We are asked to test the series ∑(k/(-1)^k) for convergence or divergence. So the series is diverges .
To determine the convergence or divergence of the series ∑(k/(-1)^k), we need to examine the behavior of the terms as k increases.
The series alternates between positive and negative terms due to the (-1)^k factor. When k is odd, the terms are positive, and when k is even, the terms are negative. This alternating sign indicates that the terms do not approach a single value as k increases.
Additionally, the magnitude of the terms increases as k increases. Since the series involves dividing k by (-1)^k, the terms become larger and larger in magnitude.
Therefore, based on the alternating sign and increasing magnitude of the terms, the series ∑(k/(-1)^k) diverges. The terms do not approach a finite value or converge to zero, indicating that the series does not converge.
Learn more about converges or diverges click here :brainly.com/question/17177764
#SPJ11
Solve the initial-value problem of the first order linear differential equation ' - tan(x) y in(x) = sin(x), y(0) = 1. y'
The solution to the initial value problem is y = cos(x)/ln(x)
How to solve the initial value problemFrom the question, we have the following parameters that can be used in our computation:
tan(x) y in(x) = sin(x)
Make y the subject of the formula
So, we have
y = sin(x)/[tan(x) ln(x)]
Express tan(x) as sin(x)/cos(x)
So, we have
y = sin(x)/[sin(x)/cos(x) ln(x)]
Simplify
y = cos(x)/ln(x)
Hence, the solution to the initial value problem is y = cos(x)/ln(x)
Read more about initial value problem at
https://brainly.com/question/31963004
#SPJ4
1. Short answer. At average, the food cost percentage in North
American restaurants is 33.3%. Various restaurants have widely
differing formulas for success: some maintain food cost percent of
25.0%,
The average food cost percentage in North American restaurants is 33.3%, but it can vary significantly among different establishments. Some restaurants are successful with a lower food cost percentage of 25.0%.
In North American restaurants, the food cost percentage refers to the portion of total sales that is spent on food supplies and ingredients. On average, restaurants allocate around 33.3% of their sales revenue towards food costs. This percentage takes into account factors such as purchasing, inventory management, waste reduction, and pricing strategies. However, it's important to note that this is an average, and individual restaurants may have widely differing formulas for success.
While the average food cost percentage is 33.3%, some restaurants have managed to maintain a lower percentage of 25.0% while still achieving success. These establishments have likely implemented effective cost-saving measures, negotiated favorable supplier contracts, and optimized their menu offerings to maximize profit margins. Lowering the food cost percentage can be challenging as it requires balancing quality, portion sizes, and pricing to meet customer expectations while keeping costs under control. However, with careful planning, efficient operations, and a focus on minimizing waste, restaurants can achieve profitability with a lower food cost percentage.
It's important to remember that the food cost percentage alone does not determine the overall success of a restaurant. Factors such as customer satisfaction, service quality, marketing efforts, and overall operational efficiency also play crucial roles. Each restaurant's unique circumstances and business model will contribute to its specific formula for success, and the food cost percentage is just one aspect of the larger picture.
Learn more about percentage here:
https://brainly.com/question/32575737
#SPJ11
Consider the following equation. 4x² + 25y² = 100 (a) Find dy/dx by implicit differentiation. 4x 25y (b) Solve the equation explicitly for y and differentiate to get dy/dx in terms of x. (Consider only the first and second quadrants for this part.) x (c) Check that your solutions to part (a) and (b) are consistent by substituting the expression for y into your solution for part (a). y' =
the solutions obtained in parts (a) and (b) dy/dx = 4x / (25y), y = ± √((100 - 4x²) / 25), and dy/dx = ± (4x) / (25 * √(100 - 4x²)) Are (consistent).
(a) By implicit differentiation, we differentiate both sides of the equation with respect to x, treating y as a function of x.
For the term 4x², the derivative is 8x. For the term 25y², we apply the chain rule, which gives us 50y * dy/dx. Setting these derivatives equal to each other, we have:
8x = 50y * dy/dx
Therefore, dy/dx = (8x) / (50y) = 4x / (25y)
(b) To solve the equation explicitly for y, we rearrange the equation:
4x² + 25y² = 100
25y² = 100 - 4x²
y² = (100 - 4x²) / 25
Taking the square root of both sides, we get:
y = ± √((100 - 4x²) / 25)
Differentiating y with respect to x, we have:
dy/dx = ± (1/25) * (d/dx)√(100 - 4x²)
(c) To check the consistency of the solutions, we substitute the explicit expression for y from part (b) into the solution for dy/dx from part (a).
dy/dx = 4x / (25y) = 4x / (25 * ± √((100 - 4x²) / 25))
Simplifying, we find that dy/dx = ± (4x) / (25 * √(100 - 4x²)), which matches the solution obtained in part (b).
Therefore, the solutions obtained in parts (a) and (b) are consistent.
learn more about differentiation here:
https://brainly.com/question/31383100
#SPJ11
Let a = (-5, 3, -3) and 6 = (-5, -1, 5). Find the angle between the vector (in radians)
The angle between the vectors (in radians) is 1.12624. Given two vectors are a = (-5, 3, -3) and b = (-5, -1, 5). The angle between vectors is given by;`cos θ = (a.b) / (|a| |b|)`where a.b is the dot product of two vectors. `|a|` and `|b|` are the magnitudes of two vectors. We need to find the angle between two vectors in radians.
Dot Product of two vectors a and b is given by;
a.b = (-5 * -5) + (3 * -1) + (-3 * 5)
= 25 - 3 - 15
= 7
Magnitude of the vector a is;
|a| = √((-5)² + 3² + (-3)²)
= √(59)
Magnitude of the vector b is;
|b| = √((-5)² + (-1)² + 5²)
= √(51)
Therefore,` cos θ = (a.b) / (|a| |b|)`
=> `cos θ = 7 / (√(59) * √(51))
`=> `cos θ = 0.438705745`
The angle between the vectors in radians is
;θ = cos⁻¹(0.438705745)
= 1.12624 rad
Thus, the angle between the vectors (in radians) is 1.12624.
To know more about vectors , refer
https://brainly.com/question/28028700
#SPJ11
Suppose f(π/6) = 6 and f'(π/6) and let g(x) = f(x) cos x and h(x) = = g'(π/6)= = 2 -2, sin x f(x) and h'(π/6) =
The given information states that f(π/6) = 6 and f'(π/6) is known. Using this, we can calculate g(x) = f(x) cos(x) and h(x) = (2 - 2sin(x))f(x). The values of g'(π/6) and h'(π/6) are to be determined.
We are given that f(π/6) = 6, which means that when x is equal to π/6, the value of f(x) is 6. Additionally, we are given f'(π/6), which represents the derivative of f(x) evaluated at x = π/6.
To calculate g(x), we multiply f(x) by cos(x). Since we know the value of f(x) at x = π/6, which is 6, we can substitute these values into the equation to get g(π/6) = 6 cos(π/6). Simplifying further, we have g(π/6) = 6 * √3/2 = 3√3.
Moving on to h(x), we multiply (2 - 2sin(x)) by f(x). Using the given value of f(x) at x = π/6, which is 6, we can substitute these values into the equation to get h(π/6) = (2 - 2sin(π/6)) * 6. Simplifying further, we have h(π/6) = (2 - 2 * 1/2) * 6 = 6.
Therefore, we have calculated g(π/6) = 3√3 and h(π/6) = 6. However, the values of g'(π/6) and h'(π/6) are not given in the initial information and cannot be determined without additional information.
Learn more about derivative:
https://brainly.com/question/25324584
#SPJ11
When we're dealing with compound interest we use "theoretical" time (e.g. 1 day = 1/365 year, 1 week = 1/52 year, 1 month = 1/12 year) and don't worry about daycount conventions. But if we're using weekly compounding, which daycount convention is it most similar to?
a. ACT/360
b. ACT/365
c. None of them!
d. ACT/ACT
e. 30/360
The day count convention used for the interest calculation can differ depending on the type of financial instrument and the currency of the transaction.
When we're dealing with compound interest we use\ "theoretical" time (e.g. 1 day = 1/365 year, 1 week = 1/52 year, 1 month = 1/12 year) and don't worry about day count conventions.
But if we're using weekly compounding, it is most similar to the ACT/365 day count convention.What is compound interest?Compound interest refers to the interest earned on both the principal balance and the interest that has accumulated on it over time. In other words, the sum you receive for an investment not only depends on the principal amount but also on the interest it generates over time.What are conventions?Conventions are practices or sets of agreements that are widely followed, established, and accepted within a given group, profession, or community. In finance, there are several conventions that govern various aspects of how we calculate prices, values, or risks.What is day count?In financial transactions, day count refers to the method used to calculate the number of days between two cash flows. In finance, the exact number of days between two cash flows is important because it affects the interest accrued over that period.
to know more about financial transactions, visit
https://brainly.com/question/30023427
#SPJ11
Use the given conditions to write an equation for the line in standard form. Passing through (2,-5) and perpendicular to the line whose equation is 5x - 6y = 1 Write an equation for the line in standard form. (Type your answer in standard form, using integer coefficients with A 20.)
The equation of the line, in standard form, passing through (2, -5) and perpendicular to the line 5x - 6y = 1 is 6x + 5y = -40.
To find the equation of a line perpendicular to the given line, we need to determine the slope of the given line and then take the negative reciprocal to find the slope of the perpendicular line. The equation of the given line, 5x - 6y = 1, can be rewritten in slope-intercept form as y = (5/6)x - 1/6. The slope of this line is 5/6.
Since the perpendicular line has a negative reciprocal slope, its slope will be -6/5. Now we can use the point-slope form of a line to find the equation. Using the point (2, -5) and the slope -6/5, the equation becomes:
y - (-5) = (-6/5)(x - 2)
Simplifying, we have:
y + 5 = (-6/5)x + 12/5
Multiplying through by 5 to eliminate the fraction:
5y + 25 = -6x + 12
Rearranging the equation:
6x + 5y = -40 Thus, the equation of the line, in standard form, passing through (2, -5) and perpendicular to the line 5x - 6y = 1 is 6x + 5y = -40.
To learn more about standard form click here : brainly.com/question/29000730
#SPJ11
Find the derivative function f' for the following function f. b. Find an equation of the line tangent to the graph of f at (a,f(a)) for the given value of a. f(x) = 2x² + 10x +9, a = -2 a. The derivative function f'(x) =
The equation of the line tangent to the graph of f at (a,f(a)) for the given value of a is y=4x-9.
Given function f(x) = 2x² + 10x +9.The derivative function of f(x) is obtained by differentiating f(x) with respect to x. Differentiating the given functionf(x) = 2x² + 10x +9
Using the formula for power rule of differentiation, which states that \[\frac{d}{dx} x^n = nx^{n-1}\]f(x) = 2x² + 10x +9\[\frac{d}{dx}f(x) = \frac{d}{dx} (2x^2+10x+9)\]
Using the sum and constant rule, we get\[\frac{d}{dx}f(x) = \frac{d}{dx} (2x^2)+\frac{d}{dx}(10x)+\frac{d}{dx}(9)\]
We get\[\frac{d}{dx}f(x) = 4x+10\]
Therefore, the derivative function of f(x) is f'(x) = 4x + 10.2.
To find the equation of the tangent line to the graph of f at (a,f(a)), we need to find f'(a) which is the slope of the tangent line and substitute in the point-slope form of the equation of a line y-y1 = m(x-x1) where (x1, y1) is the point (a,f(a)).
Using the derivative function f'(x) = 4x+10, we have;f'(a) = 4a + 10 is the slope of the tangent line
Substituting a=-2 and f(-2) = 2(-2)² + 10(-2) + 9 = -1 as x1 and y1, we get the point-slope equation of the tangent line as;y-(-1) = (4(-2) + 10)(x+2) ⇒ y = 4x - 9.
Hence, the equation of the line tangent to the graph of f at (a,f(a)) for the given value of a is y=4x-9.
Learn more about line tangent
brainly.com/question/23416900
#SPJ11
pie charts are most effective with ten or fewer slices.
Answer:
True
Step-by-step explanation:
When displaying any sort of data, it is important to make the table or chart as easy to understand and read as possible without compromising the data. In this case, it is simpler to understand the pie chart if we use as few slices as possible that still makes sense for displaying the data set.
A cup of coffee from a Keurig Coffee Maker is 192° F when freshly poured. After 3 minutes in a room at 70° F the coffee has cooled to 170°. How long will it take for the coffee to reach 155° F (the ideal serving temperature)?
It will take approximately 2.089 minutes (or about 2 minutes and 5 seconds) for the coffee to reach 155° F (the ideal serving temperature).
The coffee from a Keurig Coffee Maker is 192° F when freshly poured. After 3 minutes in a room at 70° F the coffee has cooled to 170°.We are to find how long it will take for the coffee to reach 155° F (the ideal serving temperature).Let the time it takes to reach 155° F be t.
If the coffee cools to 170° F after 3 minutes in a room at 70° F, then the difference in temperature between the coffee and the surrounding is:192 - 70 = 122° F170 - 70 = 100° F
In general, when a hot object cools down, its temperature T after t minutes can be modeled by the equation: T(t) = T₀ + (T₁ - T₀) * e^(-k t)where T₀ is the starting temperature of the object, T₁ is the surrounding temperature, k is the constant of proportionality (how fast the object cools down),e is the mathematical constant (approximately 2.71828)Since the coffee has already cooled down from 192° F to 170° F after 3 minutes, we can set up the equation:170 = 192 - 122e^(-k*3)Subtracting 170 from both sides gives:22 = 122e^(-3k)Dividing both sides by 122 gives:0.1803 = e^(-3k)Taking the natural logarithm of both sides gives:-1.712 ≈ -3kDividing both sides by -3 gives:0.5707 ≈ k
Therefore, we can model the temperature of the coffee as:
T(t) = 192 + (70 - 192) * e^(-0.5707t)We want to find when T(t) = 155. So we have:155 = 192 - 122e^(-0.5707t)Subtracting 155 from both sides gives:-37 = -122e^(-0.5707t)Dividing both sides by -122 gives:0.3033 = e^(-0.5707t)Taking the natural logarithm of both sides gives:-1.193 ≈ -0.5707tDividing both sides by -0.5707 gives: t ≈ 2.089
Therefore, it will take approximately 2.089 minutes (or about 2 minutes and 5 seconds) for the coffee to reach 155° F (the ideal serving temperature).
to know more about natural logarithm visit :
https://brainly.com/question/29154694
#SPJ11
The time required for 5 tablets to completely dissolve in stomach acid were (in minutes) 2.5, 3.0, 2.7, 3.2, and 2.8. Assuming a normal distribution for these times, find a 95%
We are 95% confident that the true mean time required for 5 tablets to dissolve in stomach acid is between 2.62 minutes and 3.06 minutes.
We have been given the time required for 5 tablets to completely dissolve in stomach acid. We need to find a 95% confidence interval for the population mean time to dissolve.
We will use the sample mean and the sample standard deviation to compute the confidence interval.
Let us first find the sample mean and the sample standard deviation for the given data.
Sample mean, \bar{x}
= \frac{2.5 + 3.0 + 2.7 + 3.2 + 2.8}{5}
= \frac{14.2}{5}
= 2.84
Sample variance,s^2
= \frac{1}{4} [(2.5 - 2.84)^2 + (3 - 2.84)^2 + (2.7 - 2.84)^2 + (3.2 - 2.84)^2 + (2.8 - 2.84)^2]s^2
= \frac{1}{4} (0.2596 + 0.0256 + 0.0256 + 0.0576 + 0.0256)
= 0.0684
Sample standard deviation, s
= \sqrt{0.0684}
= 0.2617
Now, we can find the 95% confidence interval using the formula,\bar{x} - z_{\alpha/2}\frac{s}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2}\frac{s}{\sqrt{n}}
Substituting the given values, we get,
2.84 - z_{0.025}\frac{0.2617}{\sqrt{5}} < \mu < 2.84 + z_{0.025}\frac{0.2617}{\sqrt{5}}
From the Z-table, we find that z_{0.025}
= 1.96
Therefore, the 95% confidence interval for the population mean time to dissolve is given by,
2.84 - 1.96 \frac{0.2617}{\sqrt{5}} < \mu < 2.84 + 1.96 \frac{0.2617}{\sqrt{5}}2.62 < \mu < 3.06
Therefore, we are 95% confident that the true mean time required for 5 tablets to dissolve in stomach acid is between 2.62 minutes and 3.06 minutes.
To know more about Mean visit :
https://brainly.com/question/30094057
#SPJ11
Use Cramer's Rule to solve the system of linear equations for x and y. kx + (1 k)y = 3 (1 k)X + ky = 2 X = y = For what value(s) of k will the system be inconsistent? (Enter your answers as a comma-separated list.) k= Find the volume of the tetrahedron having the given vertices. (5, -5, 1), (5, -3, 4), (1, 1, 1), (0, 0, 1)
Using Cramer's Rule, we can solve the system of linear equations for x and y. To find the volume of a tetrahedron with given vertices, we can use the formula involving the determinant.
1. System of linear equations: Given the system of equations: kx + (1-k)y = 3 -- (1) , (1-k)x + ky = 2 -- (2) We can write the equations in matrix form as: | k (1-k) | | x | = | 3 |, | 1-k k | | y | | 2 | To solve for x and y using Cramer's Rule, we need to find the determinants of the coefficient matrix and the matrices obtained by replacing the corresponding column with the constant terms.
Let D be the determinant of the coefficient matrix, Dx be the determinant obtained by replacing the first column with the constants, and Dy be the determinant obtained by replacing the second column with the constants. The values of x and y can be calculated as: x = Dx / D, y = Dy / D
2. Volume of a tetrahedron: To find the volume of the tetrahedron with vertices (5, -5, 1), (5, -3, 4), (1, 1, 1), and (0, 0, 1), we can use the formula: Volume = (1/6) * | x1 y1 z1 1 | , | x2 y2 z2 1 | , | x3 y3 z3 1 |, | x4 y4 z4 1 | Substituting the coordinates of the given vertices, we can calculate the volume using the determinant of the 4x4 matrix.
Learn more about linear equations here:
https://brainly.com/question/32634451
#SPJ11
Consider the function x²-4 if a < 2,x-1, x ‡ −2 (x2+3x+2)(x - 2) f(x) = ax+b if 2≤x≤5 ²25 if x>5 x 5 a) Note that f is not continuous at x = -2. Does f admit a continuous extension or correction at a = -2? If so, then give the continuous extension or correction. If not, then explain why not. b) Using the definition of continuity, find the values of the constants a and b that make f continuous on (1, [infinity]). Justify your answer. L - - 1
(a) f is continuous at x = -2. (b) In order for f to be continuous on (1, ∞), we need to have that a + b = L. Since L is not given in the question, we cannot determine the values of a and b that make f continuous on (1, ∞) for function.
(a) Yes, f admits a continuous correction. It is important to note that a function f admits a continuous extension or correction at a point c if and only if the limit of the function at that point is finite. Then, in order to show that f admits a continuous correction at x = -2, we need to calculate the limits of the function approaching that point from the left and the right.
That is, we need to calculate the following limits[tex]:\[\lim_{x \to -2^-} f(x) \ \ \text{and} \ \ \lim_{x \to -2^+} f(x)\]We have:\[\lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} (x + 2) = 0\]\[\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (x^2 + 3x + 2) = 0\][/tex]
Since both limits are finite and equal, we can define a continuous correction as follows:[tex]\[f(x) = \begin{cases} x + 2, & x < -2 \\ x^2 + 3x + 2, & x \ge -2 \end{cases}\][/tex]
Then f is continuous at x = -2.
(b) In order for f to be continuous on (1, ∞), we need to have that:[tex]\[\lim_{x \to 1^+} f(x) = f(1)\][/tex]
This condition ensures that the function is continuous at the point x = 1. We can calculate these limits as follows:[tex]\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (ax + b) = a + b\]\[f(1) = a + b\][/tex]
Therefore, in order for f to be continuous on (1, ∞), we need to have that a + b = L. Since L is not given in the question, we cannot determine the values of a and b that make f continuous on (1, ∞).
Learn more about function here:
https://brainly.com/question/32821114
#SPJ11
Calculate: e² |$, (2 ² + 1) dz. Y $ (2+2)(2-1)dz. 17 dz|, y = {z: z = 2elt, t = [0,2m]}, = {z: z = 4e-it, t e [0,4π]}
To calculate the given expressions, let's break them down step by step:
Calculating e² |$:
The expression "e² |$" represents the square of the mathematical constant e.
The value of e is approximately 2.71828. So, e² is (2.71828)², which is approximately 7.38906.
Calculating (2² + 1) dz:
The expression "(2² + 1) dz" represents the quantity (2 squared plus 1) multiplied by dz. In this case, dz represents an infinitesimal change in the variable z. The expression simplifies to (2² + 1) dz = (4 + 1) dz = 5 dz.
Calculating Y $ (2+2)(2-1)dz:
The expression "Y $ (2+2)(2-1)dz" represents the product of Y and (2+2)(2-1)dz. However, it's unclear what Y represents in this context. Please provide more information or specify the value of Y for further calculation.
Calculating 17 dz|, y = {z: z = 2elt, t = [0,2m]}:
The expression "17 dz|, y = {z: z = 2elt, t = [0,2m]}" suggests integration of the constant 17 with respect to dz over the given range of y. However, it's unclear how y and z are related, and what the variable t represents. Please provide additional information or clarify the relationship between y, z, and t.
Calculating 17 dz|, y = {z: z = 4e-it, t e [0,4π]}:
The expression "17 dz|, y = {z: z = 4e-it, t e [0,4π]}" suggests integration of the constant 17 with respect to dz over the given range of y. Here, y is defined in terms of z as z = 4e^(-it), where t varies from 0 to 4π.
To calculate this integral, we need more information about the relationship between y and z or the specific form of the function y(z).
Learn more about calculus here:
https://brainly.com/question/11237537
#SPJ11
Find a function of the form yp = (a + bx)e^x that satisfies the DE 4y'' + 4y' + y = 3xe^x
A function of the form [tex]yp = (3/4)x^2 e^x[/tex] satisfies the differential equation [tex]4y'' + 4y' + y = 3xe^x[/tex].
Here, the auxiliary equation is [tex]m^2 + m + 1 = 0[/tex]; this equation has complex roots (-1/2 ± √3 i/2).
Therefore, the general solution to the homogeneous equation is given by:
[tex]y_h = c_1 e^(-^1^/^2^ x^) cos((\sqrt{} 3 /2)x) + c_2 e^(-^1^/^2 ^x^) sin((\sqrt{} 3 /2)x)[/tex] where [tex]c_1[/tex] and [tex]c_2[/tex] are arbitrary constants.
Now we will look for a particular solution of the form [tex]y_p = (a + bx)e^x[/tex] ; and hence its derivatives are [tex]y_p' = (a + (b+1)x)e^x[/tex] and [tex]y_p'' = (2b + 2)e^x + (2b+2x)e^x[/tex].
Substituting this in [tex]4y'' + 4y' + y = 3xe^x[/tex], we get:
[tex]4[(2b + 2)e^x + (2b+2x)e^x] + 4[(a + (b+1)x)e^x] + (a+bx)e^x[/tex] = [tex]3xe^x[/tex]
Simplifying and comparing coefficients of [tex]x_2[/tex] and [tex]x[/tex], we get:
[tex]a = 0[/tex] and [tex]b = 3/4[/tex]
Therefore, the particular solution is [tex]y_p = (3/4)x^2 e^x[/tex], and the general solution to the differential equation is: [tex]y = c_1 e^(^-^1^/^2^ x^) cos((\sqrt{} 3 /2)x) + c_2 e^(^-^1^/^2^ x) sin((\sqrt{} 3 /2)x) + (3/4)x^2 e^x[/tex], where [tex]c_1[/tex] and [tex]c_2[/tex] are arbitrary constants.
Learn more about differential equation here:
https://brainly.com/question/32538700
#SPJ11
A fundamental set of solutions for the differential equation (D-2)¹y = 0 is A. {e², ze², sin(2x), cos(2x)}, B. (e², ze², zsin(2x), z cos(2x)}. C. (e2, re2, 2²², 2³e²²}, D. {z, x², 1,2³}, E. None of these. 13. 3 points
The differential equation (D-2)¹y = 0 has a fundamental set of solutions {e²}. Therefore, the answer is None of these.
The given differential equation is (D - 2)¹y = 0. The general solution of this differential equation is given by:
(D - 2)¹y = 0
D¹y - 2y = 0
D¹y = 2y
Taking Laplace transform of both sides, we get:
L {D¹y} = L {2y}
s Y(s) - y(0) = 2 Y(s)
(s - 2) Y(s) = y(0)
Y(s) = y(0) / (s - 2)
Taking the inverse Laplace transform of Y(s), we get:
y(t) = y(0) e²t
Hence, the general solution of the differential equation is y(t) = c1 e²t, where c1 is a constant. Therefore, the fundamental set of solutions for the given differential equation is {e²}. Therefore, the answer is None of these.
To know more about the differential equation, visit:
brainly.com/question/32538700
#SPJ11
Evaluate the definite integral. Provide the exact result. */6 6. S.™ sin(6x) sin(3r) dr
To evaluate the definite integral of (1/6) * sin(6x) * sin(3r) with respect to r, we can apply the properties of definite integrals and trigonometric identities to simplify the expression and find the exact result.
To evaluate the definite integral, we integrate the given expression with respect to r and apply the limits of integration. Let's denote the integral as I:
I = ∫[a to b] (1/6) * sin(6x) * sin(3r) dr
We can simplify the integral using the product-to-sum trigonometric identity:
sin(A) * sin(B) = (1/2) * [cos(A - B) - cos(A + B)]
Applying this identity to our integral:
I = (1/6) * ∫[a to b] [cos(6x - 3r) - cos(6x + 3r)] dr
Integrating term by term:
I = (1/6) * [sin(6x - 3r)/(-3) - sin(6x + 3r)/3] | [a to b]
Evaluating the integral at the limits of integration:
I = (1/6) * [(sin(6x - 3b) - sin(6x - 3a))/(-3) - (sin(6x + 3b) - sin(6x + 3a))/3]
Simplifying further:
I = (1/18) * [sin(6x - 3b) - sin(6x - 3a) - sin(6x + 3b) + sin(6x + 3a)]
Thus, the exact result of the definite integral is (1/18) * [sin(6x - 3b) - sin(6x - 3a) - sin(6x + 3b) + sin(6x + 3a)].
To learn more about integral Click Here: brainly.com/question/31059545
#SPJ11
Test: Assignment 1(5%) Questi A barbeque is listed for $640 11 less 33%, 16%, 7%. (a) What is the net price? (b) What is the total amount of discount allowed? (c) What is the exact single rate of discount that was allowed? (a) The net price is $ (Round the final answer to the nearest cent as needed Round all intermediate values to six decimal places as needed) (b) The total amount of discount allowed is S (Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed) (c) The single rate of discount that was allowed is % (Round the final answer to two decimal places as needed. Round all intermediate values to six decimal places as needed)
The net price is $486.40 (rounded to the nearest cent as needed. Round all intermediate values to six decimal places as needed).Answer: (a)
The single rate of discount that was allowed is 33.46% (rounded to two decimal places as needed. Round all intermediate values to six decimal places as needed).Answer: (c)
Given, A barbeque is listed for $640 11 less 33%, 16%, 7%.(a) The net price is $486.40(Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed)
Explanation:
Original price = $640We have 3 discount rates.11 less 33% = 11- (33/100)*111-3.63 = $7.37 [First Discount]Now, Selling price = $640 - $7.37 = $632.63 [First Selling Price]16% of $632.63 = $101.22 [Second Discount]Selling Price = $632.63 - $101.22 = $531.41 [Second Selling Price]7% of $531.41 = $37.20 [Third Discount]Selling Price = $531.41 - $37.20 = $494.21 [Third Selling Price]
Therefore, The net price is $486.40 (rounded to the nearest cent as needed. Round all intermediate values to six decimal places as needed).Answer: (a) The net price is $486.40(Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed).
(b) The total amount of discount allowed is $153.59(Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed)
Explanation:
First Discount = $7.37Second Discount = $101.22Third Discount = $37.20Total Discount = $7.37+$101.22+$37.20 = $153.59Therefore, The total amount of discount allowed is $153.59 (rounded to the nearest cent as needed. Round all intermediate values to six decimal places as needed).Answer: (b) The total amount of discount allowed is $153.59(Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed).(c) The single rate of discount that was allowed is 33.46%(Round the final answer to two decimal places as needed. Round all intermediate values to six decimal places as needed)
Explanation:
Marked price = $640Discount allowed = $153.59Discount % = (Discount allowed / Marked price) * 100= (153.59 / 640) * 100= 24.00%But there are 3 discounts provided on it. So, we need to find the single rate of discount.
Now, from the solution above, we got the final selling price of the product is $494.21 while the original price is $640.So, the percentage of discount from the original price = [(640 - 494.21)/640] * 100 = 22.81%Now, we can take this percentage as the single discount percentage.
So, The single rate of discount that was allowed is 33.46% (rounded to two decimal places as needed. Round all intermediate values to six decimal places as needed).Answer: (c) The single rate of discount that was allowed is 33.46%(Round the final answer to two decimal places as needed. Round all intermediate values to six decimal places as needed).
to know more about barbeque visit :
https://brainly.com/question/6041579
#SPJ11
Solve the linear system Ax = b by using the Jacobi method, where 2 7 A = 4 1 -1 1 -3 12 and 19 b= - [G] 3 31 Compute the iteration matriz T using the fact that M = D and N = -(L+U) for the Jacobi method. Is p(T) <1? Hint: First rearrange the order of the equations so that the matrix is strictly diagonally dominant.
Solving the given linear system Ax = b by using the Jacobi method, we find that Since p(T) > 1, the Jacobi method will not converge for the given linear system Ax = b.
Rearrange the order of the equations so that the matrix is strictly diagonally dominant.
2 7 A = 4 1 -1 1 -3 12 and
19 b= - [G] 3 31
Rearranging the equation,
we get4 1 -1 2 7 -12-1 1 -3 * x1 = -3 3x2 + 31
Compute the iteration matrix T using the fact that M = D and
N = -(L+U) for the Jacobi method.
In the Jacobi method, we write the matrix A as
A = M - N where M is the diagonal matrix, and N is the sum of strictly lower and strictly upper triangular parts of A. Given that M = D and
N = -(L+U), where D is the diagonal matrix and L and U are the strictly lower and upper triangular parts of A respectively.
Hence, we have A = D - (L + U).
For the given matrix A, we have
D = [4, 0, 0][0, 1, 0][0, 0, -3]
L = [0, 1, -1][0, 0, 12][0, 0, 0]
U = [0, 0, 0][-1, 0, 0][0, -3, 0]
Now, we can write A as
A = D - (L + U)
= [4, -1, 1][0, 1, -12][0, 3, -3]
The iteration matrix T is given by
T = inv(M) * N, where inv(M) is the inverse of the diagonal matrix M.
Hence, we have
T = inv(M) * N= [1/4, 0, 0][0, 1, 0][0, 0, -1/3] * [0, 1, -1][0, 0, 12][0, 3, 0]
= [0, 1/4, -1/4][0, 0, -12][0, -1, 0]
Is p(T) <1?
To find the spectral radius of T, we can use the formula:
p(T) = max{|λ1|, |λ2|, ..., |λn|}, where λ1, λ2, ..., λn are the eigenvalues of T.
The Jacobi method will converge if and only if p(T) < 1.
In this case, we have λ1 = 0, λ2 = 0.25 + 3i, and λ3 = 0.25 - 3i.
Hence, we have
p(T) = max{|λ1|, |λ2|, |λ3|}
= 0.25 + 3i
Since p(T) > 1, the Jacobi method will not converge for the given linear system Ax = b.
To know more about Jacobi visit :
brainly.com/question/32717794
#SPJ11
Let B = -{Q.[3³]} = {[4).8} Suppose that A = → is the matrix representation of a linear operator T: R² R2 with respect to B. (a) Determine T(-5,5). (b) Find the transition matrix P from B' to B. (c) Using the matrix P, find the matrix representation of T with respect to B'. and B
The matrix representation of T with respect to B' is given by T' = (-5/3,-1/3; 5/2,1/6). Answer: (a) T(-5,5) = (-5,5)A = (-5,5)(-4,2; 6,-3) = (10,-20).(b) P = (-2,-3; 0,-3).(c) T' = (-5/3,-1/3; 5/2,1/6).
(a) T(-5,5)
= (-5,5)A
= (-5,5)(-4,2; 6,-3)
= (10,-20).(b) Let the coordinates of a vector v with respect to B' be x and y, and let its coordinates with respect to B be u and v. Then we have v
= Px, where P is the transition matrix from B' to B. Now, we have (1,0)B'
= (0,-1; 1,-1)(-4,2)B
= (-2,0)B, so the first column of P is (-2,0). Similarly, we have (0,1)B'
= (0,-1; 1,-1)(6,-3)B
= (-3,-3)B, so the second column of P is (-3,-3). Therefore, P
= (-2,-3; 0,-3).(c) The matrix representation of T with respect to B' is C
= P⁻¹AP. We have P⁻¹
= (-1/6,1/6; -1/2,1/6), so C
= P⁻¹AP
= (-5/3,-1/3; 5/2,1/6). The matrix representation of T with respect to B' is given by T'
= (-5/3,-1/3; 5/2,1/6). Answer: (a) T(-5,5)
= (-5,5)A
= (-5,5)(-4,2; 6,-3)
= (10,-20).(b) P
= (-2,-3; 0,-3).(c) T'
= (-5/3,-1/3; 5/2,1/6).
To know more about matrix visit:
https://brainly.com/question/29132693
#SPJ11
Consider The Function G:R→Rg:R→R Defined By G(X)=(∫0sin(X)E^(Sin(T))Dt)^2. Find G′(X)G′(X) And Determine The Values Of Xx For Which G′(X)=0g′(X)=0. Hint: E^X≥0for All X∈R
Consider the function g:R→Rg:R→R defined by
g(x)=(∫0sin(x)e^(sin(t))dt)^2.
Find g′(x)g′(x) and determine the values of xx for which g′(x)=0g′(x)=0.
Hint: e^x≥0for all x∈R
the values of x for which G'(x) = 0 and g'(x) = 0 are determined by the condition that the integral term (∫₀^(sin(x))e^(sin(t))dt) is equal to zero.
The derivative of the function G(x) can be found using the chain rule and the fundamental theorem of calculus. By applying the chain rule, we get G'(x) = 2(∫₀^(sin(x))e^(sin(t))dt)(cos(x)).
To determine the values of x for which G'(x) = 0, we set the derivative equal to zero and solve for x: 2(∫₀^(sin(x))e^(sin(t))dt)(cos(x)) = 0. Since the term cos(x) is never equal to zero for all x, the only way for G'(x) to be zero is if the integral term (∫₀^(sin(x))e^(sin(t))dt) is zero.
Now let's consider the function g(x) defined as g(x) = (∫₀^(sin(x))e^(sin(t))dt)^2. To find g'(x), we apply the chain rule and obtain g'(x) = 2(∫₀^(sin(x))e^(sin(t))dt)(cos(x)).
Similarly, to find the values of x for which g'(x) = 0, we set the derivative equal to zero: 2(∫₀^(sin(x))e^(sin(t))dt)(cos(x)) = 0. Again, since cos(x) is never equal to zero for all x, the integral term (∫₀^(sin(x))e^(sin(t))dt) must be zero for g'(x) to be zero.
In summary, the values of x for which G'(x) = 0 and g'(x) = 0 are determined by the condition that the integral term (∫₀^(sin(x))e^(sin(t))dt) is equal to zero.
Learn more about fundamental theorem here:
https://brainly.com/question/30761130
#SPJ11
Find an equation of the plane passing through the given points. (3, 7, −7), (3, −7, 7), (−3, −7, −7) X
An equation of the plane passing through the points (3, 7, −7), (3, −7, 7), (−3, −7, −7) is x + y − z = 3.
Given points are (3, 7, −7), (3, −7, 7), and (−3, −7, −7).
Let the plane passing through these points be ax + by + cz = d. Then, three planes can be obtained.
For the given points, we get the following equations:3a + 7b − 7c = d ...(1)3a − 7b + 7c = d ...(2)−3a − 7b − 7c = d ...(3)Equations (1) and (2) represent the same plane as they have the same normal vector.
Substitute d = 3a in equation (3) to get −3a − 7b − 7c = 3a. This simplifies to −6a − 7b − 7c = 0 or 6a + 7b + 7c = 0 or 2(3a) + 7b + 7c = 0. Divide both sides by 2 to get the equation of the plane passing through the points as x + y − z = 3.
Summary: The equation of the plane passing through the given points (3, 7, −7), (3, −7, 7), and (−3, −7, −7) is x + y − z = 3.
Learn more about equation click here:
https://brainly.com/question/2972832
#SPJ11
Find the distance between the skew lines F=(4,-2,-1)+(1,4,-3) and F=(7,-18,2)+u(-3,2,-5). 3. Determine the parametric equations of the plane containing points P(2, -3, 4) and the y-axis.
To find the equation of the plane that passes through P(2, −3, 4) and is parallel to the y-axis, we can take two points, P(2, −3, 4) and Q(0, y, 0), The equation of the plane Substituting x = 2, y = −3 and z = 4, Hence, the equation of the plane is 2x − 4z − 2 = 0.
The distance between two skew lines, F = (4, −2, −1) + t(1, 4, −3) and F = (7, −18, 2) + u(−3, 2, −5), can be found using the formula:![image](https://brainly.com/question/38568422#SP47)where, n = (a2 − a1) × (b1 × b2) is a normal vector to the skew lines and P1 and P2 are points on the two lines that are closest to each other. Thus, n = (1, 4, −3) × (−3, 2, −5) = (2, 6, 14)Therefore, the distance between the two skew lines is [tex]|(7, −18, 2) − (4, −2, −1)| × (2, 6, 14) / |(2, 6, 14)|.[/tex] Ans: The distance between the two skew lines is [tex]$\frac{5\sqrt{2}}{2}$.[/tex]
To find the equation of the plane that passes through P(2, −3, 4) and is parallel to the y-axis, we can take two points, P(2, −3, 4) and Q(0, y, 0), where y is any value, on the y-axis. The vector PQ lies on the plane and is normal to the y-axis.
To know more about skew lines
https://brainly.com/question/2099645
#SPJ11
Include all topics that you learned with following points: Name of the topic • Explain the topic in your own words. You may want to include diagram/ graphs to support your explanations. • Create an example for all major topics. (Include question, full solution, and properly labelled diagram/graph.) Unit 5: Discrete Functions (Ch. 7 and 8). Arithmetic Sequences Geometric Sequences Recursive Sequences Arithmetic Series Geometric Series Pascal's Triangle and Binomial Expansion Simple Interest Compound Interest (Future and Present) Annuities (Future and Present)
Unit 5: Discrete Functions (Ch. 7 and 8)
1. Arithmetic Sequences: Sequences with a constant difference between consecutive terms.
2. Geometric Sequences: Sequences with a constant ratio between consecutive terms.
3. Recursive Sequences: Sequences defined in terms of previous terms using a recursive formula.
4. Arithmetic Series: Sum of terms in an arithmetic sequence.
5. Geometric Series: Sum of terms in a geometric sequence.
6. Pascal's Triangle and Binomial Expansion: Triangular arrangement of numbers used for expanding binomial expressions.
7. Simple Interest: Interest calculated based on the initial principal amount, using the formula [tex]\(I = P \cdot r \cdot t\).[/tex]
8. Compound Interest (Future and Present): Interest calculated on both the principal amount and accumulated interest. Future value formula: [tex]\(FV = P \cdot (1 + r)^n\)[/tex]. Present value formula: [tex]\(PV = \frac{FV}{(1 + r)^n}\).[/tex]
9. Annuities (Future and Present): Series of equal payments made at regular intervals. Future value and present value formulas depend on the type of annuity (ordinary or annuity due).
Please note that detailed explanations, examples, and diagrams/graphs are omitted for brevity.
To know more about Probability visit-
brainly.com/question/31828911
#SPJ11
Determine whether the series converges or diverges. [infinity]0 (n+4)! a) Σ 4!n!4" n=1 1 b) Σ√√n(n+1)(n+2)
(a)The Σ[tex](n+4)!/(4!n!4^n)[/tex] series converges, while (b) the Σ [tex]\sqrt\sqrt{(n(n+1)(n+2))}[/tex] series diverges.
(a) The series Σ[tex](n+4)!/(4!n!4^n)[/tex] as n approaches infinity. To determine the convergence or divergence of the series, we can apply the Ratio Test. Taking the ratio of consecutive terms, we get:
[tex]\lim_{n \to \infty} [(n+5)!/(4!(n+1)!(4^(n+1)))] / [(n+4)!/(4!n!(4^n))][/tex]
Simplifying the expression, we find:
[tex]\lim_{n \to \infty} [(n+5)/(n+1)][/tex] × (1/4)
The limit evaluates to 5/4. Since the limit is less than 1, the series converges.
(b) The series Σ [tex]\sqrt\sqrt{(n(n+1)(n+2))}[/tex] as n approaches infinity. To determine the convergence or divergence of the series, we can apply the Limit Comparison Test. We compare it to the series Σ[tex]\sqrt{n}[/tex] . Taking the limit as n approaches infinity, we find:
[tex]\lim_{n \to \infty} (\sqrt\sqrt{(n(n+1)(n+2))} )[/tex] / ([tex]\sqrt{n}[/tex])
Simplifying the expression, we get:
[tex]\lim_{n \to \infty} (\sqrt\sqrt{(n(n+1)(n+2))} )[/tex] / ([tex]n^{1/4}[/tex])
The limit evaluates to infinity. Since the limit is greater than 0, the series diverges.
In summary, the series in (a) converges, while the series in (b) diverges.
To learn more about convergence visit:
brainly.com/question/31064957
#SPJ11
Solve the following higher order DE: 1) (D* −D)y=sinh x 2) (x³D³ - 3x²D² +6xD-6) y = 12/x, y(1) = 5, y'(1) = 13, y″(1) = 10
1) The given higher order differential equation is (D* - D)y = sinh(x). To solve this equation, we can use the method of undetermined coefficients.
First, we find the complementary solution by solving the homogeneous equation (D* - D)y = 0. The characteristic equation is r^2 - r = 0, which gives us the solutions r = 0 and r = 1. Therefore, the complementary solution is yc = C1 + C2e^x.
Next, we find the particular solution by assuming a form for the solution based on the nonhomogeneous term sinh(x). Since the operator D* - D acts on e^x to give 1, we assume the particular solution has the form yp = A sinh(x). Plugging this into the differential equation, we find A = 1/2.
Therefore, the general solution to the differential equation is y = yc + yp = C1 + C2e^x + (1/2) sinh(x).
2) The given higher order differential equation is (x^3D^3 - 3x^2D^2 + 6xD - 6)y = 12/x, with initial conditions y(1) = 5, y'(1) = 13, and y''(1) = 10. To solve this equation, we can use the method of power series expansion.
Assuming a power series solution of the form y = ∑(n=0 to ∞) a_n x^n, we substitute it into the differential equation and equate coefficients of like powers of x. By comparing coefficients, we can determine the values of the coefficients a_n.
Plugging in the power series into the differential equation, we get a recurrence relation for the coefficients a_n. Solving this recurrence relation will give us the values of the coefficients.
By substituting the initial conditions into the power series solution, we can determine the specific values of the coefficients and obtain the particular solution to the differential equation.
The final solution will be the sum of the particular solution and the homogeneous solution, which is obtained by setting all the coefficients a_n to zero in the power series solution.
Please note that solving the recurrence relation and calculating the coefficients can be a lengthy process, and it may not be possible to provide a complete solution within the 100-word limit.
To learn more about differential equation, click here:
brainly.com/question/32538700
#SPJ11
Use the form of the definition of the integral given in the equation 72 fo f(x)dx = lim Σf(x)Δv (where x, are the right endpoints) to evaluate the integral. (2-x²) dx
To evaluate the integral ∫(2-x²)dx using the definition of the integral given as 72 Σf(x)Δx (where x are the right endpoints), we can approximate the integral by dividing the interval into smaller subintervals and evaluating the function at the right endpoints of each subinterval.
Using the given definition of the integral, we can approximate the integral ∫(2-x²)dx by dividing the interval of integration into smaller subintervals. Let's say we divide the interval [a, b] into n equal subintervals, each with a width Δx.
The right endpoints of these subintervals would be x₁ = a + Δx, x₂ = a + 2Δx, x₃ = a + 3Δx, and so on, up to xₙ = a + nΔx.
Now, we can apply the definition of the integral to approximate the integral as a limit of a sum:
∫(2-x²)dx = lim(n→∞) Σ(2-x²)Δx
As the number of subintervals approaches infinity (n→∞), the width of each subinterval approaches zero (Δx→0).
We can rewrite the sum as Σ(2-x²)Δx = (2-x₁²)Δx + (2-x₂²)Δx + ... + (2-xₙ²)Δx.
Taking the limit as n approaches infinity and evaluating the sum, we obtain the definite integral:
∫(2-x²)dx = lim(n→∞) [(2-x₁²)Δx + (2-x₂²)Δx + ... + (2-xₙ²)Δx]
Evaluating this limit and sum explicitly would require specific values for a, b, and the number of subintervals. However, this explanation outlines the approach to evaluate the integral using the given definition.
Learn more about limit here:
https://brainly.com/question/12211820
#SPJ11
Graph the following system of inequalities y<1/3x-2 x<4
From the inequality graph, the solution to the inequalities is: (4, -2/3)
How to graph a system of inequalities?There are different tyes of inequalities such as:
Greater than
Less than
Greater than or equal to
Less than or equal to
Now, the inequalities are given as:
y < (1/3)x - 2
x < 4
Thus, the solution to the given inequalities will be gotten by plotting a graph of both and the point of intersection will be the soilution which in the attached graph we see it as (4, -2/3)
Read more about Inequality Graph at: https://brainly.com/question/11234618
#SPJ1
Use a graph or level curves or both to find the local maximum and minimum values and saddle point(s) of the function. Then use calculus to find these values precisely. (Enter your answers as comma-separated lists. If an answer does not exist, enter ONE.) f(x, y)=sin(x)+sin(y) + sin(x + y) +6, 0≤x≤ 2, 0sys 2m. local maximum value(s) local minimum value(s). saddle point(s)
Previous question
Within the given domain, there is one local maximum value, one local minimum value, and no saddle points for the function f(x, y) = sin(x) + sin(y) + sin(x + y) + 6.
The function f(x, y) = sin(x) + sin(y) + sin(x + y) + 6 is analyzed to determine its local maximum, local minimum, and saddle points. Using both a graph and level curves, it is found that there is one local maximum value, one local minimum value, and no saddle points within the given domain.
To begin, let's analyze the graph and level curves of the function. The graph of f(x, y) shows a smooth surface with varying heights. By inspecting the graph, we can identify regions where the function reaches its maximum and minimum values. Additionally, level curves can be plotted by fixing f(x, y) at different constant values and observing the resulting curves on the x-y plane.
Next, let's employ calculus to find the precise values of the local maximum, local minimum, and saddle points. Taking the partial derivatives of f(x, y) with respect to x and y, we find:
∂f/∂x = cos(x) + cos(x + y)
∂f/∂y = cos(y) + cos(x + y)
To find critical points, we set both partial derivatives equal to zero and solve the resulting system of equations. However, in this case, the equations cannot be solved algebraically. Therefore, we need to use numerical methods, such as Newton's method or gradient descent, to approximate the critical points.
After obtaining the critical points, we can classify them as local maximum, local minimum, or saddle points using the second partial derivatives test. By calculating the second partial derivatives, we find:
∂²f/∂x² = -sin(x) - sin(x + y)
∂²f/∂y² = -sin(y) - sin(x + y)
∂²f/∂x∂y = -sin(x + y)
By evaluating the second partial derivatives at each critical point, we can determine their nature. If both ∂²f/∂x² and ∂²f/∂y² are positive at a point, it is a local minimum. If both are negative, it is a local maximum. If they have different signs, it is a saddle point.
Learn more about domain:
https://brainly.com/question/29714950
#SPJ11
According to data from an aerospace company, the 757 airliner carries 200 passengers and has doors with a mean height of 1.83 cm. Assume for a certain population of men we have a mean of 1.75 cm and a standard deviation of 7.1 cm. a. What mean doorway height would allow 95 percent of men to enter the aircraft without bending? 1.75x0.95 1.6625 cm b. Assume that half of the 200 passengers are men. What mean doorway height satisfies the condition that there is a 0.95 probability that this height is greater than the mean height of 100 men? For engineers designing the 757, which result is more relevant: the height from part (a) or part (b)? Why?
Based on the normal distribution table, the probability corresponding to the z score is 0.8577
Since the heights of men are normally distributed, we will apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where x is the height of men
u = mean height
s = standard deviation
From the information we have;
u = 1.75 cm
s = 7.1 cm
We need to find the probability that the mean height of 1.83 cm is less than 7.1 inches.
Thus It is expressed as
P(x < 7.1 )
For x = 7.1
z = (7.1 - 1.75 )/1.83 = 1.07
Based on the normal distribution table, the probability corresponding to the z score is 0.8577
P(x < 7.1 ) = 0.8577
Read more about P-value from z-scores at; brainly.com/question/25638875
#SPJ4