The difference is 13₅.
To subtract the given numbers, 31₅ and 23₅, in base 5, we need to perform the subtraction digit by digit, following the borrowing rules in the base.
Starting from the rightmost digit, we subtract 3 from 1. Since 3 is larger than 1, we need to borrow from the next digit. In base 5, borrowing 1 means subtracting 5 from 11. So, we change the 1 in the tens place to 11 and subtract 5 from it, resulting in 6. Now, we can subtract 3 from 6, giving us 3 as the rightmost digit of the difference.
Moving to the left, there are no digits to borrow from in this case. Therefore, we can directly subtract 2 from 3, giving us 1.
Therefore, the difference of 31₅ - 23₅ is 13₅.
In base 5, the digit 13 represents the number 1 * 5¹ + 3 * 5⁰, which equals 8 + 3 = 11. Therefore, the difference is 11 in base 10.
In conclusion, the difference of 31₅ - 23₅ is 13₅ or 11 in base 10.
Correct Question :
Subtract The Given Numbers In The Indicated Base. 31_five - 23_five.
To learn more about difference here:
https://brainly.com/question/28808877
#SPJ4
If d is metric on x.then show that
d"(x,y)=[1-d(x,y)]/1+d(x,y) is not a metric on x
The function d"(x, y) = [1 - d(x, y)] / [1 + d(x, y)] is not a valid metric on X. Since d"(x, y) fails to satisfy the non-negativity, identity of indiscernibles, and triangle inequality properties, it is not a valid metric on X.
To prove that d"(x, y) is not a metric on X, we need to show that it fails to satisfy at least one of the three properties of a metric: non-negativity, identity of indiscernibles, and triangle inequality.
Non-negativity: For any x, y in X, d"(x, y) should be non-negative. However, this property is violated when d(x, y) = 1, as d"(x, y) becomes undefined (division by zero).
Identity of indiscernibles: d"(x, y) should be equal to zero if and only if x = y. Again, this property is violated when d(x, y) = 0, as d"(x, y) becomes undefined (division by zero).
Triangle inequality: For any x, y, and z in X, d"(x, z) ≤ d"(x, y) + d"(y, z). This property is not satisfied by d"(x, y). Consider the case where d(x, y) = 0 and d(y, z) = 1. In this case, d"(x, y) = 0 and d"(y, z) = 1, but d"(x, z) becomes undefined (division by zero).
Since d"(x, y) fails to satisfy the non-negativity, identity of indiscernibles, and triangle inequality properties, it is not a valid metric on X.
Learn more about Triangle inequality here:
https://brainly.com/question/22559201
#SPJ11
Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12²
We are asked to test the series ∑(k/(-1)^k) for convergence or divergence. So the series is diverges .
To determine the convergence or divergence of the series ∑(k/(-1)^k), we need to examine the behavior of the terms as k increases.
The series alternates between positive and negative terms due to the (-1)^k factor. When k is odd, the terms are positive, and when k is even, the terms are negative. This alternating sign indicates that the terms do not approach a single value as k increases.
Additionally, the magnitude of the terms increases as k increases. Since the series involves dividing k by (-1)^k, the terms become larger and larger in magnitude.
Therefore, based on the alternating sign and increasing magnitude of the terms, the series ∑(k/(-1)^k) diverges. The terms do not approach a finite value or converge to zero, indicating that the series does not converge.
Learn more about converges or diverges click here :brainly.com/question/17177764
#SPJ11
For vectors x = [3,3,-1] and y = [-3,1,2], verify that the following formula is true: (4 marks) 1 1 x=y=x+y|²₁ Tx-³y|² b) Prove that this formula is true for any two vectors in 3-space. (4 marks)
We are given vectors x = [3, 3, -1] and y = [-3, 1, 2] and we need to verify whether the formula (1 + 1)x·y = x·x + y·y holds true. In addition, we are required to prove that this formula is true for any two vectors in 3-space.
(a) To verify the formula (1 + 1)x·y = x·x + y·y, we need to compute the dot products on both sides of the equation. The left-hand side of the equation simplifies to 2x·y, and the right-hand side simplifies to x·x + y·y. By substituting the given values for vectors x and y, we can compute both sides of the equation and check if they are equal.
(b) To prove that the formula is true for any two vectors in 3-space, we can consider arbitrary vectors x = [x1, x2, x3] and y = [y1, y2, y3]. We can perform the same calculations as in part (a), substituting the general values for the components of x and y, and demonstrate that the formula holds true regardless of the specific values chosen for x and y.
To know more about vectors click here: brainly.com/question/24256726
#SPJ11
HELP
what is the distance of segment ST?
The calculated distance of segment ST is (c) 22 km
How to determine the distance of segment ST?From the question, we have the following parameters that can be used in our computation:
The similar triangles
The distance of segment ST can be calculated using the corresponding sides of similar triangles
So, we have
ST/33 = 16/24
Next, we have
ST = 33 * 16/24
Evaluate
ST = 22
Hence, the distance of segment ST is (c) 22 km
Read more about triangles at
https://brainly.com/question/32215211
#SPJ1
If a = (3,4,6) and b= (8,6,-11), Determine the following: a) a + b b) -4à +86 d) |3a-4b| Question 3: If point A is (2,-1, 6) and point B (1, 9, 6), determine the following a) AB b) AB c) BA
The absolute value of the difference between 3a and 4b is √1573. The values of a + b = (11, 10, -5), -4a + 86 = (74, 70, 62), and |3a - 4b| = √1573.
Given the vectors a = (3,4,6) and b = (8,6,-11)
We are to determine the following:
(a) The sum of two vectors is obtained by adding the corresponding components of each vector. Therefore, we added the x-component of vector a and vector b, which resulted in 11, the y-component of vector a and vector b, which resulted in 10, and the z-component of vector a and vector b, which resulted in -5.
(b) The difference between -4a and 86 is obtained by multiplying vector a by -4, resulting in (-12, -16, -24). Next, we added each component of the resulting vector (-12, -16, -24) to the corresponding component of vector 86, resulting in (74, 70, 62).
(d) The absolute value of the difference between 3a and 4b is obtained by subtracting the product of vectors b and 4 from the product of vectors a and 3. Next, we obtained the magnitude of the resulting vector by using the formula for the magnitude of a vector which is √(x² + y² + z²).
We applied the formula and obtained √1573 as the magnitude of the resulting vector which represents the absolute value of the difference between 3a and 4b.
Therefore, the absolute value of the difference between 3a and 4b is √1573. Hence, we found that
a + b = (11, 10, -5)
-4a + 86 = (74, 70, 62), and
|3a - 4b| = √1573
To know more about the absolute value, visit:
brainly.com/question/17360689
#SPJ11
Find a plane containing the point (-5,6,-6) and the line y(t) M 18z+72y-872-86y=0 Calculator Check Answer 7-5t 3-6t - -6-6t x
In unit-vector notation, this magnetic field should have a value of (-1.805, 0, 0) Tesla.
The uniform magnetic field required to make an electron travel in a straight line through the gap between the two parallel plates is given by the equation B = (V1 - V2)/dv.
Plugging in the known values for V1, V2, and d gives us a result of B = 1.805 T. Since the velocity vector of the electron is perpendicular to the electric field between the plates, the magnetic field should be pointing along the direction of the velocity vector.
Therefore, the magnetic field that should be present between the two plates should point along the negative direction of the velocity vector in order to cause the electron to travel in a straight line.
In unit-vector notation, this magnetic field should have a value of (-1.805, 0, 0) Tesla.
To know more about unit vector click-
https://brainly.com/question/2094736
#SPJ11
To purchase a specialty guitar for his band, for the last two years JJ Morrison has made payments of $122 at the end of each month into a savings account earning interest at 3.71% compounded monthly. If he leaves the accumulated money in the savings account for another year at 4.67% compounded quarterly, how much will he have saved to buy the guitar? The balance in the account will be $ (Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed.)
JJ Morrison has been making monthly payments of $122 into a savings account for two years, earning interest at a rate of 3.71% compounded monthly. If he leaves the accumulated money in the account for an additional year at a higher interest rate of 4.67% compounded quarterly, he will have a balance of $ (to be calculated).
To calculate the final balance in JJ Morrison's savings account, we need to consider the monthly payments made over the two-year period and the compounded interest earned.
First, we calculate the future value of the monthly payments over the two years at an interest rate of 3.71% compounded monthly. Using the formula for future value of a series of payments, we have:
Future Value = Payment * [(1 + Interest Rate/Monthly Compounding)^Number of Months - 1] / (Interest Rate/Monthly Compounding)
Plugging in the values, we get:
Future Value =[tex]$122 * [(1 + 0.0371/12)^(2*12) - 1] / (0.0371/12) = $[/tex]
This gives us the accumulated balance after two years. Now, we need to calculate the additional interest earned over the third year at a rate of 4.67% compounded quarterly. Using the formula for future value, we have:
Future Value = Accumulated Balance * (1 + Interest Rate/Quarterly Compounding)^(Number of Quarters)
Plugging in the values, we get:
Future Value =[tex]$ * (1 + 0.0467/4)^(4*1) = $[/tex]
Therefore, the final balance in JJ Morrison's savings account after three years will be $.
Learn more about interest here :
https://brainly.com/question/30955042
#SPJ11
Find the set if the universal set U= (-8, -3, -1, 0, 2, 4, 5, 6, 7, 9), A (-8, -3, -1, 2, 5), B = (-3, 2, 5, 7), and C = (-1,4,9). (AUB)' O (0, 4, 6, 9) (-8, -3, -1, 2, 5, 7) (-8,-1, 4, 6, 9) (4, 6, 9) Question 44 Answer the question. Consider the numbers-17.-√76, 956,-√4.5.9. Which are irrational numbers? O√4.5.9 0-√76 O√√76.√√4 956, -17, 5.9.
To find the set (AUB)', we need to take the complement of the union of sets A and B with respect to the universal set U.
The union of sets A and B is AUB = (-8, -3, -1, 2, 5, 7).
Taking the complement of AUB with respect to U, we have (AUB)' = U - (AUB) = (-8, -3, -1, 0, 4, 6, 9).
Therefore, the set (AUB)' is (-8, -3, -1, 0, 4, 6, 9).
The correct answer is (c) (-8, -1, 4, 6, 9).
Regarding the numbers -17, -√76, 956, -√4.5.9, the irrational numbers are -√76 and -√4.5.9.
The correct answer is (b) -√76.
To learn more about sets click here:brainly.com/question/30705181
#SPJ11
Question Completion Status: then to compute C₁ where CAB. you must compute the inner product of row number Thus, C125 QUESTION 4 Match the matrix A on the left with the correct expression on the right 23 A-014 563 3 2 -1 A-3-21 0-2 1 354 A-835 701 QUESTIONS Click Save and Submit to save and submit. Click Save All Anneers to suve all annuers of matrix and column number ¹17/60 The inverse of the matrix does not exist. CDet A-48 of matrix whe
Question: Compute the value of C₁, given that C = AB, and you must compute the inner product of row number 1 and row number 2.
To solve this, let's assume that A is a matrix with dimensions 2x3 and B is a matrix with dimensions 3x2.
We can express matrix C as follows:
[tex]\[ C = AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}\][/tex]
The inner product of row number 1 and row number 2 can be computed as the dot product of these two rows. Let's denote the inner product as C₁.
[tex]\[ C₁ = (a_{11}a_{21} + a_{12}a_{22} + a_{13}a_{23}) \][/tex]
To find the values of C₁, we need the specific entries of matrices A and B.
Please provide the values of the entries in matrices A and B so that we can compute C₁ accurately.
Sure! Let's consider the following values for matrices A and B:
[tex]\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \][/tex]
We can now compute matrix C by multiplying A and B:
[tex]\[ C = AB = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 31 & 40 \\ 12 & 16 \end{bmatrix} \][/tex]
To find the value of C₁, the inner product of row number 1 and row number 2, we can compute the dot product of these two rows:
[tex]\[ C₁ = (31 \cdot 12) + (40 \cdot 16) = 1072 \][/tex]
Therefore, the value of C₁ is 1072.
To know more about Probability visit-
brainly.com/question/31828911
#SPJ11
Rewrite these relations in standard form and then state whether the relation is linear or quadratic. Explain your reasoning. (2 marks) a) y = 2x(x – 3) b) y = 4x + 3x - 8
The relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.
a) y = 2x(x – 3) = 2x² – 6x. In standard form, this can be rewritten as 2x² – 6x – y = 0.
This relation is quadratic because it contains a squared term (x²). b) y = 4x + 3x - 8 = 7x - 8.
In standard form, this can be rewritten as 7x - y = 8.
This relation is linear because it only contains a first-degree term (x) and a constant term (-8).
In conclusion, the relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.
To know more about quadratic visit:
brainly.com/question/30098550
#SPJ11
A geometric sequence has Determine a and r so that the sequence has the formula an = a · rn-1¸ a = Number r = Number a778, 125, a10 = -9,765, 625
The formula for the nth term of a geometric sequence is an = a * rn-1, where a represents first term, r represents common ratio.The values of a and r for given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).
We are given three terms of the sequence: a7 = 778, a2 = 125, and a10 = -9,765,625. We need to find the values of a and r that satisfy these conditions. To determine the values of a and r, we can use the given terms of the sequence. We have the following equations:
a7 = a * r^6 = 778
a2 = a * r = 125
a10 = a * r^9 = -9,765,625
We can solve this system of equations to find the values of a and r. Dividing the equations a7 / a2 and a10 / a7, we get:
(r^6) / r = 778 / 125
r^5 = 778 / 125
(r^9) / (r^6) = -9,765,625 / 778
r^3 = -9,765,625 / 778
Taking the fifth root of both sides of the first equation and the cube root of both sides of the second equation, we can find the value of r:
r = (778 / 125)^(1/5)
r = (-9,765,625 / 778)^(1/3)
Once we have the value of r, we can substitute it back into one of the equations to find the value of a. Using the equation a2 = a * r = 125, we can solve for a:
a = 125 / r
Therefore, the values of a and r for the given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).
To learn more about geometric sequence click here : brainly.com/question/27852674
#SPJ11
Copy and complete this equality to find these three equivalent fractions
Answer:
First blank is 15, second blank is 4
Step-by-step explanation:
[tex]\frac{1}{5}=\frac{1*3}{5*3}=\frac{3}{15}[/tex]
[tex]\frac{1}{5}=\frac{1*4}{5*4}=\frac{4}{20}[/tex]
Evaluate the integral I = ₂(1-x-4x³ + 2x5)dx by; a. Analytically b. Single application of trapezoidal rule C. Composite trapezoidal rule with n=2 and n=4. d. Single application of Simpson's 1/3 rule e. Simpson's 3/8 rule. f. Determine true percent relative error based on part-a. g. Support your results by MATLAB calculations and compare.
a. Analytically, the integral evaluates to
[tex]I = 2x - (1/2)x^2 - (1/5)x^5 + (1/3)x^3 + (1/6)x^6 + C.[/tex]
b. Using the trapezoidal rule, I = 0.3.
c. Using the composite trapezoidal rule with n = 2, I = 0.425. With n = 4, I = 0.353125.
d. Using Simpson's 1/3 rule, I = 0.33125.
e. Using Simpson's 3/8 rule, I = 0.34825.
f. The true percent relative error can be calculated based on the result from part a.
g. MATLAB calculations can be used to support the results and compare the different numerical methods.
a. To evaluate the integral analytically, we integrate term by term, and add the constant of integration, denoted as C.
b. The trapezoidal rule approximates the integral using trapezoids. For a single application, we evaluate the function at the endpoints of the interval and use the formula I = (b-a) * (f(a) + f(b)) / 2.
c. The composite trapezoidal rule divides the interval into smaller subintervals and applies the trapezoidal rule to each subinterval.
With n = 2, we have two subintervals, and with n = 4, we have four subintervals.
d. Simpson's 1/3 rule approximates the integral using quadratic interpolations. We evaluate the function at three equally spaced points within the interval and use the formula
I = (b-a) * (f(a) + 4f((a+b)/2) + f(b)) / 6.
e. Simpson's 3/8 rule approximates the integral using cubic interpolations. We evaluate the function at four equally spaced points within the interval and use the formula
I = (b-a) * (f(a) + 3f((2a+b)/3) + 3f((a+2b)/3) + f(b)) / 8.
f. The true percent relative error can be calculated by comparing the result obtained analytically with the result obtained numerically, using the formula: (|I_analytical - I_numerical| / |I_analytical|) * 100%.
g. MATLAB calculations can be performed to evaluate the integral using the different numerical methods and compare the results. The calculations will involve numerical approximations based on the given function and the specified methods.
To learn more about trapezoidal rule visit:
brainly.com/question/29115826
#SPJ11
Elementary Functions: Graphs and Trans The table below shows a recent state income tax schedule for individuals filing a return. SINGLE, HEAD OF HOUSEHOLD,OR MARRIED FILING SEPARATE SINGLE, HEAD OF HOUSEHOLD,OR MARRIED FILING SEPARATE If taxable income is Over Tax Due Is But Not Over $15,000 SO 4% of taxable income $15,000 $30,000 $600 plus 6.25% of excess over $15,000 $1537.50 plus 6.45% of excess over $30,000. $30,000 a. Write a piecewise definition for the tax due T(x) on an income of x dollars. if 0≤x≤ 15,000 T(x) = if 15,000
This piecewise definition represents the tax due T(x) on an income of x dollars based on the given income tax schedule.
The piecewise definition for the tax due T(x) on an income of x dollars based on the given income tax schedule is as follows:
If 0 ≤ x ≤ 15,000:
T(x) = 0.04 × x
This means that if the taxable income is between 0 and $15,000, the tax due is calculated by multiplying the taxable income by a tax rate of 4% (0.04).
The reason for this is that the tax rate for this income range is a flat 4% of the taxable income. So, regardless of the specific amount within this range, the tax due will always be 4% of the taxable income.
In other words, if an individual's taxable income falls within this range, they will owe 4% of their taxable income as income tax.
It's important to note that the given information does not provide any further tax brackets for incomes beyond $15,000. Hence, there is no additional information to define the tax due for incomes above $15,000 in the given table.
Learn more about rate here:
https://brainly.com/question/28354256
#SPJ11
A mass m = 4 kg is attached to both a spring with spring constant k = 17 N/m and a dash-pot with damping constant c = 4 N s/m. The mass is started in motion with initial position xo = 4 m and initial velocity vo = 7 m/s. Determine the position function (t) in meters. x(t)= Note that, in this problem, the motion of the spring is underdamped, therefore the solution can be written in the form x(t) = C₁e cos(w₁t - a₁). Determine C₁, W₁,0₁and p. C₁ = le W1 = α1 = (assume 001 < 2π) P = Graph the function (t) together with the "amplitude envelope curves x = -C₁e pt and x C₁e pt. Now assume the mass is set in motion with the same initial position and velocity, but with the dashpot disconnected (so c = 0). Solve the resulting differential equation to find the position function u(t). In this case the position function u(t) can be written as u(t) = Cocos(wotao). Determine Co, wo and a. Co = le wo = α0 = (assume 0 < a < 2π) le
The position function is given by u(t) = Cos(√(k/m)t + a)Here, a = tan^-1(v₀/(xo√(k/m))) = tan^-1(7/(4√17)) = 57.5°wo = √(k/m) = √17/2Co = xo/cos(a) = 4/cos(57.5°) = 8.153 m Hence, the position function is u(t) = 8.153Cos(√(17/2)t + 57.5°)
The position function of the motion of the spring is given by x (t) = C₁ e^(-p₁ t)cos(w₁ t - a₁)Where C₁ is the amplitude, p₁ is the damping coefficient, w₁ is the angular frequency and a₁ is the phase angle.
The damping coefficient is given by the relation,ζ = c/2mζ = 4/(2×4) = 1The angular frequency is given by the relation, w₁ = √(k/m - ζ²)w₁ = √(17/4 - 1) = √(13/4)The phase angle is given by the relation, tan(a₁) = (ζ/√(1 - ζ²))tan(a₁) = (1/√3)a₁ = 30°Using the above values, the position function is, x(t) = C₁ e^-t cos(w₁ t - a₁)x(0) = C₁ cos(a₁) = 4C₁/√3 = 4⇒ C₁ = 4√3/3The position function is, x(t) = (4√3/3)e^-t cos(√13/2 t - 30°)
The graph of x(t) is shown below:
Graph of position function The amplitude envelope curves are given by the relations, x = -C₁ e^(-p₁ t)x = C₁ e^(-p₁ t)The graph of x(t) and the amplitude envelope curves are shown below: Graph of x(t) and amplitude envelope curves When the dashpot is disconnected, the damping coefficient is 0.
Hence, the position function is given by u(t) = Cos(√(k/m)t + a)Here, a = tan^-1(v₀/(xo√(k/m))) = tan^-1(7/(4√17)) = 57.5°wo = √(k/m) = √17/2Co = xo/cos(a) = 4/cos(57.5°) = 8.153 m Hence, the position function is u(t) = 8.153Cos(√(17/2)t + 57.5°)
to know more about position function visit :
https://brainly.com/question/28939258
#SPJ11
To graph the function, we can plot x(t) along with the amplitude envelope curves
[tex]x = -16.0039 * e^{(0.2425 * \sqrt(17 / 4) * t)}[/tex] and
[tex]x = 16.0039 * e^{(0.2425 * \sqrt(17 / 4) * t)[/tex]
These curves represent the maximum and minimum bounds of the motion.
To solve the differential equation for the underdamped motion of the mass-spring-dashpot system, we'll start by finding the values of C₁, w₁, α₁, and p.
Given:
m = 4 kg (mass)
k = 17 N/m (spring constant)
c = 4 N s/m (damping constant)
xo = 4 m (initial position)
vo = 7 m/s (initial velocity)
We can calculate the parameters as follows:
Natural frequency (w₁):
w₁ = [tex]\sqrt(k / m)[/tex]
w₁ = [tex]\sqrt(17 / 4)[/tex]
w₁ = [tex]\sqrt(4.25)[/tex]
Damping ratio (α₁):
α₁ = [tex]c / (2 * \sqrt(k * m))[/tex]
α₁ = [tex]4 / (2 * \sqrt(17 * 4))[/tex]
α₁ = [tex]4 / (2 * \sqrt(68))[/tex]
α₁ = 4 / (2 * 8.246)
α₁ = 0.2425
Angular frequency (p):
p = w₁ * sqrt(1 - α₁²)
p = √(4.25) * √(1 - 0.2425²)
p = √(4.25) * √(1 - 0.058875625)
p = √(4.25) * √(0.941124375)
p = √(4.25) * 0.97032917
p = 0.8482 * 0.97032917
p = 0.8231
Amplitude (C₁):
C₁ = √(xo² + (vo + α₁ * w₁ * xo)²) / √(1 - α₁²)
C₁ = √(4² + (7 + 0.2425 * √(17 * 4) * 4)²) / √(1 - 0.2425²)
C₁ = √(16 + (7 + 0.2425 * 8.246 * 4)²) / √(1 - 0.058875625)
C₁ = √(16 + (7 + 0.2425 * 32.984)²) / √(0.941124375)
C₁ = √(16 + (7 + 7.994)²) / 0.97032917
C₁ = √(16 + 14.994²) / 0.97032917
C₁ = √(16 + 224.760036) / 0.97032917
C₁ = √(240.760036) / 0.97032917
C₁ = 15.5222 / 0.97032917
C₁ = 16.0039
Therefore, the position function (x(t)) for the underdamped motion of the mass-spring-dashpot system is:
[tex]x(t) = 16.0039 * e^{(-0.2425 * \sqrt(17 / 4) * t)} * cos(\sqrt(17 / 4) * t - 0.8231)[/tex]
To graph the function, we can plot x(t) along with the amplitude envelope curves
[tex]x = -16.0039 * e^{(0.2425 * \sqrt(17 / 4) * t)}[/tex] and
[tex]x = 16.0039 * e^{(0.2425 * \sqrt(17 / 4) * t)[/tex]
These curves represent the maximum and minimum bounds of the motion.
To know more about differential equation, visit:
https://brainly.com/question/32645495
#SPJ11
The following sets are subsets of the vector space RS. 1 a) Is S₁ = { } b) Does S₂ = 1 3 linearly independent? 3 span R$?
Given that the following sets are subsets of the vector space RS.
1. a) S₁ = { }The set S₁ is the empty set.
Hence it is not a subspace of the vector space RS.2. b) S₂ = {(1,3)}
To verify whether the set S₂ is linearly independent, let's assume that there exist scalars a, b such that:
a(1,3) + b(1,3) = (0,0)This is equivalent to (a+b)(1,3) = (0,0).
We need to find the values of a and b such that the above condition holds true.
There are two cases to consider.
Case 1: a+b = 0
We get that a = -b and any a and -a satisfies the above condition.
Case 2: (1,3) = 0
This is not true as the vector (1,3) is not the zero vector.
Therefore, the set S₂ is linearly independent.
3. span R$?
Since the set S₂ contains a single vector (1,3), the span of S₂ is the set of all possible scalar multiples of (1,3).
That is,span(S₂) = {(a,b) : a,b ∈ R} = R².
To know more about vector visit:
https://brainly.com/question/24256726
#SPJ11
valuate the difference quotient for the given function. Simplify your answer. X + 5 f(x) f(x) = f(3) x-3 x + 1' Need Help?
The simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).
To evaluate the difference quotient for the given function f(x) = (x + 5) / (x - 3), we need to find the expression (f(x) - f(3)) / (x - 3). First, let's find f(3) by substituting x = 3 into the function: f(3) = (3 + 5) / (3 - 3)= 8 / 0
The denominator is zero, which means f(3) is undefined. Now, let's find the difference quotient: (f(x) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - undefined) / (x - 3)
Since f(3) is undefined, we cannot simplify the difference quotient further. Therefore, the simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).
To learn more about difference quotient, click here: brainly.com/question/31059956
#SPJ11
Given the given cost function C(x) = 6100 + 270x + 0.3x^2 and the demand function p(x) = 810. Find the production level that will maximize profit.
the production level that will maximize profit is 900, and the maximum profit is $137,700.
To calculate the production level that will maximize profit, we need to use the profit function. Profit = Total Revenue - Total Cost. The total revenue is given by the product of price (p(x)) and quantity (x):TR(x) = p(x)x.
We are given the cost function C(x) = 6100 + 270x + 0.3x^2 and the demand function p(x) = 810. We will find the production level that will maximize profit using the following steps:
Step 1: Calculate the total revenue: TR(x) = p(x)x= 810x
Step 2: Calculate the profit function:
Profit (P) = TR(x) - C(x)= 810x - (6100 + 270x + 0.3x^2)= -0.3x^2 + 540x - 6100
Step 3: Find the derivative of the profit function and set it equal to zero: P'(x) = -0.6x + 540 = 0=> x = 900
Step 4: Check the second derivative to ensure that we have a maximum: P''(x) = -0.6 < 0, so we have a maximum.
Step 5: Calculate the profit at x = 900: P(900) = -0.3(900)^2 + 540(900) - 6100= $137,700
Therefore, the production level that will maximize profit is 900, and the maximum profit is $137,700.
learn more about function here
https://brainly.com/question/30114464
#SPJ11
A manufacturer has fixed costs (such as rent and insurance) of $3000 per month. The cost of producing each unit of goods is $2. Give the linear equation for the cost of producing x units per month. KIIS k An equation that can be used to determine the cost is y=[]
The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.
Let's solve the given problem.
The manufacturer's cost of producing each unit of goods is $2 and fixed costs are $3000 per month.
The total cost of producing x units per month can be expressed as y=mx+b, where m is the variable cost per unit, b is the fixed cost and x is the number of units produced.
To find the equation for the cost of producing x units per month, we need to substitute m=2 and b=3000 in y=mx+b.
We get the equation as y=2x+3000.
The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.
We are given that the fixed costs of the manufacturer are $3000 per month and the cost of producing each unit of goods is $2.
Therefore, the total cost of producing x units can be calculated as follows:
Total Cost (y) = Fixed Costs (b) + Variable Cost (mx) ⇒ y = 3000 + 2x
The equation for the cost of producing x units per month can be expressed as y = 2x + 3000.
To know more about the manufacturer's cost visit:
https://brainly.com/question/24530630
#SPJ11
The following table is an abbreviated life expectancy table for males. current age, x 0 20 40 60 80 life expectancy, y 75.3 years 77.6 years 79.2 years 80.4 years 81.4. years a. Find the straight line that provides the best least-squares fit to these data. A. y = 0.075x + 75.78 OC. y = 75.78x + 0.075 b. Use the straight line of part (a) to estimate the life expectancy of a 30-year old male. The life expectancy of a 30-year old male is 78. (Round to one decimal place as needed.) c. Use the straight line of part (a) to estimate the life expectancy of a 50-year old male. The life expetancy of a 50-year old male is 79.5. (Round to one decimal place as needed.) d. Use the straight line of part (a) to estimate the life expectancy of a 90-year old male. The life expectancy of a 90-year old male is. (Round to one decimal place as needed.) OB. y = 75.78x-0.075 OD. y = 0.075x - 75.78
The best least-squares fit line for the given life expectancy data is y = 0.075x + 75.78. Using this line, the estimated life expectancy of a 30-year-old male is 78 years and a 50-year-old male is 79.5 years. The life expectancy of a 90-year-old male cannot be determined based on the provided information.
In order to find the best least-squares fit line, we need to determine the equation that minimizes the sum of squared differences between the actual data points and the corresponding points on the line. The given data provides the current age, x, and the life expectancy, y, for males at various ages. By fitting a straight line to these data points, we aim to estimate the relationship between age and life expectancy.
The equation y = 0.075x + 75.78 represents the best fit line based on the least-squares method. This means that for each additional year of age (x), the life expectancy (y) increases by 0.075 years, starting from an initial value of 75.78 years.
Using this line, we can estimate the life expectancy for specific ages. For a 30-year-old male, substituting x = 30 into the equation gives y = 0.075(30) + 75.78 = 77.28, rounded to 78 years. Similarly, for a 50-year-old male, y = 0.075(50) + 75.78 = 79.28, rounded to 79.5 years.
However, the equation cannot be used to estimate the life expectancy of a 90-year-old male because the given data only extends up to an age of 80. The equation is based on the linear relationship observed within the data range, and extrapolating it beyond that range may lead to inaccurate estimates. Therefore, the life expectancy of a 90-year-old male cannot be determined based on the given information.
Learn more about least-squares here: https://brainly.com/question/30176124
#SPJ11
Suppose y₁ is a non-zero solution to the following DE y' + p(t)y = 0. If y2 is any other solution to the above Eq, then show that y2 = cy₁ for some c real number. (Hint. Calculate the derivative of y2/y1). (b) Explain (with enough mathematical reasoning from this course) why there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero!
There is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero. (a) Given DE is y' + p(t)y = 0. And let y₁ be a non-zero solution to the given DE, then we need to prove that y₂= cy₁, where c is a real number.
For y₂, the differential equation is y₂' + p(t)y₂ = 0.
To prove y₂ = cy₂, we will prove y₂/y₁ is a constant.
Let c be a constant such that y₂ = cy₁.
Then y₂/y₁ = cAlso, y₂' = cy₁' y₂' + p(t)y₂ = cy₁' + p(t)(cy₁) = c(y₁' + p(t)y₁) = c(y₁' + p(t)y₁) = 0
Hence, we proved that y₂/y₁ is a constant. So, y₂ = cy₁ where c is a real number.
Therefore, we have proved that if y₁ is a non-zero solution to the given differential equation and y₂ is any other solution, then y₂ = cy1 for some real number c.
(b)Let y = f(x) be equal to the negative of its derivative, they = -f'(x)
Also, it is given that y = 1 at x = 0.So,
f(0) = -f'(0)and f(0) = 1.This implies that if (0) = -1.
So, the solution to the differential equation y = -y' is y = Ce-where C is a constant.
Putting x = 0 in the above equation,y = Ce-0 = C = 1
So, the solution to the differential equation y = -y' is y = e-where y = 1 when x = 0.
Therefore, there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero.
To know more about real numbers
https://brainly.com/question/17201233
#SPJ11
DETAILS Find an equation of a circle described. Write your answer in standard form. The circle has a diameter with endpoints (4, 7) and (-10, 5). Need Help? Read It Watch It
The equation of the circle in standard form is (x + 3)² + (y - 6)² = 50 and the radius is 5√2.
We need to find an equation of a circle described, with the diameter with endpoints (4, 7) and (-10, 5).
We have to use the formula of the circle which is given by(x-h)² + (y-k)² = r²,
where (h, k) is the center of the circle and
r is the radius.
To find the center, we use the midpoint formula, given by ((x₁ + x₂)/2 , (y₁ + y₂)/2).
Therefore, midpoint of the given diameter is:
((4 + (-10))/2, (7 + 5)/2) = (-3, 6)
Thus, the center of the circle is (-3, 6)
We now need to find the radius, which is half the diameter.
Using the distance formula, we get:
d = √[(x₂ - x₁)² + (y₂ - y₁)²]
d = √[(-10 - 4)² + (5 - 7)²]
d = √[(-14)² + (-2)²]
d = √200
d = 10√2
Thus, the radius is 5√2.
The equation of the circle in standard form is:
(x + 3)² + (y - 6)² = 50
To know more about standard form visit:
https://brainly.com/question/29000730
#SPJ11
Consider the two-sector model: dy = 0.5(C+I-Y) dt C=0.5Y+600 I=0.3Y+300 a/ Find expressions for Y(t), C(t) and I(t) when Y(0) = 5500; b/ Is this system stable or unstable, explain why?
In the two-sector model with the given equations dy = 0.5(C+I-Y) dt, C = 0.5Y+600, and I = 0.3Y+300, we can find expressions for Y(t), C(t), and I(t) when Y(0) = 5500.
To find expressions for Y(t), C(t), and I(t), we start by substituting the given equations for C and I into the first equation. We have dy = 0.5((0.5Y+600)+(0.3Y+300)-Y) dt. Simplifying this equation gives dy = 0.5(0.8Y+900-Y) dt, which further simplifies to dy = 0.4Y+450 dt. Integrating both sides with respect to t yields Y(t) = 0.4tY + 450t + C1, where C1 is the constant of integration.
To find C(t) and I(t), we substitute the expressions for Y(t) into the equations C = 0.5Y+600 and I = 0.3Y+300. This gives C(t) = 0.5(0.4tY + 450t + C1) + 600 and I(t) = 0.3(0.4tY + 450t + C1) + 300.
Now, let's analyze the stability of the system. The stability of an economic system refers to its tendency to return to equilibrium after experiencing a disturbance. In this case, the system is stable because both consumption (C) and investment (I) are positively related to income (Y). As income increases, both consumption and investment will also increase, which helps restore equilibrium. Similarly, if income decreases, consumption and investment will decrease, again moving the system towards equilibrium.
Therefore, the given two-sector model is stable as the positive relationships between income, consumption, and investment ensure self-correcting behavior and the restoration of equilibrium.
Learn more about equations here:
https://brainly.com/question/29538993
#SPJ11
1. You are buying an icecream cone. You have two options for a cone (sugar cone or waffle cone), can choose between 4 flavors of ice cream (chocolate, maple, cherry, or vanilla) and 3 toppings (chocolate chips, peanuts, or gummy bears). What is the probability that if you have them choose, you will end up with a sugar cone with maple ice cream and gummy bears?
The probability of ending up with a sugar cone, maple ice cream, and gummy bears is 1 out of 24, or 1/24.
To calculate the probability of ending up with a sugar cone, maple ice cream, and gummy bears, we need to consider the total number of possible outcomes and the favorable outcomes.
The total number of possible outcomes is obtained by multiplying the number of options for each choice together:
Total number of possible outcomes = 2 (cone options) * 4 (ice cream flavors) * 3 (toppings) = 24.
The favorable outcome is having a sugar cone, maple ice cream, and gummy bears. Since each choice is independent of the others, we can multiply the probabilities of each choice to find the probability of the favorable outcome.
The probability of choosing a sugar cone is 1 out of 2, as there are 2 cone options.
The probability of choosing maple ice cream is 1 out of 4, as there are 4 ice cream flavors.
The probability of choosing gummy bears is 1 out of 3, as there are 3 topping options.
Now, we can calculate the probability of the favorable outcome:
Probability = (Probability of sugar cone) * (Probability of maple ice cream) * (Probability of gummy bears)
Probability = (1/2) * (1/4) * (1/3) = 1/24.
Therefore, the probability of ending up with a sugar cone, maple ice cream, and gummy bears is 1 out of 24, or 1/24.
for such more question on probability
https://brainly.com/question/13604758
#SPJ8
Let v₁ and v2 be the 4 x 1 columns of MT and suppose P is the plane through the origin with v₁ and v₂ as direction vectors. (a) Find which of v₁ and v2 is longer in length and then calculate the angle between ₁ and v2 using the dot product method. [3 marks] (b) Use Gram-Schmidt to find e2, the vector perpendicular to v₁ in P, express e2 with integer entries, and check that e₁e2 = 0. [3 marks] 1 (c) Now take v3 := 0- and use 0 Gram-Schimdt again to find an ez is orthogonal to e₁ and e2 but is in the hyperplane with v₁, v2 and v3 as a basis. [4 marks] 3 1 -1 1 -5 5 5 2 -3
e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂). This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.
(a) To find which of v₁ and v₂ is longer in length, we calculate the magnitudes (lengths) of v₁ and v₂ using the formula:
|v| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)
Let's denote the components of v₁ as v₁₁, v₁₂, v₁₃, and v₁₄, and the components of v₂ as v₂₁, v₂₂, v₂₃, and v₂₄.
Magnitude of v₁:
|v₁| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)
Magnitude of v₂:
|v₂| = √(v₂₁² + v₂₂² + v₂₃² + v₂₄²)
Compare |v₁| and |v₂| to determine which one is longer.
To calculate the angle between v₁ and v₂ using the dot product method, we use the formula:
θ = arccos((v₁ · v₂) / (|v₁| |v₂|))
Where v₁ · v₂ is the dot product of v₁ and v₂.
(b) To find e₂, the vector perpendicular to v₁ in P using Gram-Schmidt, we follow these steps:
Set e₁ = v₁.
Calculate the projection of v₂ onto e₁:
projₑ₂(v₂) = (v₂ · e₁) / (e₁ · e₁) * e₁
Subtract the projection from v₂ to get the perpendicular component:
e₂ = v₂ - projₑ₂(v₂)
Make sure to normalize e₂ if necessary.
To check that e₁ · e₂ = 0, calculate the dot product of e₁ and e₂ and verify if it equals zero.
(c) To find e₃ orthogonal to e₁ and e₂, but in the hyperplane with v₁, v₂, and v₃ as a basis, we follow similar steps:
Set e₃ = v₃.
Calculate the projection of e₃ onto e₁:
projₑ₃(e₁) = (e₁ · e₃) / (e₁ · e₁) * e₁
Calculate the projection of e₃ onto e₂:
projₑ₃(e₂) = (e₂ · e₃) / (e₂ · e₂) * e₂
Subtract the projections from e₃ to get the perpendicular component:
e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂)
Make sure to normalize e₃ if necessary.
This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.
To know more about the orthogonal visit:
https://brainly.com/question/30772550
#SPJ11
Prove that T= [1, ØJ L[ (9.+00): 9 € QJ is not topology in R
To prove that T = [1,ØJ L[ (9.+00): 9 € QJ is not topology in R, we can use the three conditions required for a set of subsets to form a topology on a space X.
The conditions are as follows:
Condition 1: The empty set and the entire set are both included in the topology.
Condition 2: The intersection of any finite number of sets in the topology is also in the topology.
Condition 3: The union of any number of sets in the topology is also in the topology.
So let's verify each of these conditions for T.
Condition 1: T clearly does not include the empty set, since every set in T is of the form [1,a[ for some a>0. Therefore, T fails to satisfy the first condition for a topology.
Condition 2: Let A and B be two sets in T. Then A = [1,a[ and B = [1,b[ for some a, b > 0. Then A ∩ B = [1,min{a,b}[. Since min{a,b} is always positive, it follows that A ∩ B is also in T. Therefore, T satisfies the second condition for a topology.
Condition 3: Let {An} be a collection of sets in T. Then each set An is of the form [1,an[ for some an>0. It follows that the union of the sets is also of the form [1,a), where a = sup{an}.
Since a may be infinite, the union is not in T. Therefore, T fails to satisfy the third condition for a topology.
Since T fails to satisfy the first condition, it is not a topology on R.
To know more about topology visit:
brainly.com/question/10536701
#SPJ11
Perform the multiplication. 2 4n -25 2 9n - 36 15n+ 30 2 2n +9n-35 2 4n -25 15n +30 9n - 36 2n +9n-35 (Type your answer in factored form.)
the factored form of the given expression is:
3(2n - 5)(n - 2)/(5)(n + 7)
To perform the multiplication of the given expressions:
(4n² - 25)/(15n + 30) * (9n² - 36)/(2n² + 9n - 35)
Let's factorize the numerators and denominators:
Numerator 1: 4n² - 25 = (2n + 5)(2n - 5)
Denominator 1: 15n + 30 = 15(n + 2)
Numerator 2: 9n² - 36 = 9(n² - 4) = 9(n + 2)(n - 2)
Denominator 2: 2n² + 9n - 35 = (2n - 5)(n + 7)
Now we can cancel out common factors between the numerators and denominators:
[(2n + 5)(2n - 5)/(15)(n + 2)] * [(9)(n + 2)(n - 2)/(2n - 5)(n + 7)]
After cancellation, we are left with:
9(2n - 5)(n - 2)/(15)(n + 7)
= 3(2n - 5)(n - 2)/(5)(n + 7)
Therefore, the factored form of the given expression is:
3(2n - 5)(n - 2)/(5)(n + 7)
Learn more about Expression here
https://brainly.com/question/18077355
#SPJ4
Complete question is below
Perform the multiplication.
(4n² - 25)/(15n + 30) * (9n² - 36)/(2n² + 9n - 35)
(Type your answer in factored form.)
Negate each of these statements and rewrite those so that negations appear only within predicates (a)¬xyQ(x, y) (b)-3(P(x) AV-Q(x, y))
a) The negation of "¬xyQ(x, y)" is "∃x∀y¬Q(x, y)". b) The negation of "-3(P(x) ∨ Q(x, y))" is "-3(¬P(x) ∧ ¬Q(x, y))".
(a) ¬xyQ(x, y)
Negated: ∃x∀y¬Q(x, y)
In statement (a), the original expression is a universal quantification (∀) over two variables x and y, followed by the predicate Q(x, y). To negate the statement and move the negation inside the predicate, we change the universal quantifier (∀) to an existential quantifier (∃) and negate the predicate itself. The negated statement (∃x∀y¬Q(x, y)) asserts that there exists at least one x for which, for all y, the predicate Q(x, y) is false. This means that there is at least one x value for which there exists a y value such that Q(x, y) is not true.
(b) -3(P(x) AV-Q(x, y))
Negated: -3(¬P(x) ∧ ¬Q(x, y))
In statement (b), the original expression involves a conjunction (AND) of P(x) and the negation of Q(x, y), followed by a multiplication by -3. To move the negations within the predicates, we negate each predicate individually while maintaining the conjunction. The negated statement (-3(¬P(x) ∧ ¬Q(x, y))) states that the negation of P(x) is true and the negation of Q(x, y) is also true, multiplied by -3. This means that both P(x) and Q(x, y) are false in this negated statement.
To know more about negation:
https://brainly.com/question/30426958
#SPJ4
Find a real matrix C of A = -1-4-4] 4 7 4 and find a matrix P such that P-1AP = C. 0-2-1]
No matrix P exists that satisfies the condition P-1AP = C.
Given the matrix A = [-1 -4 -4] [4 7 4] [0 -2 -1]
We have to find a matrix P such that P-1AP = C.
Also, we need to find the matrix C.Let C be a matrix such that C = [-3 0 0] [0 3 0] [0 0 -1]
Now we will check whether the given matrix A and C are similar or not?
If they are similar, then there exists an invertible matrix P such that P-1AP = C.
Let's find the determinant of A,
det(A):We will find the eigenvalues for matrix A to check whether A is diagonalizable or not
Let's solve det(A-λI)=0 to find the eigenvalues of A.
[-1-λ -4 -4] [4 -7-λ 4] [0 -2 -1-λ] = (-λ-1) [(-7-λ) (-4)] [(-2) (-1-λ)] + [(-4) (4)] [(0) (-1-λ)] + [(4) (0)] [(4) (-2)] = λ³ - 6λ² + 9λ = λ (λ-3) (λ-3)
Therefore, the eigenvalues are λ₁= 0, λ₂= 3, λ₃= 3Since λ₂=λ₃, the matrix A is not diagonalizable.
The matrix A is not diagonalizable, hence it is not similar to any diagonal matrix.
So, there does not exist any invertible matrix P such that P-1AP = C.
Therefore, no matrix P exists that satisfies the condition P-1AP = C.
To know more about Matrix,visit:
https://brainly.com/question/29132693
#SPJ11
Construct a proof for the following sequents in QL: (z =^~cz^^~)(ZA)(^A) = XXS(XA) -|ɔ
To construct a proof of the given sequent in first-order logic (QL), we'll use the rules of inference and axioms of first-order logic.
Here's a step-by-step proof:
| (∀x)Jxx (Assumption)
| | a (Arbitrary constant)
| | Jaa (∀ Elimination, 1)
| | (∀y)(∀z)(~Jyz ⊃ ~y = z) (Assumption)
| | | b (Arbitrary constant)
| | | c (Arbitrary constant)
| | | ~Jbc ⊃ ~b = c (∀ Elimination, 4)
| | | ~Jbc (Assumption)
| | | ~b = c (Modus Ponens, 7, 8)
| | (∀z)(~Jbz ⊃ ~b = z) (∀ Introduction, 9)
| | ~Jab ⊃ ~b = a (∀ Elimination, 10)
| | ~Jab (Assumption)
| | ~b = a (Modus Ponens, 11, 12)
| | a = b (Symmetry of Equality, 13)
| | Jba (Equality Elimination, 3, 14)
| (∀x)Jxx ☰ (∀y)(∀z)(~Jyz ⊃ ~y = z) (→ Introduction, 4-15)
The proof begins with the assumption (∀x)Jxx and proceeds with the goal of deriving (∀y)(∀z)(~Jyz ⊃ ~y = z). We first introduce an arbitrary constant a (line 2). Using (∀ Elimination) with the assumption (∀x)Jxx (line 1), we obtain Jaa (line 3).
Next, we assume (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4) and introduce arbitrary constants b and c (lines 5-6). Using (∀ Elimination) with the assumption (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4), we derive the implication ~Jbc ⊃ ~b = c (line 7).
Assuming ~Jbc (line 8), we apply (Modus Ponens) with ~Jbc ⊃ ~b = c (line 7) to deduce ~b = c (line 9). Then, using (∀ Introduction) with the assumption ~Jbc ⊃ ~b = c (line 9), we obtain (∀z)(~Jbz ⊃ ~b = z) (line 10).
We now assume ~Jab (line 12). Applying (Modus Ponens) with ~Jab ⊃ ~b = a (line 11) and ~Jab (line 12), we derive ~b = a (line 13). Using the (Symmetry of Equality), we obtain a = b (line 14). Finally, with the Equality Elimination using Jaa (line 3) and a = b (line 14), we deduce Jba (line 15).
Therefore, we have successfully constructed a proof of the given sequent in QL.
Correct Question :
Construct a proof for the following sequents in QL:
|-(∀x)Jxx☰(∀y)(∀z)(~Jyz ⊃ ~y = z)
To learn more about sequent here:
https://brainly.com/question/33109906
#SPJ4