,225 + 15,129 - 52,890 cos x°
35,721 = 61,354 - 52,890 cos x°
52,890 (cos x° ) = 25,633
cos x° = 25,633 ÷ 52,890 ≈ 0.4846
x° ≈ 61.01°
What is the measure of x?
Answer:
22
Step-by-step explanation:
This is a right angle so the sum of those would be equal to 90 degrees
x + 7 + 3x - 5 = 90 add like terms
4x + 2 = 90 subtract 2 from both sides
4x = 88 divide both sides by 4
x = 22
Which equation is represented by the graph?
Answer:
I don't knowledge bro sorry
f(x) = - 2x
g(x) = 8x^2 - 5x + 7
Find (f • g)(x).
9514 1404 393
Answer:
(f•g)(x) = -16x^3 +10x^2 -14x
Step-by-step explanation:
(f•g)(x) = f(x)•g(x) = (-2x)(8x^2 -5x +7)
Use the distributive property:
(f•g)(x) = -16x^3 +10x^2 -14x
Find the unit rate.
1/3 kilometer in 1/3hour
Answer:
1 kilometer in 1 hour
Step-by-step explanation:
unit rate is km(kilometer) per hour(hr)
1/3 km = 1/3 hr
multiply both sides by 3
1 km in 1 hour