Answer:
[tex]l=56m[/tex]
Step-by-step explanation:
From the question we are told that:
Angle from vertical [tex]\theta =5.6[/tex]
Horizontal Distance [tex]d=107m[/tex]
Angle of elevation [tex]\gamma=28.6[/tex]
Generally the Trigonometric equation for exterior angles is mathematically given by
[tex]Exterior\ angles=\sum of\ two\ interior\ angles[/tex]
Where
[tex]Exterior angles=90 \textdegree +5.6 \textdegree[/tex]
Therefore
[tex]90 \textdegree +\theta \textdegree=\omega+\gamma[/tex]
[tex]90 \textdegree +5.6 \textdegree=\omega+28.6 \textdegree[/tex]
[tex]\omega=67 \textdegree[/tex]
Generally the equation for The Sine rule is mathematically given by
[tex]\frac{sin \omega }{d}=\frac{sin \gamma}{l}[/tex]
[tex]l=\frac{107 sin 28.6}{sin 67 \textdegree }[/tex]
[tex]l=56m[/tex]
20,30,13,10,14,10,10,?,?,?
Answer:
10,13,14,20,30.............
The product of the roots of the equation x2 + x=2 is:
0-2
01
Answer:
-2
Step-by-step explanation:
x^2 + x=2
Subtract 2 from each side
x^2 + x-2=2-2
x^2 + x-2=0
Factor
What 2 numbers multiply to -2 and add to 1
2*-1 = -2
2+-1 =1
(x-1)(x+2)=0
Using the zero product property
x-1 = 0 x+2 = 0
x=1 x = -2
Product of the roots
1*-2 = -2
Find the slope of the line that goes through the
(2,6) and (-1, -6)
54
What value of b will cause the system to have an
infinite number of solutions?
y = 6x - b
-3х+ 1/2y=-3
b=
Answer:
Does the answer help you?
Helen’s father’s car can travel an average of 18.5 miles on 1 gallon of gasoline. Gas at the local station costs $3.79 per gallon.
a) Helen’s mom took the car to the gas station and hand the cashier a $10 bill. How much gas could she buy? Round your answer to the nearest hundredth of a gallon.
9514 1404 393
Answer:
2.64 gallons
Step-by-step explanation:
Each gallon costs $3.79, so the number of gallons that can be bought with $10 is ...
$10/($3.79/gal) = (10/3.79) gal ≈ 2.6385 gal ≈ 2.64 gallons
I need to solve this, showing work would be appreciated!
Answer:
e) cannot be determined
Step-by-step explanation:
there is no way you can find out angle 2 if there is no angle 1 first
hope this helps!
Solve for x: 10/3 = x/(−5/2)
9514 1404 393
Answer:
x = -25/3
Step-by-step explanation:
Multiply by the inverse of the coefficient of x. Reduce the fraction.
(-5/2)(10/3) = (-5/2)(x/(-5/2))
-50/6 = x = -25/3
Answer:
-25/3
Step-by-step explanation:
the other person is also correct. khan said so
Define business.Write the type of business
Answer:
A company or an entrepreneurial entity engaged in commercial, industrial, or professional activity is referred to as a business. A limited liability company (LLC), a sole proprietorship, a corporation, and a partnership are examples of different types of businesses.
Find the length of the arc.
A. 539π/12 km
B. 9π/3 km
C. 9π/2 km
D. 18π km
Answer:
b because it is I found out cus I took test
The length of the arc 9π/2 km.
The answer is option C.9π/2 km.
What is the arc of the circle?
The arc period of a circle can be calculated with the radius and relevant perspective using the arc period method.
⇒angle= arc/radius
⇒ 135°=arc/6km
⇒ arc =135°*6km
⇒arc=135°*π/180° * 6km
⇒arc = 9π/2 km
Learn more about circle here:-https://brainly.com/question/24375372
#SPJ2
Q4.A/Find the linearization L(x, y) of the function f(x, y) = (x + y + 2)² at p. = (1,2)
Answer:
Find the linearization L(x,y) of the function at each point. f(x,y) = x2 + y2 + 1 a. (4,0) b. (2,0) a. L(x,y) = Find the linearization L(x,y,z) of the function f(x,y,z) = 1x2 + y2 +z2 at the points (7,0,0), (3,4,0), and (4,4,7). The linearization of f(x,y,z) at (7,0,0) is L(x,y,z)= (Type an exact answer, using radicals as needed.)
An article reported that, in a study of a particular wafer inspection process, 356 dies were examined by an inspection probe and 244 of these passed the probe. Assuming a stable process, calculate a 95% (two-sided) confidence interval for the proportion of all dies that pass the probe. (Round your answers to three decimal places.)
Answer:
The 95% confidence interval for the proportion of all dies that pass the probe is (0.637, 0.733).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
356 dies were examined by an inspection probe and 244 of these passed the probe.
This means that [tex]n = 356, \pi = \frac{244}{356} = 0.685[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.685 - 1.96\sqrt{\frac{0.685*0.315}{356}} = 0.637[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.685 + 1.96\sqrt{\frac{0.685*0.315}{356}} = 0.733[/tex]
The 95% confidence interval for the proportion of all dies that pass the probe is (0.637, 0.733).
Write the standard form of the equation of the circle with center (8,−1) that passes through the point (6,7)
Answer:
(x - 8)^2 + (y + 1)^2 = 68
Step-by-step explanation:
The standard form of the equation of the circle with center (8,−1) is :
(x - 8)^2 + (y + 1)^2 = R^2
If the circle passes through the point (6,7) that means that the point (6,7) is a solution of the equation and we can replace (x,y) with (6,7) to find R.
compare the following rational number
[tex] \frac{4}{5} and \frac{7}{5} [/tex]
Answer:
7/5 is greater than 4/5
Answer:
[tex]\frac{4}{5}[/tex] < [tex]\frac{7}{5}[/tex]
Which of the following is an example of a producer?
1. tree
2. hawk
3.rabbit
4. mushroom
Answer:
1. treeStep-by-step explanation:
Tree as an autotroph can prepare its own food and which animals and humans feed upon, so the tree is a producer
A certain standardized test measures students’ knowledge in English and math. The English and math scores for 10 randomly selected students were recorded and analyzed. The results are shown in the computer output.
Which of the following represents the standard deviation of the residuals?
1.223
34.55
78.712
124.13
I think it's (B), 34.55
Answer:
34.55
Step-by-step explanation:
S = 34.55 represents the standard deviation of the residuals which is the correct answer that would be option (B).
What is the standard deviation?A standard deviation (σ) is a measure of the distribution of the data in reference to the mean.
Students' proficiency in math and English is assessed by a particular standardized test. Ten students were chosen at random, and their math and English test results were recorded and examined.
The computer output displays the outcomes.
Predictor Coef SE Coef t-ratio p
Constant -124.13 78.712 0.046
Math 1.223 0.1966 6.220 0.000
S = 34.55 R-Sq = 82.8% R-Sq (Adj) = 83.5%
In the above ANOVA table, S = 34.55 represents the residual standard deviation.
Therefore, the correct answer is Option B = 34.55.
Option A = 1.223 represents the coefficient of the math score.
Option C = 78.712 represents the Standard Error (S.E).
Option D = 124.13 is the coefficient value.
Hence, the correct answer would be an option (B).
Learn more about the standard deviation here:
https://brainly.com/question/16555520
#SPJ2
Charlotte has to read a book for school. There are 513 pages in the book. She read 113 pages on
Saturday, she read 78 pages on Sunday, and 101 pages on Monday. How many pages does Charlotte
have left to read?
A.221 pages
B.513 pages
C.292 pages
D.400 pages
Answer anyone ? Tyia :)
What happens to the median of the data set
{2, 4, 5, 6, 8, 2, 5, 6} if the number 10 is added to the data set?
A. The median does not change.
B. The median increases by 2.
C. The median decreases by 0.25.
D. The median increases by 1.
Answer:
A. The median does not change.
Step-by-step explanation:
Original data set,
Put the numbers in order from smallest to largest
2,2, 4, 5, 5, 6,6, 8
Median is the middle number
2,2, 4, 5, 5, 6,6, 8
It is between the two 5's
(5+5)/2 = 10/2 = 5
New data set
Put the numbers in order from smallest to largest
2,2, 4, 5, 5, 6,6, 8,10
Median is the middle number
2,2, 4, 5, 5, 6,6, 8,10
The middle number is 5
Answer:
The answer is A
Step-by-step explanation:
Need help please ^-^
Factored form: (x + 1/5)(x + 1/4)
Foil: x^2 + 1/4x + 1/5x + 1/20
Simplify: x^2 + 9/20x + 1/20
Hope this helps!
7 days 8 hours 20 minutes
- 4 days 10 hours 30 minutes
2 days 21 hours
50 minutes
3 days 2 hours
10 minutes
7 days 8 hours
20 minutes
J 11 days 8 hours
50 minutes
K none of these
Answer:
A
Step-by-step explanation:
1 2 3
days hours minutes days hours minutes days hours minutes
7 8 20 6 24+8 20 6 31 60+20
4 10 30
-
_______________
4
days hours minutes
6 31 80
4 10 30
-
____________________
2 21 50
___________________
Convert 413 in base 5 to base 10
Answer:
108
Step-by-step explanation:
4×5² + 1×5¹ + 3×5⁰
4×25 + 5+ 3×1
100+5+3
i need the answer to this help PLEASE
Answer:
B
Step-by-step explanation:
At 5 hours the distance traveled is 200 miles. 9 hours is less than double 5 hours so it is 360 miles.
please solve the question
Answer:
[tex]g(-1) = -1[/tex]
[tex]g(0.75) = 0[/tex]
[tex]g(1)= 1[/tex]
Step-by-step explanation:
Given
See attachment
Solving (a): g(-1)
We make use of:
[tex]g(x) = -1[/tex]
Because: [tex]-1 \le x < 0[/tex] is true for x =-1
Hence:
[tex]g(-1) = -1[/tex]
Solving (b): g(0.75)
We make use of:
[tex]g(x) = 0[/tex]
Because: [tex]0 \le x < 1[/tex] is true for x =0.75
Hence:
[tex]g(0.75) = 0[/tex]
Solving (b): g(1)
We make use of:
[tex]g(x) = 1[/tex]
Because: [tex]1 \le x < 2[/tex] is true for x =1
Hence:
[tex]g(1)= 1[/tex]
If the mean of a given dataset is
42 and the standard deviation is
4, where will a majority of the
data lie?
Answer:
A majority of the data will lie between 38 and 46.
Step-by-step explanation:
It can be said that a majority of the data of a distribution lies within 1 standard deviation of the mean.
In this question:
Mean of 42, standard deviation of 4.
42 - 4 = 38
42 + 4 = 46
A majority of the data will lie between 38 and 46.
4. A solution of 60% fertilizer is to be mixed with a solution of 21% fertilizer to form 234 liters of a 43% solution. How many liters of the 60% solution must be used?
SHOW YOUR WORK
Given:
A solution of 60% fertilizer is to be mixed with a solution of 21% fertilizer to form 234 liters of a 43% solution.
To find:
The quantity of the 60% solution in the mixture.
Solution:
Let x be the quantity of the 60% solution and y be the quantity of the 21% solution.
Quantity of mixture is 234. So,
[tex]x+y=234[/tex]
[tex]x=234-y[/tex] ...(i)
The mixture has 43% fertilizer. So,
[tex]\dfrac{60}{100}x+\dfrac{21}{100}y=\dfrac{43}{100}\times 234[/tex]
Multiply both sides by 100.
[tex]60x+21y=10062[/tex] ...(ii)
Using (i) and (ii), we get
[tex]60(234-y)+21y=10062[/tex]
[tex]14040-60y+21y=10062[/tex]
[tex]-39y=10062-14040[/tex]
[tex]-39y=-3978[/tex]
Divide both sides by -39.
[tex]\dfrac{-39y}{-39}=\dfrac{-3978}{-39}[/tex]
[tex]y=102[/tex]
Putting this value in (i), we get
[tex]x=234-102[/tex]
[tex]x=132[/tex]
Therefore, 132 liters of the 60% solution must be used.
Evaluate S8 for the series 1+3+6+9+12.........
Answer:
S8 is 64
Step-by-step explanation:
[tex]{ \boxed{ \bf{S_{n} = \frac{n}{2} [2a + (n - 1)d]}}}[/tex]
n is number of terms; n = 8
a is the first term; a = 1
d is the common difference: d = 3-1; d = 2
[tex]{ \sf{S_{8} = \frac{8}{2}[(2 \times 1) + (8 - 1) \times 2 ]}} \\ \\ { \sf{{S_{8}} = 4(2 + 14)}} \\ { \sf{S_{8}}} = 4 \times 16 \\ { \sf{S_{8}}} = 64[/tex]
the figure below is made up of a square, a quadrant and a semicircle. the length of the square is 12cm. find the area of the shaded parts.
Answer:
P=2pi×r
P=2×12pi=24pi
24pi÷4=6pi
6pi÷2=3pi
p=2×6×pi
p=12pi
12pi÷2=6pi
permiter=3pi+6pi+12=40.27
that is for part a
Select all sets in which the number - 15 is an element.
A. natural numbers
B. real numbers
C. irrational numbers
D. rational numbers
E. whole numbers
F. integers
-15 is an element of-
B. real numbers
D. rational numbers
F. integers
What is a number?A number is a mathematical object used to count, measure, and label. The original examples are natural number 1,2,3,4 and so forth.
Given number is 15.
A. natural numbers
The natural numbers are the set of all the whole numbers excluding zero. They are positive whole number.
Here, -15 is a negative number,
Hence, -15 is an not element of natural number.
B. real numbers
Real numbers are those numbers that has no imaginary part. It also include both rational and irrational number.
Since -15 has no imaginary part
Hence, -15 is an element of real number.
C. irrational numbers
An irrational number is real number that cannot be expressed as a ratio of two integers.
Here -15 can be expressed as ratio of two integers,
Hence,-15 is not an element of irrational number.
D. rational numbers
A rational number is real number that can be expressed as a ratio of two integers.
Here -15 can be expressed as ratio of two integers,
Hence, -15 is an element of rational number.
E. whole numbers
Whole numbers are positive numbers, including zero, without any decimal or fractional parts. Negative numbers are not considered "whole numbers."
Since,Negative numbers are not considered whole numbers
Hence, -15 is not an element of whole number.
F. integers
An integer is a whole number (not a fractional number) that can be positive, negative, or zero. Examples of integers are: -5, 1, 5, 8, 97, and 3,043
Hence, -15 is an element of integers.
Hence, we conclude that,
-15 is an element of-
B. real numbers
D. rational numbers
F. integers
More about classification of number :
https://brainly.com/question/14213693
#SPJ2
The diameter of a circle has endpoints P(-12, -4) and Q(6, 12).
Write an equation for the circle. Be sure to show and explain all work.
9514 1404 393
Answer:
(x +3)² +(y -4)² = 145
Step-by-step explanation:
The center of the circle is the midpoint of the given segment PQ. If we call that point A, then ...
A = (P +Q)/2
A = ((-12, -4) +(6, 12))/2 = (-12+6, -4+12)/2 = (-6, 8)/2
A = (-3, 4)
The equation of the circle for some radius r is ...
(x -(-3))² +(y -4)² = r² . . . . . . where (-3, 4) is the center of the circle
The value of r² can be found by substituting either of the points on the circle. If we use Q, then we have ...
(6 +3)² +(12 -4)² = r² = 9² +8²
r² = 81 +64 = 145
Then the equation of the circle is ...
(x +3)² +(y -4)² = 145
Matt and his siblings bought their mom her favorite perfume for her birthday. They gave the cashier $80. The cashier gave them back 1 ten-dollar bill, 1 five-dollar bill, 8 dimes, and 1 nickel as change. How much did the perfume cost?
Answer:
$64.15
Step-by-step explanation:
to solve this problem, first we should figure out how much money that the cashier gave them back, and then subtract that from $80 (which was what Matt and his siblings gave the cashier) to find out how much the perfume cost.
it is given that:
they gave the cashier $80.
the cashier gave them back 1 ten-dollar bill ($10), 1 five-dollar bill ($5), 8 dimes ($0.80 or 80 cents) , and 1 nickel ($0.05 or 5 cents)
$10+$5+$0.80+$0.05=$15.85
the total amount of money that the cashier gave them back is $15.85
to find how much the perfume cost:
$80-$15.85=$64.15
so, the perfume cost $64.15