Answer:
The average rate of change of Demand between 40 and 175 units sold is of -0.1045.
Step-by-step explanation:
Average rate of change:
The average rate of a function f(x) in an interval [a,b] is given by:
[tex]A = \frac{f(b) - f(a)}{b - a}[/tex]
In this question:
[tex]D(q) = -0.0003q^2 - 0.04q + 23.56[/tex]
What is the average rate of change of Demand between 40 and 175 units sold?
[tex]a = 40, b = 175[/tex]. So
[tex]D(40) = -0.0003*40^2 - 0.04*40 + 23.56 = 21.48[/tex]
[tex]D(175) = -0.0003*175^2 - 0.04*175 + 23.56 = 7.3725[/tex]
So
[tex]A = \frac{f(b) - f(a)}{b - a} = \frac{7.3725 - 21.48}{175 - 40} = -0.1045[/tex]
The average rate of change of Demand between 40 and 175 units sold is of -0.1045.
By selling a radio for $8400 a dealer gained 12% .how much money did she gain
Answer:
Amount gained = $900
Step-by-step explanation:
Let the cost price be = x
Given selling price = 8400
And profit% = 12%
Profit = selling price - cost price
= 8400 - x
[tex]Profit \ \% = \frac{profit}{cost \ price} \times 100\\\\12\% = \frac{8400 - x}{x} \times 100\\\\\ 12 \times \frac{1}{100} = \frac{8400 - x}{x}\\\\\frac{12 \ x}{100} = 8400 - x \\\\\frac{12x}{100} + x = 8400\\\\12x + 100x = 8400 \times 100\\\\112x = 8400 \times 100\\\\x = \frac{8400 \times 100}{112} = 7500[/tex]
Therefore , cost price of the radio $7500
The amount she gained = 8400 - 7500 = $ 900
hope anyone help me please
9514 1404 393
Answer:
a) Lahulspiti: -8; Srinigar: -2; Shimla: 5; Ooty: 14; Bengahuru: 22
b) 30
c) 6
d) yes; no
Step-by-step explanation:
a) The values are read from the graph.
__
b) 22 -(-8) = 22 +8 = 30 . . . . difference between highest and lowest
__
c) -2 -(-8) = -2 +8 = 6 . . . positive difference
(Technically, the difference between L and S is L - S = (-8) -(-2) = -6.)
__
d) -2 + 5 < 5 . . . . true
-2 + 5 < -2 . . . . false
find and sketch the domain of the function. f(x,y)=√(4-x^2-y^2) +√(1-x^2)
Answer:
Hello
Step-by-step explanation:
The domain is limited with 2 lines parallel: -1 ≤ x ≤ 1
and the disk ? (inside of a circle) of center (0,0) and radius 2
[tex]dom\ f(x,y)=\{(x,y) \in \mathbb{R} ^2 | \ -1\leq x \leq -1\ and \ ( -\sqrt{4-x^2} \leq \ y \leq \sqrt{4-x^2}\ ) \ \}\\[/tex]
Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor, but 3 days later 68 people have heard it. Using a logistic growth model, how many people are expected to have heard the rumor after 6 days total have passed since it was initially spread? (Round your answer to the nearest whole person.)
Answer:
106 people.
Step-by-step explanation:
Logistic equation:
The logistic equation is given by:
[tex]P(t) = \frac{K}{1+Ae^{-kt}}[/tex]
In which
[tex]A = \frac{K - P_0}{P_0}[/tex]
K is the carrying capacity, k is the growth/decay rate, t is the time and P_0 is the initial value.
Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor.
This means that [tex]K = 191, P_0 = 38[/tex], so:
[tex]A = \frac{191 - 38}{38} = 4.03[/tex]
Then
[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]
3 days later 68 people have heard it.
This means that [tex]P(3) = 68[/tex]. We use this to find k.
[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]
[tex]68 = \frac{191}{1+4.03e^{-3k}}[/tex]
[tex]68 + 274.04e^{-3k} = 191[/tex]
[tex]e^{-3k} = \frac{191-68}{274.04}[/tex]
[tex]e^{-3k} = 0.4484[/tex]
[tex]\ln{e^{-3k}} = \ln{0.4484}[/tex]
[tex]-3k = \ln{0.4484}[/tex]
[tex]k = -\frac{\ln{0.4484}}{3}[/tex]
[tex]k = 0.2674[/tex]
Then
[tex]P(t) = \frac{191}{1+4.03e^{-0.2674t}}[/tex]
How many people are expected to have heard the rumor after 6 days total have passed since it was initially spread?
This is P(6). So
[tex]P(6) = \frac{191}{1+4.03e^{-0.2674*6}} = 105.52[/tex]
Rounding to the nearest whole number, 106 people.
The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)
Answer:
30 clocks
Step-by-step explanation:
Set up an equation:
Variable x = number of clocks
1200 + 20x = 60x
Isolate variable x:
1200 = 60x - 20x
1200 = 40x
Divide both sides by 40:
30 = x
Check your work:
1200 + 20(30) = 60(30)
1200 + 600 = 1800
1800 = 1800
Correct!
HELP ASAP PLEASE! I tried inputting the numbers into the standard deviation equation but I did not get the right answer to find z. Can someone please help me? Thank you for your time!
Answer:
Z = -1.60
it is low ... it appears that for this problem 2 standard deviations below must be reached to be considered "unusual"
Step-by-step explanation:
A chemist has three different acid solutions.
The first solution contains 25% acid, the second contains 35%acid, and the third contains 55% acid.
She created 120 liters of a 40% acid mixture, using all three solutions. The number of liters of 55% solution used is 3 times the number of liters of 35% solution used.
How many liters of each solution was used?
Let x, y, and z be the amounts (in liters, L) of the 25%, 35%, and 55% solutions that the chemist used.
She ended up with 120 L of solution, so
x + y + z = 120 … … … [1]
x L of 25% acid solution contains 0.25x L of acid. Similarly, y L of 35% solution contains 0.35y L of acid, and z L of 55% solution contains 0.55z L of acid. The concentration of the new solution is 40%, so that it contains 0.40 (120 L) = 48 L of acid, which means
0.25x + 0.35y + 0.55z = 48 … … … [2]
Lastly,
z = 3y … … … [3]
since the chemist used 3 times as much of the 55% solution as she did the 35% solution.
Substitute equation [3] into equations [1] and [2] to eliminate z :
x + y + 3y = 120
x + 4y = 120 … … … [4]
0.25x + 0.35y + 0.55 (3y) = 48
0.25x + 2y = 48 … … … [5]
Multiply through equation [5] by -2 and add that to [4] to eliminate y and solve for x :
(x + 4y) - 2 (0.25x + 2y) = 120 - 2 (48)
0.5x = 24
x = 48
Solve for y :
x + 4y = 120
4y = 72
y = 18
Solve for z :
z = 3y
z = 54
Chang has 2 shirts: a white one and a black one. He also has 2 pairs of pants, one blue and one tan. What is the probability, if Chang gets dressed in the dark, that
he winds up wearing the white shirt and tan pants? Show your work.
Answer:
1/4
Step-by-step explanation:
White = w
Black = B
Blue = b1
Tan = t
Wb1
Wt
Bbi
Bt
The answer will be 1/4, because there are 4 ways it can work and only 1 way it can be white shirt and tan pants.
Answer:
1/4
Step-by-step explanation:
it would be 1/4 because there are 4 different clothing pieces in total and there is only one way it would work the way the problem says.
An isosceles trapezoid has a consecutive-sides of length: 10,6,10 and 14. Find the measure of each angle if the trapezoid.
Answer:
Angle A = Angle D = 69° 30'
Angle B = Angle C = 110° 30'
Step-by-step explanation:
B ___ C
/ \
/ \
A ________ D
AB and CD are 10
BC is 6
AD is 14
If we divide the trapezoid, we can imagine a line.
B_ F_C
/ | \
/ | \
A ___E____ D
AE = ED = 7 (14/2)
BF = FC = 3
So now, we draw another line from B or C to AE or ED
B_ F_ C
/ | | \
/ | | \
A ___E_ G_ D
EG = GD = 3.5 (7/2)
There is a right triangle now, GCD
GD is 3.5 and CD is 10. To determine angle D, we can apply trigonometric function:
CD is H, and GD is A
cos D = A/H
cos D = 3.5/10 → 0.35
angle D = 69° 30'
By theory, we know that angle D and angle A, are the same so:
Angle D = Angle A = 69° 30'
Angle B = Angle C
We also make a cuadrilateral, which is EFCD.
Angle D is 69° 30', Angle E is 90°, Angle F is also 90°
Sum of angles in cuadrilateral is 360°
360° - 69° 30' - 90° - 90° = Angle C = Angle B
Angle C = Angle B = 110° 30'
Let's confirm the angles in the trapezoid:
69° 30' + 110° 30' + 69° 30' + 110° 30' = 360°
A + B + C + D
For -180°<θ<0 , which of the primary trigonometric functions may have positive values?
Answer:
cos theta = adj / hyp is positive (+/+)
Step-by-step explanation:
In this open interval, the hypotenuse (radius) is always positive, whereas the adjacent side is positive and the opposite side negative.
in this interval:
sin theta = opp / hyp is neg (-/+)
cos theta = adj / hyp is positive (+/+)
tan theta = opp / adj = (-/+) : negative
Suppose the method of tree ring dating gave the following dates A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution.
1241 1210 1267 1314 1211 1299 1246 1280 1291
a. Determine if the data meets the initial conditions to construct a confidence interval.
b. Find the sample mean year x and sample standard deviation σ.
c. What is the maximal margin of error when finding a 90 % confidence interval for the mean of all tree-ring dates from this archaeological site?
Answer:
(1238.845 ;1285.376)
Step-by-step explanation:
Conditions for constructing a confidence interval :
Data must be random
Distribution should be normal and independent ;
Based on the conditions above ; data meets initial conditions ;
C. I = sample mean ± margin of error
Given the data :
1241 1210 1267 1314 1211 1299 1246 1280 1291
Mean, xbar = Σx / n = 11359 / 9 = 1262.11
The standard deviation, s = [√Σ(x - xbar)²/n - 1]
Using a calculator ; s = 37.525
The confidence interval :
C.I = xbar ± [Tcritical * s/√n]
Tcritical(0.10 ; df = n - 1 = 9 - 1 = 8)
Tcritical at 90% = 1.860
C. I = 1262.11 ± [1.860 * 37.525/√9]
C.I = 1262.11 ± 23.266
(1238.845 ;1285.376)
± 23.266
The margin of error :
[Tcritical * s/√n]
[1.860 * 37.525/√9]
C.I = ± 23.266
E. The ratio of monthly income to savings of a family is 7:2. If the savings is Rs. 500, find the monthly income and expenditure.
Step-by-step explanation:
Since the ratio of monthly income to savings of the family is 7:2, we assume that the income be 7t and savings be 2t
Now, we are given that the savings is =Rs 500
So, According to our assumption, 2t=500
⇒t=250
Hence, the income of the family is =7×250=Rs 1750
And the expenditure is =Income−Savings
=Rs 1750−Rs 500
=Rs 1250
What is the explicit formula for the sequence ? -1,0,1,2,3
Answer:
B
Step-by-step explanation:
substitute the values in the eq. Ot is also arithmetic progression.
Which property was used to simplify the expression 4(b+2)=4b+8
Answer: distributive property
Step-by-step explanation: the 4 is multiplied by everting in the parenthesis
Determine the domain and range of the graph
Answer:
5 ≤ x ≤ 10 5 ≤ y ≥ -1
Step-by-step explanation:
Suppose point (4, −9) is translated according to the rule (, ) → ( + 3, − 2). What are the coordinates of ′? Explain
[(2021-Y)-5]*X-X=XX cho biết X,Y,XX là gì?
i need help. i will give brainiest as soon as possible
Answer:
B
Step-by-step explanation:
Let me know if you need an explanation.
Answer:
B
Step-by-step explanation:
4x^3+x^2+5x+2
4x^3 cannot cancel with others= 4x^3
4x^2-3x^2= x^2
5x cannot cancel with others= 5x
-3+5= 2
4x^3+x^2+5x+2
the adjacent sides of a parallelogram are (x + 3) and (x + 2). Find the perimeter of the parallelogram
9514 1404 393
Answer:
4x+10
Step-by-step explanation:
For parallelogram adjacent sides a and b, the perimeter is ...
P = 2(a +b)
For the given sides, the perimeter is ...
P = 2((x +3) +(x +2)) = 2(2x +5)
P = 4x +10 . . . perimeter of the parallelogram
Which one goes where?
"RS tangent to circle a..." is first statement Reason: Given
Second Reason: "Radius perpendicular to tangent"
Second Statement: "AR is parrallel to BS" Reason: "2 lines perpendicular..."
what is the discrimination of the polynomial below ?
9x2-18x+9
At the Fidelity Credit Union, a mean of 3.5 customers arrive hourly at the drive-through window. What is the probability that, in any hour, more than 5 customers will arrive? Round your answer to four decimal places.
Answer:
0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.
Step-by-step explanation:
We have the mean, which means that the Poisson distribution is used to solve this question.
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
A mean of 3.5 customers arrive hourly at the drive-through window.
This means that [tex]\mu = 3.5[/tex]
What is the probability that, in any hour, more than 5 customers will arrive?
This is:
[tex]P(X > 5) = 1 - P(X \leq 5)[/tex]
In which
[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3.5}*3.5^{0}}{(0)!} = 0.0302[/tex]
[tex]P(X = 1) = \frac{e^{-3.5}*3.5^{1}}{(1)!} = 0.1057[/tex]
[tex]P(X = 2) = \frac{e^{-3.5}*3.5^{2}}{(2)!} = 0.1850[/tex]
[tex]P(X = 3) = \frac{e^{-3.5}*3.5^{3}}{(3)!} = 0.2158[/tex]
[tex]P(X = 4) = \frac{e^{-3.5}*3.5^{4}}{(4)!} = 0.1888[/tex]
[tex]P(X = 5) = \frac{e^{-3.5}*3.5^{5}}{(5)!} = 0.1322[/tex]
Finally
[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0302 + 0.1057 + 0.1850 + 0.2158 + 0.1888 + 0.1322 = 0.8577[/tex]
[tex]P(X > 5) = 1 - P(X \leq 5) = 1 - 0.8577 = 0.1423[/tex]
0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.
khai niem hinh cat don gian ?
Answer:
khai niem hinh cat don gian?
How many subsets of at least one element does a set of seven elements have?
[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]
For each subset it can either contain or not contain an element. For each element, there are 2 possibilities. Multiplying these together we get 27 or 128 subsets. For generalisation the total number of subsets of a set containing n elements is 2 to the power n.
total subsets
2^n2⁷128If $6^x = 5,$ find $6^{3x+2}$.
If 6ˣ = 5, then
(6ˣ)³ = 6³ˣ = 5³ = 125,
and
6³ˣ⁺² = 6³ˣ × 6² = 125 × 6² = 125 × 36 = 4500
Using f(x)=2x+7 and g(x)=x-3, find f(g(-2))
On a coordinate plane, a curved line begins at point (negative 2, negative 3), crosses the y-axis at (0, negative .25), and the x-axis at (1, 0).
What is the domain of the function on the graph?
Answer:
Option D
Step-by-step explanation:
correct answer on edge :)
Answer:
D <3
Step-by-step explanation:
Perimeter (numerical) cm
Answer:
101 cm
Step-by-step explanation:
Add all the side lengths up to get 101 cm.
A bus driver makes roughly $3280 every month. How much does he make in one week at this rate.
Answer:
I think around $36
Hope it helps!
Answer:
It depends...
Step-by-step explanation:
It depends how much weeks are in the month if there are three weeks and no extra days then you would have an answer of about 1093 (exact: 1093.33333333). just divide the number of weeks by the number of money.
Please help with this question
9514 1404 393
Answer:
(d) -1/32
Step-by-step explanation:
It may be easier to rearrange the expression so it has positive exponents.
[tex]\dfrac{1}{2^{-2}x^{-3}y^5}=\dfrac{2^2x^3}{y^5}=\dfrac{4(2)^3}{(-4)^5}=-\dfrac{4\cdot8}{1024}=\boxed{-\dfrac{1}{32}}[/tex]