The difference between a DC and an AC generator is that
a. the DC generator has one unbroken slip ring.
b. the AC generator has one unbroken slip ring
c. the DC generator has one slip ring splitin two halves.
d. the AC generator has one slip ring split in two halves.
e The DC generator has twounbroken sip rings

Answers

Answer 1

Answer:

The AC generator has one unbroken slip ring

Explanation:

In physics, the application of electromagnetic induction can be seen in generators and dynamos. Electromagnetic induction is the process of generating electricity using magnets. It found applications in generators and the types of generator they found application is in AC and DC generator.

An AC generator is also called a Dynamo. A DC generator contains what is called a SPLIT RING fixed to the end of the coil which can be separated and coupled back according to the name "split". An AC generator also called a Dynamo makes use of a SLIP ring which cannot be divided into two. It comes as an entity. The presence of this rings is what differentiates a DC generator from an AC generator.

We can replace split rings with slip rings when converting a DC generator to an AC generator and vice versa.

It can therefore be concluded that the difference between a DC and an AC generator is that the AC generator has one unbroken slip ring.


Related Questions

A stonecutter's chisel has an edge area of 0.7 cm2. If the chisel is struck with a force of 42 N, what is the pressure exerted on the stone

Answers

Answer:

The pressure is [tex]P = 583333 \ N/m^2[/tex]

Explanation:

From the question we are told that

  The area of the edge is  [tex]A = 0.72 cm^2 = 0.72 *10^{-4}\ m[/tex]

    The  force is [tex]F = 42 \ N[/tex]

The pressure is mathematically represented as

            [tex]P = \frac{F}{A}[/tex]

substituting values

           [tex]P = \frac{42}{0.72*10^{-4}}[/tex]

           [tex]P = 583333 \ N/m^2[/tex]

An object on a level surface experiences a horizontal force of 12.7 N due to kinetic friction. The coefficient of kinetic friction is 0.42.
What is the mass of the object? (Express your answer to two significant figures)kg

Answers

Answer:

The mass of the object is 3.08 kg.

Explanation:

The horizontal force is12.7 N and the coefficient of the kinetic fraction are 0.42. Now we have to compute the mass of the object. Thus, use the below formula to find the mass of the object.

Let the mass of the object = m.

The coefficient of kinetic friction, n = 0.42

Therefore,  

Force, F = n × mg

12.7 = 0.42 × 9.8 × m

m = 3.08 kg

The mass of the object is 3.08 kg.

Calculate the range of wavelengths (in m) for AM radio given its frequency range is 540 to 1,600 kHz. smaller value m larger value m (b) Do the same for the ultraviolet frequency range of 760 to 30,000 THz. smaller value m larger value m

Answers

Answer:

a)  λ = 555.5 m,  λ = 187.5 nm

 

Explanation:

The velocity of a wave is given by the relation

           c = λ f

           λ = c /f

a) length of the radii AM

            λ = 3 10⁸/540 10⁻⁷

            λ= 5.555 102 m

            λ = 555.5 m

             f = 1600 kHz

            λ = 3 108/1600 103

             λ = 1.875 102 m

            lam  = 187.5 nm

b) light = 760 Thz = 760 10-12 Hz

               

         λ=  c/f

            λ = 3 108/760 10-12

            λ = 3.947 10-9

           λ= 30000 Thz

           λ= c/f

      λ = 3 10⁸/ 30000 10-12

       λ = 1  m

A person looks horizontally at the edge of a swimming pool. If its length is 5 m, and the pool is filled to the surface, to what depth (in m) could the observer see

Answers

Answer:

The observer could see to a depth of 4.38 m

Explanation:

Please check attachment for diagram.

Mathematically, from Snell law;

n1sin theta = n2 sin theta

1 * sin 90 = n2 * sin θR

where n2 = 1.33

1/1.33 = sin θR

Sin θR = 0.7519

θR = arc sin 0.7519

θR = 48.76

Now to get the height, we use the triangle

Using trigonometric ratio;

Tan( 90- θR) = H/5

H = 5 Tan( 90 - θR)

H = 5 Tan( 90-48.76)

H = 5 Tan41.24

H = 4.38 m

within which type of system is the total mass conserved but not the total energy

Answers

In a closed system the mass is conserved, but the energy is not conserved.

To find the answer, we have to study about different systems in thermodynamics.

What is thermodynamic system?A system, which can be expressed in terms of thermodynamic coordinates is called Thermodynamic system.Open system: System can exchange both energy and matter, thus, both energy and matter is not conserved here.Closed system can exchange energy with its surroundings (as heat or work), but not matter.Isolated system: A system that is open to the environment can interchange energy and matter, but a system that is insulated from it cannot.

Thus, we can conclude that, in closed system the mass is conserved, but the energy is not conserved.

Learn more about Thermodynamic system here:

https://brainly.com/question/26035962

#SPJ1

A cylinder with rotational inertia I1=2.0kg·m2 rotates clockwise about a vertical axis through its center with angular speed ω1=5.0rad/s. A second cylinder with rotational inertia I2=1.0kg·m2 rotates counterclockwise about the same axis with angular speed ω2=8.0rad/s. If the cylinders couple so they have the same rotational axis what is the angular speed of the combination? What percentage of the original kinetic energy is lost to friction?

Answers

Answer:

a) 0.67 rad/sec in the clockwise direction.

b) 98.8% of the kinetic energy is lost.

Explanation:

Let us take clockwise angular speed as +ve

For first cylinder

rotational inertia [tex]I[/tex] = 2.0 kg-m^2

angular speed ω = +5.0 rad/s

For second cylinder

rotational inertia [tex]I[/tex] = 1.0 kg-m^2

angular speed = -8.0 rad/s

The rotational momentum of a rotating body is given as = [tex]I[/tex]ω

where [tex]I[/tex] is the rotational inertia

ω is the angular speed

The rotational momenta of the cylinders are:

for first cylinder = [tex]I[/tex]ω = 2.0 x 5.0 = 10 kg-m^2 rad/s

for second cylinder = [tex]I[/tex]ω = 1.0 x (-8.0) = -8 kg-m^2 rad/s

The total initial angular momentum of this system cylinders before they were coupled together = 10 + (-8) = 2 kg-m^2 rad/s

When they are coupled coupled together, their total rotational inertia [tex]I_{t}[/tex] = 1.0 + 2.0 = 3 kg-m^2

Their final angular rotational momentum after coupling = [tex]I_{t}[/tex][tex]w_{f}[/tex]

where [tex]I_{t}[/tex] is their total rotational inertia

[tex]w_{f}[/tex] = their final angular speed together

Final angular momentum = 3 x [tex]w_{f}[/tex] = 3[tex]w_{f}[/tex]

According to the conservation of angular momentum, the initial rotational momentum must be equal to the final rotational momentum

this means that

2 =  3[tex]w_{f}[/tex]

[tex]w_{f}[/tex] = final total angular speed of the coupled cylinders = 2/3 = 0.67 rad/s

From the first statement, the direction is clockwise

b) Rotational kinetic energy = [tex]\frac{1}{2} Iw^{2}[/tex]

where [tex]I[/tex] is the rotational inertia

[tex]w[/tex] is the angular speed

The kinetic energy of the cylinders are:

for first cylinder = [tex]\frac{1}{2} Iw^{2}[/tex] = [tex]\frac{1}{2}*2*5^{2}[/tex] = 25 J

for second cylinder = [tex]\frac{1}{2}*1*8^{2}[/tex] = 32 J

Total initial energy of the system = 25 + 32 = 57 J

The final kinetic energy of the cylinders after coupling = [tex]\frac{1}{2}I_{t}w^{2} _{f}[/tex]

where

where [tex]I_{t}[/tex] is the total rotational inertia of the cylinders

[tex]w_{f}[/tex] is final total angular speed of the coupled cylinders

Final kinetic energy =  [tex]\frac{1}{2}*3*0.67^{2}[/tex] = 0.67 J

kinetic energy lost = 57 - 0.67 = 56.33 J

percentage = 56.33/57 x 100% = 98.8%

A) The angular speed of the combination of the two cylinders is; ω₃ = 0.67 rad/s

B) The percentage of the original kinetic energy lost to friction is;

percentage energy lost = 98.82%

We are given;

Rotational Inertia for first cylinder; I₁ = 2 kg.m²

Angular speed of first cylinder; ω₁ = 5 rad/s

Angular speed of second cylinder; ω₂ = 8 rad/s

Rotational Inertia for second cylinder; I₂ = 1 kg.m²

From conservation of angular momentum, we know that;

Initial angular Momentum([tex]L_{i}[/tex]) = Final angular Momentum([tex]L_{f}[/tex])

Thus;

I₁ω₁ + I₂ω₂ = I₃ω₃

Where;

ω₃ is the angular speed when the two cylinders are combined

I₃ = I₁ + I₂

I₃ = 2 + 1

I₃ = 3 kg.m²

Since the second cylinder rotates in an anticlockwise direction, then its' angular speed will be negative. Thus;

(2 * 5) + (1 * -8) = 3ω₃

10 - 8 = 3ω₃

3ω₃ = 2

ω₃ = 2/3

ω₃ = 0.67 rad/s

B) Let us find initial kinetic energy;

E_i = ¹/₂I₁ω₁² + ¹/₂I₂ω₂²

E_i = ¹/₂((2 * 5²) + (1 * 8²)

E_i = 57 J

Final kinetic energy is;

E_f = ¹/₂I₃ω₃²

E_f = ¹/₂ * 3 * 0.67²

E_f = 0.67335 J

Energy lost = 57 - 0.67335 = 56.32665 J

percentage energy lost = (56.32665/57) * 100%

percentage energy lost = 98.82%

Read more at; https://brainly.com/question/14121636

The left end of a long glass rod 8.00 cm in diameter and with an index of refraction of 1.60 is ground and polished to a convex hemispherical surface with a radius of 4.00 cm. An object in the form of an arrow 1.70 mm tall, at right angles to the axis of the rod, is located on the axis 24.0 cm to the left of the vertex of the convex surface.
A) Find the position of the image of the arrow formed by paraxial rays incident on the convex surface.
B) Find the height of the image formed by paraxial rays incident on the convex surface.
C) Is the image erect or inverted?

Answers

Answer:

A) 0.1477

B) 0.65388 mm

C) object is inverted

Explanation:

The formula for object - image relationships for spherical reflecting surface is given as;

n1/s + n2/s' = = (n2 - n1)/R

Where;

n1 & n2 are the Refractive index of both surfaces

s is the object distance from the vertex of the spherical surface

s' is the image distance from the vertex of the spherical surface

R is the radius of the spherical surface

We are given;

index of refraction of glass; n2 = 1.60

s = 24 cm = 0.24 m

R = 4 cm = 0.04 m

index of refraction of air has a standard value of 1. Thus; n1 = 1

a) So, making s' the subject from the initial equation, we have;

s' = n2/[((n2 - n1)/R) - n1/s]

Plugging in the relevant values, we have;

s' = 1.6/[((1.6 - 1)/0.04) - 1/0.24]

s' = 0.1477

b) The formula for lateral magnification of spherical reflecting surfaces is;

m = -(n1 × s')/(n2 × s) = y'/y

Where;

m is the magnification

n1, n2, s & s' remain as earlier explained

y is the height of the object

y' is the height of the image

Making y' the subject, we have;

y' = -(n1 × s' × y)/(n2 × s)

We are given y = 1.7 mm = 0.0017 m and all the other terms remain as before.

Thus;

y' = -(1 × 0.1477 × 0.0017)/(1.6 × 0.24)

y' = - 0.00065388021 m = -0.65388 mm

C) since y' is negative and y is positive therefore, m = y'/y would result in a negative value.

Now, in object - image relationships for spherical reflecting surface, when magnification is positive, it means the object is erect and when magnification is negative, it means the object is inverted.

Thus, the object is inverted since m is negative.

where c is the speed of light and G is the universal gravitational constant. RBH gives the radius of the event horizon of a black hole with mass ????. In other words, it gives the radius to which some amount of mass ???? would need to be compressed in order to form a black hole. The mass of the Sun is about 1.99×1030 kg. What would be the radius of a black hole with this mass?

Answers

Answer:

The radius of the black hole will be 2949.6 m.

Explanation:

The radius of this black hole will be the Schwarzschild radius of the mass of the sun

[tex]r_{s}[/tex] = [tex]\frac{2GM}{c^{2} }[/tex]

where

G is the gravitational constant = 6.67 x 10^-11 m^3⋅kg^-1⋅s^-2

M is the mass of the sun = 1.99×10^30 kg

c is the speed of light = 3 x 10^8 m/s

substituting values into the equation, we have

[tex]r_{s}[/tex] = [tex]\frac{2*6.67*10^{-11}*1.99*10^{30} }{(3*10^{8} )^{2} }[/tex] = 2949.6 m

A competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy

Answers

Answer: her rotational kinetic energy increases

An interference pattern is produced by light with a wavelength 590 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.580 mm .


Required:

a. If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima?

b. What would be the angular position of the second-order, two-slit, interference maxima in this case?

Answers

Answer:

a. 0.058°

b.  0.117°

Explanation:

a. The angular position of the first-order is:

[tex] d*sin(\theta) = m\lambda [/tex]

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{1* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.058 ^{\circ} [/tex]

Hence, the angular position of the first-order, two-slit, interference maxima is 0.058°.

b. The angular position of the second-order is:

[tex] \theta = arcsin(\frac{m \lambda}{d}) = arcsin(\frac{2* 590 \cdot 10^{-9} m}{0.580 \cdot 10^{-3} m}) = 0.12 ^{\circ} [/tex]

Therefore, the angular position of the second-order, two-slit, interference maxima is 0.117°.

I hope it helps you!

Two automobiles are equipped with the same singlefrequency horn. When one is at rest and the other is moving toward the first at 20 m/s , the driver at rest hears a beat frequency of 9.0 Hz.

Requried:
What is the frequency the horns emit?

Answers

Answer: f ≈ 8.5Hz

Explanation: The phenomenon known as Doppler Shift is characterized as a change in frequency when one observer is stationary and the source emitting the frequency is moving or when both observer and source are moving.

For a source moving and a stationary observer, to determine the frequency:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

where:

[tex]f_{0}[/tex] is frequency of observer;

[tex]f_{s}[/tex] is frequency of source;

c is the constant speed of sound c = 340m/s;

[tex]v_{s}[/tex] is velocity of source;

Rearraging for frequency of source:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

[tex]f_{s} = f_{0}.\frac{c-v_{s}}{c}[/tex]

Replacing and calculating:

[tex]f_{s} = 9.(\frac{340-20}{340})[/tex]

[tex]f_{s} = 9.(0.9412)[/tex]

[tex]f_{s} =[/tex] 8.5

Frequency the horns emit is 8.5Hz.

The starter motor of a car engine draws a current of 140 A from the battery. The copper wire to the motor is 4.20 mm in diameter and 1.2 m long. The starter motor runs for 0.760 s until the car engine starts.Required:a. How much charge passes through the starter motor? b. How far does an electron travel along the wire while the starter motor is on?(mm)

Answers

Answer:

(a)106.4C

b)0.5676mm

Explanation:

(a)To get the charge that have passed through the starter then The current will be multiplied by the duration

I= current

t= time taken

Q= required charge

Q= I*t = 140*0.760 = 106.C

(b) b. How far does an electron travel along the wire while the starter motor is on?(mm)

diameter of the conductor is 4.20 mm

But Radius= diameter/2= 4.20/2=

The radius of the conductor is 2.1mm, then if we convert to metre for consistency same then

radius of the conductor is 0.0021m.

We can now calculate the area of the conductor which is

A = π*r^2

= π*(0.0021)^2 = 13.85*10^-6 m^2

We can proceed to calculate the current density below

J = 140/13.85*10^-6 = 10108303A/m

According to the listed reference:

Where e= 1.6*10^-19

n= 8.46*10^28

Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 ) =0.0007468m/s=0 .7468 mm/s

Therefore , the distance traveled is:

x = v*t = 0.7468 * 0.760 = 0.5676mm

(a) The charge passes through the starter motor is 106.4C.

(b) An electron travel along the wire while the starter motor is on 0.5676mm.

Electron

Answer (a)

I= current

t= time taken

Q= required charge

Q= I*t

Q= 140*0.760

Q= 106.C

Answer (b)

The n electron travel along the wire while the starter motor is on:

Diameter of the conductor is 4.20 mm

Radius= diameter/2= 4.20/2

Radius =2.1mm

Radius of the conductor is 0.0021m.

A = π*r^2

A= π*(0.0021)^2

A= 13.85*10^-6 m^2

Where e= 1.6*10^-19

n= 8.46*10^28

Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 )

Vd  =0.0007468m/s

Vd =0 .7468 mm/s

The distance traveled is:

x = v*t

x= 0.7468 * 0.760

x = 0.5676mm

Learn more about "Electron":

https://brainly.com/question/1255220?referrer=searchResults

An electron in a vacuum chamber is fired with a speed of 7400 km/s toward a large, uniformly charged plate 75 cm away. The electron reaches a closest distance of 15 cm before being repelled.

What is the plate's surface charge density?

Answers

Answer:

2.29e-9C/m²

Explanation:

Using E = σ/ε₀ means the force on the electron is F = eE = eσ/ε₀.

The work done on the electron is W = Fd = deσ/ε₀. This equals the kinetic energy lost, ½mv².

½mv² = deσ/ε₀

d = 75cm – 15cm = 60cm = 0.6m

σ = mv²ε₀/(2de)

. .= 9.11e-31 * (7.4e6)² * 8.85e-12 / (2 * 0.6 * 1.6e-19)

. .= 2.29e-9 C/m² (i.e. 2.29x10^-9 C/m²)

Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen?

Answers

Answer:

L = 0.8 m

Explanation:

Since, the distance between first and third dark fringes is 4 mm. Therefore, the fringe spacing between consecutive dark fringes will be:

Δx = 4 mm/2 = 2 mm = 2 x 10⁻³ m

but,

Δx = λL/d

λ = wavelength of the light = 500 nm = 5 x 10⁻⁷ m

d = slit spacing = 0.2 mm = 0.2 x 10⁻³ m

L = Distance between slits and screen = ?

Therefore, using the values, we get:

2 x 10⁻³ m = (5 x 10⁻⁷ m)(L)/(0.2 x 10⁻³)

L = (2 x 10⁻³ m)(0.2 x 10⁻³ m)/(5 x 10⁻⁷ m)

L = 0.8 m

If the magnetic field of an electromagnetic wave is in the +x-direction and the electric field of the wave is in the +y-direction, the wave is traveling in the

Answers

Answer:

The wave is travelling in the ±z-axis direction.

Explanation:

An electromagnetic wave has an oscillating magnetic and electric field. The electric and magnetic field both oscillate perpendicularly one to the other, and the wave travels perpendicularly to the direction of oscillation of the  electric and magnetic field.

In this case, if the magnetic field is in the +x-axis direction, and the electric field is in the +y-axis direction, we can say with all assurance that the wave will be travelling in the ±z-axis direction.

When a ray of light passes from glass to water it is?

Answers

Answer:

[tex]\huge\boxed{Refracted}[/tex]

Explanation:

When a ray of light passes from glass to water, it

1) is Slightly refracted (bending of light)

2) moves away from the normal.

Whenever a light ray travels from a denser medium to a rarer medium, it bends away from the normal.

Answer:

refraction

Explanation:

Question 5 of 10
Heat is being transferred through currents within a liquid. When will this heat
transfer mostly end?
O A. When the substance changes state and becomes a gas
O B. When the entire liquid is a single temperature
O C. When the substance is very hot on top and cold beneath
O D. When the particles stop bumping into each other
SUBMIT

Answers

Answer:

When the entire liquid is a single temperature

Explanation:

When a liquid is heated, a convection current is set up. Convection is the movement of

fluid particles in response to a temperature gradient.

When you start heating a liquid, the particles near the base of the heating vessel increase in temperature, become less dense and rise upwards while the denser particles move downwards. This convection current will continue until an equilibrium temperature is obtained throughout the liquid.

"How many wavelengths wide must a single slit be if, at a point 8o from the central maximum, there is a 72 rad phase difference between the top and bottom rays?"

Answers

Answer

82.3 wavelengths

A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction to the right when the driver turns on the motor. The boat speeds up for 6.0\,\text s6.0s6, point, 0, start text, s, end text with an acceleration of 4.0\,\dfrac{\text m}{\text s^2}4.0 s 2 m ​ 4, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction leftward.

Answers

The question is incomplete. Here is the entire question.

A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?

Answer: Δx = - 42m

Explanation: The jetboat is moving with an acceleration during the time interval, so it is a linear motion with constant acceleration.

For this "type" of motion, displacement (Δx) can be determined by:

[tex]\Delta x = v_{i}.t + \frac{a}{2}.t^{2}[/tex]

[tex]v_{i}[/tex] is the initial velocity

a is acceleration and can be positive or negative, according to the referential.

For Referential, let's assume rightward is positive.

Calculating displacement:

[tex]\Delta x = 5(6) - \frac{4}{2}.6^{2}[/tex]

[tex]\Delta x = 30 - 2.36[/tex]

[tex]\Delta x[/tex] = - 42

Displacement of the boat for t=6.0s interval is [tex]\Delta x[/tex] = - 42m, i.e., 42 m to the left.

What is the speed of light (in m/s) in air? (Enter your answer to at least four significant figures. Assume the speed of light in a vacuum is 2.997 ✕ 108 m/s.) m/s What is the speed of light (in m/s) in polystyrene? m/s

Answers

Answer:

The speed of light in air is 2.996x10⁸ m/s, and polystyrene is 1.873x10⁸ m/s.

Explanation:

To find the speed of light in air and in polystyrene we need to use the following equation:

[tex] c_{m} = \frac{c}{n} [/tex]

Where:

[tex]c_{m}[/tex]: is the speed of light in the medium

n: is the refractive index of the medium

In air:

[tex]c_{a} = \frac{c}{n_{a}} = \frac{2.997 \cdot 10^{8} m/s}{1.0003} = 2.996 \cdot 10^{8} m/s[/tex]

In polystyrene:

[tex]c_{p} = \frac{c}{n_{p}} = \frac{2.997 \cdot 10^{8} m/s}{1.6} = 1.873 \cdot 10^{8} m/s[/tex]  

Therefore, the speed of light in air is 2.996x10⁸ m/s, and polystyrene is 1.873x10⁸ m/s.

I hope it helps you!

a solenoid that is 98.6 cm long has a cross-sectional area of 24.3 cm2. There are 1310 turns of a wire carrying a current of

Answers

Complete question:

A solenoid that is 98.6 cm long has a cross-sectional area of 24.3 cm2. There are 1310 turns of a wire carrying a current of 6.75 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy stored in the magnetic field there (neglect end effects).

Answer:

(a) the energy density of the magnetic field inside the solenoid is 50.53 J/m³

(b) the total energy stored in the magnetic field is 0.121 J

Explanation:

Given;

length of the solenoid, L = 98.6 cm = 0.986 m

cross-sectional area of the solenoid, A = 24.3 cm² = 24.3 x 10⁻⁴ m²

number of turns of the solenoid, N = 1310 turns

The magnitude of the magnetic field inside the solenoid is given by;

B = μ₀nI

B = μ₀(N/L)I

Where;

μ₀ is permeability of free space, = 4π x 10⁻⁷ m/A

[tex]B = \frac{4\pi*10^{-7}*1310*6.75}{0.986} \\\\B = 0.01127 \ T[/tex]

(a) Calculate the energy density of the magnetic field inside the solenoid

[tex]u = \frac{B^2}{2 \mu_o}\\\\u = \frac{(0.01127)^2}{2*4\pi *10^{-7}} \\\\u = 50.53 \ J/m^3[/tex]

(b) Find the total energy stored in the magnetic field

U = uV

U = u (AL)

U = 50.53 (24.3 x 10⁻⁴  x 0.986)

U = 0.121 J

A converging lens 7.50 cm in diameter has a focal length of 330 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of resolving power of the human eye. Part A If the resolution is diffraction limited, how far away can an object be if points on it transversely 4.10 mm apart are to be resolved (according to Rayleigh's criterion) by means of light of wavelength 600 nm

Answers

Answer:

D Is 430m

Explanation:

See attached file

Mars Rover When the Mars rover was deployed on the surface of Mars in July 1997, radio signals took about 12 minmin to travel from Earth to the rover.
How far was Mars from Earth at that time?

Answers

Answer:

s = 2.16 x 10¹¹ m

Explanation:

Since, the waves travelling from Earth to the Mars rover are electromagnetic. Therefore, there speed must be equal to the speed of light. So, from the equation given below:

s = vt

where,

s = the distance between Earth and Mars = ?

v = speed of the wave = speed of light = 3 x 10⁸ m/s

t = time taken by the radio signals to reach the rover from Earth

t = (12 min)(60 s/1 min) = 720 s

Therefore,

s = (3 x 10⁸ m/s)(720 s)

s = 2.16 x 10¹¹ m

When the magnet falls toward the copper block, the changing flux in the copper creates eddy currents that oppose the change in flux. The resulting braking force between the magnet and the copper block always opposes the motion of the magnet, slowing it as it falls. The braking force on the magnet is nearly equal to its weight, so it falls very slowly. The rate of the fall produces a rate of flux change sufficient to produce a current that provides the braking force. If the magnet is pushed, forcefully, toward the block, the rate of change of flux is much higher than this. When the magnet is moving much more quickly than it will fall unaided, what is the direction of the net force on the magnet?

Answers

Answer:

The net force is directed downwards.

Explanation:

Since the magnet is falling much more faster than it would unaided, then there is a net force that is accelerating the magnet downwards. We know that acceleration is due to a force acting on a mass, and in this case, the magnet is the mass. Also, the acceleration is always in the direction of the force producing it, which means that the net force on the magnet is vertically downwards.

You have a horizontal grindstone (a disk) that is 95 kg, has a 0.38 m radius, is turning at 87 rpm (in the positive direction), and you press a steel axe against the edge with a force of 16 N in the radial direction.
(a) Assuming the kinetic coefficient of friction between steel and stone is 0.20, calculate the angular acceleration of the grindstone.
(b) How many turns will the stone make before coming to rest?

Answers

Answer:

Explanation:

The moment of inertia of the disk I  = 1/2 m R² where R is radius of the disc and m is its mass .

putting the values

I = .5 x 95 x .38²

= 6.86 kg m²

n = 87 rpm = 87 / 60 rps

n = 1.45 rps

angular velocity ω = 2π n , n is frequency of rotation .

= 2 x 3.14 x 1.45

= 9.106 radian /s

frictional force = 16 x .2

= 3.2 N

torque created by frictional force = 3.2 x .38

= 1.216 N.m

angular acceleration = torque / moment of inertia

= - 3.2 / 6.86

α  = - 0.4665 rad /s²

b ) ω² = ω₀² +  2 α θ , where α is angular acceleration

0 = 9.106² - 2 x .4665 θ

θ = 88.87 radian

no of turns = 88.87 / 2π

= 14.15  turns

What is the smallest value of n for which the wavelength of a Balmer series line is less than 400 nm

Answers

Answer:

The smallest value is n= 2

Explanation:

The balmer equation is given below

1/λ = R(1/4 - 1/n₂²).

R= 1.0973731568508 × 10^7 m^-1

λ= 400*10^-9 m

(400*10^-9)= 1.0973731568508 × 10^7 (1/4-1/n²)

(400*10^-9)/1.0973731568508 × 10^7

= 1/4 - 1/n²

364.51 *10^-16= 1/4 - 1/n²

1/n²= 1/4 -364.51 *10^-16

1/n² = 0.25-3.6451*10^-14

1/0.25= n²

4= n²

√4= n

2= n

The smallest value is N= 2

Sunlight reflected from a smooth ice surface is completely polarized. Determine the angle of incidence. (nice = 1.31.)

Answers

Answer:

Explanation:

We shall apply Brewster's law to solve the problem . Let i be the angle of reflection required. According to this law ,

tan i = μ where i is angle of incidence , μ is refractive index of the medium .

Here i = ? , μ = 1.31

tani = 1.31

i = 53° approx .

At the angle of 53° incidence , the reflected ray will be completely polarised .

A scuba diver fills her lungs to capacity (6.0 L) when 10.0 m below the surface of the water and begins to ascend to the surface. Assume the density of the water in which she is swimming is 1000 kg/m3 and use g = 10 m/s2A. Assuming the temperature of the air in her lungs is constant, to what volume must her lungs expand when she reaches the surface of the water?B. What effect would the warming of the air in her lungs have on the volume needed when she surfaces?C. Assuming the temperature of the air in her lungs is constant, what effect does her ascent have on the vrms of the air molecules in her lungs?

Answers

Answer:

Explanation:

As temperature is constant , we shall apply Boyle's law

P₁V₁ = P₂V₂

P₁ = pressure at depth of 10 m

= P + hdg , h = 10 , d = 10³ , g = 10

P is atmospheric pressure which is 10⁵ Pa

P₁ = 10⁵ + 10 x 10³ x 10

= 2 x 10⁵

applying the formula

2 x 10⁵ x 6 = 10⁵ x v

v = 2 x 6 = 12 L

volume will be doubled at the surface .

B )

warming of air at the surface will increase the volume of air in her lungs so so she will need more lung capacity .

C )

The rms value of a gas depends upon the temperature of the gas . As temperature of the gas is constant , the rms value of the gas particles will remain constant when she goes to the surface .

The lungs will expand 12 L when she reaches the surface of the water, and the warming of the air results in more lung capacity, and [tex]\rm V_{rms}[/tex] the value remains the same.

What is Boyle's law?

According to the law, the pressure of the gas is inversely proportional to the volume of the gas. In other words when the pressure of the gas increases the volume of the gas decreases.

We know the pressure at the 10 meters depth:

[tex]\rm P_1 = P+h\times \rho\times g[/tex]

Where P = Atmospheric pressure

            h = Depth

            ρ =Density of the water

We have: [tex]\rm P = 10^5 \ Pa[/tex], h = 10 meters, and [tex]\rm \rho = 1000 \ kg/m^3[/tex], and [tex]\rm g = 10 \ m/s^2[/tex]

Putting the values in the above equation, we get:

[tex]\rm P_1 = 10^5+ 10\times 1000\times 10[/tex]

[tex]\rm P_1 = 2\times 10^5[/tex]

From the Boyle's law:

[tex]\rm P_1\times V_1 = P_2\times V_2[/tex]

[tex]\rm 2\times10^5\times 6 = 10^5\times V_2[/tex]

[tex]\rm V_2 = 12 \ L[/tex]

We know that as the air at the surface warms, the volume of air in her lungs expands, requiring more lung capacity.

The temperature of the gas is constant and [tex]\rm V_{rms}[/tex] values for gas depend on the temperature of the gas, but here the temperature of the gas is constant thus, the  [tex]\rm V_{rms}[/tex] will remains constant.

Thus, the lungs will expand 12 L when she reaches the surface of the water, and the warming of the air results in more lung capacity, and [tex]\rm V_{rms}[/tex] the value remains the same.

Learn more about the Boyle's law here:

https://brainly.com/question/23715689

An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient of 25 × 10-6 C-1.

Answers

Answer:

the new length is 17.435cm

Explanation:

the new length is 17.435cm

pls give brainliest

The new length of aluminum rod is 17.435 cm.

The linear expansion coefficient is given as,

                      [tex]\alpha=\frac{L_{1}-L_{0}}{L_{0}(T_{1}-T_{0})}[/tex]

Given that, An aluminum rod 17.400 cm long at 20°C is heated to 100°C.

and linear expansion coefficient is [tex]25*10^{-6}C^{-1}[/tex]

Substitute,  [tex]L_{0}=17.400cm,T_{1}=100,T_{0}=20,\alpha=25*10^{-6}C^{-1}[/tex]

                   [tex]25*10^{-6}C^{-1} =\frac{L_{1}-17.400}{17.400(100-20)}\\\\25*10^{-6}C^{-1} = \frac{L_{1}-17.400}{1392} \\\\L_{1}=[25*10^{-6}C^{-1} *1392}]+17.400\\\\L_{1}=17.435cm[/tex]

Hence, The new length of aluminum rod is 17.435 cm.

Learn more:

https://brainly.com/question/19495810

Describe how, using a positively-charged rod and two neutral metal spheres, we canmake one sphere positive without touching it to the rod. You might want to draw adiagram to help you.

Answers

Answer:

se the principle of induction.

place the two metallic spheres together,  now we bring the positively charged bar closer to the first sphere.

The charge that was induced in the sphere is distributed as infirm as possible,

At this time I separate the spheres and move the bar away, by separating the spheres the excess positive

Explanation:

For this exercise we will use that the electric charge is not created, it is not destroyed and charges of the same sign repel.

Let's use the principle of induction. We place the two metallic spheres together, one in front of the other, now we bring the positively charged bar closer to the first sphere.

Here the positive charge of the bar repels the positive charge of the sphere, but as this is mocil it moves as far away as possible, until the negative charge that remains neutralizes the positive charge of the bar.

The charge that was induced in the sphere is distributed as infirm as possible, most of it in the furthest sphere, since the Coulomb force decreases.

At this time I separate the spheres and move the bar away, by separating the spheres the excess positive charge in the last sphere cannot be neutralized, therefore this sphere remains with a positive charge.

Other Questions
Given \qquad m \angle LONmLONm, angle, L, O, N is a straight angle. \qquad m \angle MON = 8x - 13^\circmMON=8x13 m, angle, M, O, N, equals, 8, x, minus, 13, degrees \qquad m \angle LOM = 7x - 17^\circmLOM=7x17 m, angle, L, O, M, equals, 7, x, minus, 17, degrees Find m\angle MONmMONm, angle, M, O, N: The weight of an object on moon is 1/6 of its weight on Earth. If an object weighs 1535 kg on Earth. How much would it weigh on the moon? In James Joyce's "Araby," the narrator uses light and dark imagery to set the tone and mood of the story and also to describe the nature of life on the street on which he lived. Which word from this excerpt indicates the streets dead-end location and its dullness? Ahmad the trainer has two solo workout plans that he offers his clients: Plan A and Plan B. Each client does either one or the other (not both). On Monday there were clients 3 who did Plan A and 2 who did Plan B. On Tuesday there were 5 clients who did Plan A and 6 who did Plan B. Ahmad trained his Monday clients for a total of 3 hours and his Tuesday clients for a total of 7 hours. How long does each of the workout plans last? please help The Project Evaluation and Review Technique (PERT) was developed as a means of scheduling and controlling projects with constant activity times. Group of answer choices False True Quilcene Oysteria farms and sells oysters in the Pacific Northwest. The company harvested and sold 7,100 pounds of oysters in August. The companys flexible budget for August appears below: Quilcene Oysteria Flexible Budget For the Month Ended August 31 Actual pounds (q) 7,100 Revenue ($4.10q) $ 29,110 Expenses: Packing supplies ($0.25q) 1,775 Oyster bed maintenance ($3,500) 3,500 Wages and salaries ($2,600 + $0.45q) 5,795 Shipping ($0.55q) 3,905 Utilities ($1,270) 1,270 Other ($450 + $0.01q) 521 Total expense 16,766 Net operating income $ 12,344 The actual results for August appear below: Quilcene Oysteria Income Statement For the Month Ended August 31 Actual pounds 7,100 Revenue $ 27,500 Expenses: Packing supplies 1,945 Oyster bed maintenance 3,360 Wages and salaries 6,205 Shipping 3,635 Utilities 1,080 Other 1,141 Total expense 17,366 Net operating income $ 10,134 Required: Calculate the companys revenue and spending variances for August. (Indicate the effect of each variance by selecting "F" for favorable, "U" for unfavorable, and "None" for no effect (i.e., zero variance). Input all amounts as positive values.) What is the weight of pure composed atmos element combined in definite proportion What is 10+x-15-3x please The length of the segment between the points $(2a, a-4)$ and $(4, -1)$ is $2\sqrt{10}$ units. What is the product of all possible values for $a$? LOTS OF POINTS AND BRAINLIEST TO CORRECT ANSWER! Based on the passage, which to conclusions can you draw about religion in ancient EgyptPlato How many heartbeats in a typical human lifetime? Enter your answer as a number (NOT as a power of ten) and in one significant figure. On January 1, Year 1, St. Clair Corporation issues 7%, 11-year bonds with a face amount of $90,000 for $83,497. The market interest rate is 8%. Interest is paid semiannually on June 30 and December 31. Complete the necessary journal entry for the issuance of the bonds by selecting the account names from the drop-down menus and entering the associated dollar amounts. two years ago a woman wad 7 times as old as her daughter, but in 3 years time she would be x times as old as the girl. how old are they now? Ornaments, Inc., is an all-equity firm with a total market value of $597,000 and 26,200 shares of stock outstanding. Management believes the earnings before interest and taxes (EBIT) will be $84,900 if the economy is normal. If there is a recession, EBIT will be 20 percent lower, and if there is a boom, EBIT will be 30 percent higher. The tax rate is 34 percent. What is the EPS in a recession Una profesora compra 28 manzanas para compartir con sus estudiantes; al da siguiente revisa la cesta con las frutas y ve que se le han daado 2/7 del total de manzanas que haba comprado. Para reponer las frutas daadas ella debe comprar Write a verbal expression for each algebraic expression. 1. w to the 4th power 2. 3. (3 - x)) 9. The standard method of testing for HIV include the following: A. O The SUDS Test B. O The EIA Test C. O The Western Blot D. O All of the above When the President provides leadership on an important moral issue, he is acting as the nations _____. A. chief citizen B. chief diplomat C. chief of party D. chief administrator Advantages of using a resource person in handling the first aid lesson Use the following equation to determine the charge on bromine when it dissociates from sodium and determine whether it is being oxidized or reduced: Cl2 + NaBr -> NaCl + Br2A. It starts with a charge of 0 and is oxidized. B. It starts with a charge of -1 and is reduced. C. It starts with a charge of 0 and is reduced. D. It starts with a charge of -1 and is oxidized.