Answer:
Part A) y=1,100x + 4,500
Part B) 14,400
Step-by-step explanation:
Part A)
There is a base fee of $4,500, meaning that the line begins at y=4500 (i.e. The y-intercept is [0,4500], so 'b' in y=mx+b is 4,500). There is a $1,100 hourly rate, which is proportional to the value of x, the amount of hours filmed. Therefore, 'm' in y=mx+b is $1,100.
Thus, the final equation looks like:
y= 1,100x + 4,500
Part B)
x=9
y=1,100x+4,500
y=1,100(9)+4,500
y=9,900+4,500
y=14,400
Banking fees have received much attention during the recent economic recession as bankslook for ways to recover from the crisis. A sample of 31 customers paid an average fee of $11.53 permonth on their checking accounts. Assume the population standard deviation is $1.50. Calculatethe margin of error for a 90% confidence interval for the mean banking fee.
Answer:
The margin of error for a 90% confidence interval for the mean banking fee is of $0.44.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.9}{2} = 0.05[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.05 = 0.95[/tex], so Z = 1.645.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Sample of 31:
This means that [tex]n = 31[/tex]
Assume the population standard deviation is $1.50.
This means that [tex]\sigma = 1.5[/tex]
Calculate the margin of error for a 90% confidence interval for the mean banking fee.
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]M = 1.645\frac{1.5}{\sqrt{31}}[/tex]
[tex]M = 0.44[/tex]
The margin of error for a 90% confidence interval for the mean banking fee is of $0.44.
write your answer as an integer or as a decimal rounded to the nearest tenth
Answer:
FH ≈ 6.0
Step-by-step explanation:
Using the sine ratio in the right triangle
sin49° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{FH}{FG}[/tex] = [tex]\frac{FH}{8}[/tex] ( multiply both sides by 8 )
8 × sin49° = FH , then
FH ≈ 6.0 ( to the nearest tenth )
Answer:
6
Step-by-step explanation:
sin = opposite/hypotenuse
opposite = sin * hypotenuse
sin (49) = 0,75471
opposite = 0,75471 * 8 = 6,037677 = 6
Which phrase describes an unknown or changeable quality?
3 feet and 7 inches
4 quarts in a gallon
2 o'clock in the afternoon
The height of the building times 1/2
Answer:
it should be the height of the building time 1/2
Step-by-step explanation:
let me know if its correct or incorrect we'll I hope this help you
The segments shown below could form a triangle.
A
C
7
9
12
B
А
a
A. True
B. False
Answer:
TRUE
Step-by-step explanation:
I SEEN SOME ONE ELSE WIT 5 STARS SAY SO(:
The given segment can form triangle. Therefore, the given statement is true.
What is triangle?A polygon has three edges as well as three vertices is called a triangle. It's one of the fundamental geometric shapes. In Euclidean geometry, each and every three points that are not collinear produce a distinct triangle and a distinct plane. In other words, every triangle was contained in a plane, and there is only single plane that encompasses that triangle.
All triangles are enclosed in a single plane if all of geometry is the Euclidean plane, however this is no longer true in higher-dimensional Euclidean spaces. Unless when otherwise specified, this article discusses triangles within Euclidean geometry, namely the Euclidean plane. The given segment can form triangle.
Therefore, the given statement is true.
To know more about triangle, here:
https://brainly.com/question/14712269
#SPJ7
Determine the critical values for the confidence interval for the population standard deviation from the given values. Round your answers to three decimal places.
n = 12 and c = 0.9.
Answer:
The answer is "[tex]\chi^2_{L} = 4.575 \ and\ \chi^2_{U}= 19.675[/tex]"
Step-by-step explanation:
[tex]n=12\\\\\ c= 0.9[/tex]
Calculating the level of significance [tex](\alpha) = 1 -c[/tex]
[tex]=1-0.9\\\\=0.1[/tex]
Calculating the degrees of freedom:
[tex]df=n-1=12-1=11[/tex]
Calculating the critical value:
Applying the Chi-Square table, the critical values for the two-tailed test with a degree of freedom (11) for the significance level of [tex]\alpha = 0.1[/tex]:
[tex]\chi^2_{L} = 4.575 \\\\\chi^2_{U}= 19.675[/tex]
Give the degree of the polynomial. -5-5x2wy4-y4x2-4w3
9514 1404 393
Answer:
7
Step-by-step explanation:
The degree of each term is the sum of the degrees of the variables in it.
Term, Degrees
-5, 0
-5x^2wy^4, x:2, w:1, y:4 -- term degree = 2+1+4 = 7
-y^4x^2, y:4, x:2 -- term degree = 4+2 = 6
-4w^3, w:3 -- term degree = 3
The highest of these is 7, so the degree of this polynomial is 7.
Where r is the radius of the cylinder and h is the height of the cylinder.
Find the surface area when r is 7 inches and h is 9 inches.
Sa of cylinder= 2(pi)rh + 2(pi)r squared
Answer:
703.7 in²
Step-by-step explanation:
SA = 2πrh+2πr²
= 2×π×7×9+2×π×7²
= 224π
= 703.7 in² (rounded to the nearest tenth)
Answer:
224π
in²
Step-by-step explanation:
Needddd annnsssweeerrr
Answer:
90in2
Step-by-step explanation:
3x5x6=90
Answer:
C.90
Step-by-step explanation:
first multiply 3 and 5 which is 15 then times it with 6 which equals 90
Triangle ABL is an isosceles triangle in circle A with a radius of 11, PL = 16, and ∠PAL = 93°. Find the area of the circle enclosed by line PL and arc PL. Show all work and round your answer to two decimal places.
The area bounded by a chord and arc it intercepts is known as a segment of a circle segment of a circle
The area of the circle enclosed by line PL and arc PL is approximately 37.62 square units
The reason the above value is correct is as follows:
The given parameters in the question are;
The radius of the circle, r = 11
The length of the chord PL = 16
The measure of angle ∠PAL = 93°
Required:
The area of part of the circle enclosed by chord PL and arc PL
Solution:
The shaded area of the given circle is the minor segment of the circle enclosed by line PL and arc PL
The area of a segment of a circle is given by the following formula;
Area of segment = Area of the sector - Area of the triangle
Area of segment = Area of minor sector APL - Area of triangle APL
Area of minor sector APL:
Area of a sector = (θ/360)×π·r²
Where;
r = The radius of the circle
θ = The angle of the sector of the circle
Plugging in the the values of r and θ, we get;
Area of the minor sector APL = (93°/360°) × π × 11² ≈ 98.2 square units
Area of Triangle APL:
Area of a triangle = (1/2) × Base length × Height
Therefore;
The area of ΔAPL = (1/2) × 16 × 11 × cos(93°/2) ≈ 60.58 square units
Required shaded area enclosed by line PL and arc PL:
Therefore, the area of shaded segment enclosed by line PL and arc PL is found as follows;
Area of the required segment PL ≈ (98.2 - 60.58) square units = 37.62 square units
The area of the circle enclosed by line PL and arc PL ≈ 37.62 square units
Learn more about the finding the area of a segment can be found here:
https://brainly.com/question/22599425
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
The calculation of the area between line segment PL and circle arc PL is described below:
1) Calculation of the area of the circle arc.
2) Calculation of the area of the triangle.
3) Subtracting the area found in 2) from the area found in 1).
Step 1:
The area of a circle arc is determined by the following formula:
[tex]A_{ca} = \frac{\alpha\cdot \pi\cdot r^{2}}{360}[/tex] (1)
Where:
[tex]A_{ca}[/tex] - Area of the circle arc.
[tex]\alpha[/tex] - Arc angle, in sexagesimal degrees.
[tex]r[/tex] - Radius.
If we know that [tex]\alpha = 93^{\circ}[/tex] and [tex]r = 11[/tex], then the area of the circle arc is:
[tex]A_{ca} = \frac{93\cdot \pi\cdot 11^{2}}{360}[/tex]
[tex]A_{ca} \approx 98.201[/tex]
Step 2:
The area of the triangle is determined by Heron's formula:
[tex]A_{t} = \sqrt{s\cdot (s-l)\cdot (s-r)^{2}}[/tex] (2)
[tex]s = \frac{l + 2\cdot r}{2}[/tex]
Where:
[tex]A_{t}[/tex] - Area of the triangle.
[tex]r[/tex] - Radius.
[tex]l[/tex] - Length of the line segment PL.
If we know that [tex]l = 16[/tex] and [tex]r = 11[/tex], then the area of the triangle is:
[tex]s = \frac{16+2\cdot (11)}{2}[/tex]
[tex]s = 19[/tex]
[tex]A_{t} = \sqrt{19\cdot (19-16)\cdot (19-11)^{2}}[/tex]
[tex]A_{t} \approx 60.399[/tex]
Step 3:
And the area between the line segment PL and the circle arc PL is:
[tex]A_{s} = A_{ca}-A_{t}[/tex]
[tex]A_{s} = 98.201 - 60.399[/tex]
[tex]A_{s} = 37.802[/tex]
The area of the circle enclosed by line segment PL and circle arc PL is 37.80 square units.
Complete the table for the given rule.
Rule: y is 0.750.750, point, 75 greater than x
x y
0
3
9
Answer:
está inglês não dá para entende
A car insurance company has determined that6% of all drivers were involved in a car accident last year. If14drivers are randomly selected, what is the probability of getting at most 3 who were involved in a car accidentlast year
Answer:
[tex]P(x \le 3) = 0.9920[/tex]
Step-by-step explanation:
Given
[tex]p = 6\%[/tex] --- proportion of drivers that had accident
[tex]n = 14[/tex] -- selected drivers
Required
[tex]P(x \le 3)[/tex]
The question is an illustration of binomial probability, and it is calculated using:
[tex]P(x ) = ^nC_x * p^x * (1 - p)^{n-x}[/tex]
So, we have:
[tex]P(x \le 3) = P(x = 0) +P(x = 1) +P(x = 2) +P(x = 3)[/tex]
[tex]P(x=0 ) = ^{14}C_0 * (6\%)^0 * (1 - 6\%)^{14-0} = 0.42052319017[/tex]
[tex]P(x=1 ) = ^{14}C_1 * (6\%)^1 * (1 - 6\%)^{14-1} = 0.37578668057[/tex]
[tex]P(x=2 ) = ^{14}C_2 * (6\%)^2 * (1 - 6\%)^{14-2} = 0.15591149513[/tex]
[tex]P(x=3 ) = ^{14}C_3 * (6\%)^3 * (1 - 6\%)^{14-3} = 0.03980719024[/tex]
So, we have:
[tex]P(x \le 3) = 0.42052319017+0.37578668057+0.15591149513+0.03980719024[/tex]
[tex]P(x \le 3) = 0.99202855611[/tex]
[tex]P(x \le 3) = 0.9920[/tex] -- approximated
What is an explicit formula for the geometric sequence -64,16,-4,1,... where the first term should be f(1).
Answer:
[tex]a_{n} = -64(-\frac{1}{4})^{n-1}[/tex]
it seems like the first term is -64, so lets write the formula accordingly:
a_n = a1(r)^(n-1)
where 'n' is the number of terms
a1 is the first term of the sequence
'r' is the ratio
the ratio is [tex]-\frac{1}{4}[/tex] because -64 * [tex]-\frac{1}{4}[/tex] = 16 and so on...
the explicit formula is :
[tex]a_{n}[/tex] = [tex]-64(-\frac{1}{4} )^{n-1}[/tex]
Starting with a fresh bar of soap, you weigh the bar each day after you take a shower. Then you find the regression line for predicting weight from number of days elapsed. The slope of this line will be:__________.
Answer:
The slope will be negative
Step-by-step explanation:
The slope of the regression line tells us about the relationship or behavior of the dependent and independent variables. In the scenario above, where the weight is being compared with the number of days elapsed. What is expected of the weight and quantity of a bar soap each time it is used for a shower is that it will decrease in weight. Therefore, as the number of days increases, and hence, number of showers rise, the weight of soap will decrease. Hence, we'll obtain a negative slope, one in which the increase in a variable leads to decrease in the other.
look at the image below
Answer:
201.1 km²
Step-by-step explanation:
Surface area of a sphere= 4πr², where r = radius
so,
4πr²
= 4×π×4²
= 64π
= 201.1 km² (rounded to the nearest tenth)
Find the greatest rational number r such that the ratios 8/15 ÷ r and 18/35 ÷ r are whole numbers?
The answer is "[tex]\bold{\frac{2}{105}}[/tex]", and the further calculation can be defined as follows:
When the "r" is the greatest common divisor for the two fractions.
So, we will use Euclid's algorithm:
[tex]\to \bold{(\frac{8}{15}) -(\frac{188}{35})}\\\\\to \bold{(\frac{8}{15} -\frac{188}{35})}\\\\\to \bold{(\frac{56-54}{105})}\\\\\to \bold{(\frac{2}{105})}\\\\[/tex]
this is [tex]\bold{(\frac{8}{15}) \ \ mod \ \ (\frac{18}{35})}[/tex]
we can conclude that the GCD for [tex]\bold{\frac{54}{105}}[/tex], when divided by [tex]\bold{\frac{2}{105}}[/tex], will be the remainder is 0. Rational numbers go from [tex]\bold{\frac{2}{105}}[/tex] with the latter being the highest.
So, the final answer is "[tex]\bold{\frac{2}{105}}[/tex]".
Learn more:
greatest rational number:brainly.com/question/16660879
Mike has 18 goldfish and 24 silver fish in his aquarium what is the ratio of silverfish to total fish in the aquarium aquarium
Answer:
4:7
Step-by-step explanation:
18+24=total number of fish=42
silver fish amount= 24
therefore, ratio is 24:42=12:21=4:7
Use the drop-down menu to create true statements,
If the graph of an inverse passes the
, you know that the inverse is
a function,
The composition of a function and its inverse is
always
DONE
DOWE
The range values of an inverse are the
values of the original function,
The graph of an inverse is the reflection of the
graph of the function over the line
DONE
DOWE
Answer:
A) Vertical test
B) y=x
C) x
D) domain
If the graph of an inverse passes the Vertical Line Test, you know that the inverse is a function.
What is Inverse Function?Inverse functions are functions which can be reversed in to another function.
Then the function is said to be the inverse of the second function.
The test which is used to know whether an inverse is a function or not is Vertical line Test.
So, if the graph of an inverse passes the Vertical Line Test, you know that the inverse is a function.
Composition of a function and it's inverse is always x.
Let y = f(x) be a function. Then x = f⁻¹ (y)
(f⁻¹of)(x) = f⁻¹ (f(x)) = f⁻¹ (y) = x
The graph of an inverse is the reflection of the graph of the function over the line y = x.
The range values of the inverse function are the domain values of the original function.
Hence the blank terms are found.
Learn more about Inverse of Functions here :
https://brainly.com/question/30350743
#SPJ7
13. 30 of the 100 iPads in an inventory are known to be cracked. What
is the probability you randomly select one that is not cracked?
Answer:
7/10 or 0.7
Step-by-step explanation:
a probability is always the ratio of possible cases over all cases.
"all cases" here is 100.
possible cases are all iPads not cracked in the inventory = 70 (because 30 are cracked, that leaves 100-30=70 not cracked).
so, the probability to select a non-cracked unit is
70/100 or simplified 7/10 (or 0.7)
Find the value of x and the value of y.
A. x = 4, y = 8
B.x=7, y=422
C. X= 4/3, y= 7.2
D. x= 73, y=412
Answer:
x = 7 and
y = 4[tex]\sqrt{2}[/tex]
Step-by-step explanation:
as you can see from the image we need to draw a line and when we do so we get a special right triangle with angle measures 90-45-45 and side lengths represented by a-a-a[tex]\sqrt{2}[/tex]
since the line we drew is parallel to the rectangle's length it's = 4 and so the number represented with a is also = 4
from there on we see x = 7 and y = 4[tex]\sqrt{2}[/tex]
Answer:
I can confirm, it is B! x=7 and y=4sqrt2
Step-by-step explanation:
edge
Michigan and Michigan State play each other this Saturday in football. Based on data from ESPN, Michigan averages 38.1 points per game with a SD of 8.4 and average 424 yards gained per game with a SD of 72. The correlation between points scored and yards gained is 0.68. Thus:
Average points = 38.1, SD= 8.4
Average yards gained = 424, SD= 72, r = 0.68
Required:
a. Find the slope of the regression equation for predicting number of points scored based on average yards gained per game). Report your answer to 4 decimal places.
b. If Michigan gains 500 yards in the game against Michigan State, what is Michigan's predicted points scored? Round to the nearest whole number.
Answer:
200000
by 10009
Step-by-step explanation:
nbebsbsbsbbsbsbsbsbBz
12/1,000 into decimal
0.012 is the answer!
I hope this helps you out! :D
[tex]\\ \sf\longmapsto \dfrac{12}{1000}[/tex]
1000 has 3zeros hence decimal will go 3 points left[tex]\\ \sf\longmapsto 0.012[/tex]
More:-
[tex]\\ \sf\longmapsto \dfrac{1}{10}=0.1[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{100}=0.01[/tex]
Convert 0.450 to a proper fraction
Answer:
9/20
Step-by-step explanation:
450/1000
this is not the answer, because it is not simplified
so here we have to find common factor and simplifying
________________________________________________
450/1000 is simplified to 9/20, and it can no longer be simplified.
In one area, the lowest angle of elevation of the sun in winter is 24degrees Find the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high. Round your answer to the tenths place when necessary. PLEASE HELP ASAP
Answer:
round answer is : 10 ft
Step-by-step explanation:
The explanation is in the picture!
please helpppp i need it by tonight its very important
Answer:
m<1=145
m<2=35
m<3=35
Step-by-step explanation:
measure one is supplementary(the angles add to 180) to measure four.
so we do 180-35=145
measure 2 is congruent to measure four because they are corresponding angles
so measure 2=35
and measure 3 is also congruent to measure 4 because the are corresponding angles
so m<3=35
Shawn has 4 times as many candies as Jason, who has a third as many candies as
lan. If Shawn has 64 candies, how many candies does Ian have?
terms are there. Divide 51 into three parts in AP so that the largest exceeds the smallest by 10.
The first three terms of the Arithmetic Progression are 12, 17 and 22.
For an ARITHMETIC PROGRESSION, AP ;
First term = a
Second term = a + d
Third term = a + 2d
Where, d = common difference ;
If third term exceeds smallest by 10 ;
Third term - first term
a + 2d - a = 10
2d = 10
d = 10/2
d = 5
Sum of the three terms :
a + (a + d) + a + 2d = 51
3a + 3d = 51
d = 5
3a + 3(5) = 51
3a + 15 = 51
3a = 51 - 15
3a = 36
a = 12
The AP would be:
First term, a = 12
Second term, a + d = 12 + 5 = 17
Third term = a + 2(d) = 12 + 10 = 22
Therefore , the first three terms of the AP are :
12, 17 and 22
Learn more about ARITHMETIC PROGRESSION :
https://brainly.com/question/12006170
From a club of 24 people, in how many ways can a group of four members be selected to attend a conference?
Answer:
255,024
Step-by-step explanation:
24 x 23 x 22 x 21
24 options for the first member
23 options for the second member
22 options for the third member
21 options for the last member
prove that 2^n+1>(n+2).sin(n)
Step-by-step explanation:
F(n)=|sin(n)|+|sin(n+1)|
then
F(n+π)=|sin(n+π)|+|sin(n+π+1)|=|sin(n)|+|sin(n+1)|=F(n)
and
F(π−n)=|sin(π−n)|+|sin(π−n+1)|=|sinn|+|sin(n−1)|≠F(n)
so we must prove when n∈(0,π), have
F(n)>2sin12
when n∈(0,π−1),then
F(n)=sinn+sin(n+1)=sinn(1+cos1)+sin1cosn
and n∈(π−1,π),then
F(n)=sinn−sin(n+1)
How prove it this two case have F(n)>2sin12? Thank you
and I know this well know inequality
|sinx|+|sin(x+1)|+|sin(x−1)|≥2sin1,x∈R
Calculate the range and the standard deviation for the set of numbers.
6,5, 1, 5, 8, 5, 3, 5, 4,7
The range is
(Simplify your answer.)
Can I please get help with this problem?
Answer:
When time is short and you just want a rough estimate of the standard deviation, turn to the range rule to quickly estimate the standard deviation value. The standard deviation is approximately equal to the range of the data divided by 4. That's it, simple.
Please help me with this on the picture
9514 1404 393
Answer:
(-5, 4)
Step-by-step explanation:
The inside corner moves from (2, -2) to (-3, 2). That is 5 is subtracted from the x-coordinate, and 4 is added to the y-coordinate. (x, y) ⇒ (x -5, y +4)
The translation vector can be written horizontally as (-5, 4), or vertically as ...
[tex]\displaystyle\binom{-5}{4}[/tex]