The equation of a circle centered at the origin with a radius of unit length is x2 + y2 = 1. This equation changes if the center of the circle is not located at the origin or the radius is not of unit length.

Answers

Answer 1

Answer:

The equation for a unit radius circle, centered at the origin is:

x^2 + y^2 = 1

Now, if we want to move it horizontally, you can recall to the horizontal translations:

f(x) -----> f(x - a)

Moves the graph to the right by "a" units.

A vertical translation is similar.

Then, if we want a circle centered in the point (a, b) we have:

(x - a)^2  + (y - b)^2 = 1.

Now, if you want to change the radius, we can actually write the unit circle as:

x^2 + y^2 = 1^2

Where if we set x = 0, 1 = y, this is our radius

So if we have:

x^2 + y^2 = R^2

And we set the value of x = 0, then R = y.

So our radius is R.

Then:

"A circle of radius R, centered in the point (a, b) is written as:

(x - a)^2 + (y - b)^2 = R^2


Related Questions

An economist is interested in studying the income of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average income of $15,000. What is the width of the 90% confidence interval

Answers

Answer:

The width is  [tex]w = 282.8[/tex]

Step-by-step explanation:

From the question we are told that

  The sample size is n =  50

  The  population standard deviation is  [tex]\sigma = \$ 1000[/tex]

   The sample size is  [tex]\= x = \$ 15,000[/tex]

Given that the confidence level is  90%  then the level of significance can be mathematically represented as

             [tex]\alpha = 100 - 90[/tex]  

             [tex]\alpha = 10 \%[/tex]  

              [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the  normal distribution table, the value is  

             [tex]Z_{\frac{0.10 }{2} } = 1.645[/tex]

Generally the margin of error is mathematically represented as

               [tex]E = Z_{\frac{0.10}{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

                 [tex]E = 1.645 * \frac{1000 }{\sqrt{50 }}[/tex]

=>                [tex]E = 141.42[/tex]

  The width of the 90%  confidence level is mathematically represented as

                      [tex]w = 2 * E[/tex]

substituting values

                       [tex]w = 2 * 141.42[/tex]

                       [tex]w = 282.8[/tex]

 

Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric

Answers

Answer: Transitive property.

Step-by-step explanation:

First, for the equality we have:

Reflexive:

  For all real numbers x, x = x.

Symmetric:  

 For all real numbers x, y

 if x= y, then y = x.

Transitive:

 For reals x, y and z.

 if x = y, and y = z, then x = z.

Now, let's talk about inequalities.

first, the reflexive property will say that:

x > x.

This has no sense, so this property does not work for inequalities.

Now, the reflexive.

If x > y, then y > x.

Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.

Not, the transitive property.

if x > y, and y > z, then x > z.

This is true.

x is bigger than y, and y is bigger than z, then x should also be bigger than z.

x > y > z.

And this also works for the inverse case:

x < y and y < z, then x < z.

So the correct option is transitive property.

Researchers recorded that a certain bacteria population declined from 450,000 to 900 in 30 hours at this rate of decay how many bacteria will there be in 13 hours

Answers

Answer:

30,455

Step-by-step explanation:

Exponential decay

y = a(1 - b)^x

y = final amount

a = initial amount

b = rate of decay

x = time

We are looking for the rate of decay, b.

900 = 450000(1 - b)^30

1 = 500(1 - b)^30

(1 - b)^30 = 0.002

1 - b = 0.002^(1/30)

1 - b = 0.81289

b = 0.1871

The equation for our case is

y = 450000(1 - 0.1871)^x

We are looking for the amount in 13 hours, so x = 13.

y = 450000(1 - 0.1871)^13

y = 30,455

f(x)=3x2+10x-25 g(x)=9x2-25 Find (f/g)(x).

Answers

Answer:

[tex](f/g)(x) = \frac{x + 5}{3x + 5} [/tex]

Step-by-step explanation:

f(x) = 3x² + 10x - 25

g(x) = 9x² - 25

To find (f/g)(x) divide f(x) by g(x)

That's

[tex](f/g)(x) = \frac{3 {x}^{2} + 10x - 25 }{9 {x}^{2} - 25 } [/tex]

Factorize both the numerator and the denominator

For the numerator

3x² + 10x - 25

3x² + 15x - 5x - 25

3x ( x + 5) - 5( x + 5)

(3x - 5 ) ( x + 5)

For the denominator

9x² - 25

(3x)² - 5²

Using the formula

a² - b² = ( a + b)(a - b)

(3x)² - 5² = (3x + 5)(3x - 5)

So we have

[tex](f/g)(x) = \frac{(3x - 5)(x + 5)}{(3x + 5)(3x - 5)} [/tex]

Simplify

We have the final answer as

[tex](f/g)(x) = \frac{x + 5}{3x + 5} [/tex]

Hope this helps you

What is the area of polygon EFGH?

Answers

It’s c count the squares

A health insurer has determined that the "reasonable and customary" fee for a certain medical procedure is $1200. They suspect that the average fee charged by one particular clinic for this procedure is higher than $1200.

Explain in context the conclusion of the test if H0 is rejected.

Answers

Answer:

For the null hypothesis to be rejected , then the conclusion of the test is that the absolute values of the z-statistic and/or the t-test statistic is greater than the critical value

Step-by-step explanation:

Here, we want to explain the conclusion of the test given that the null hypothesis is rejected.

Mathematically, the null hypothesis is as expressed as below;

H0: μ = 1,200

The alternative hypothesis H1 would be;

H1: μ > 1,200

Now, before we can reject or accept the null hypothesis, we will need a sample size and thus calculate the test statistics and the z statistics

For us to reject the null hypothesis, one of two things, or two things must have occurred.

The absolute value of the z statistic |z| or the test statistic |t| must be greater than the critical value.

If this happens, then we can make a rejection of the null hypothesis

Calcule o valor de x nas equações literais: a) 5x – a = x+ 5a b) 4x + 3a = 3x+ 5 c) 2 ( 3x -a ) – 4 ( x- a ) = 3 ( x + a ) d) 2x/5 - (x-2a)/3 = a/2 Resolva as equações fracionárias: a) 3/x + 5/(x+2) = 0 , U = R - {0,-2} b) 7/(x-2) = 5/x , U = R - {0,2} c) 2/(x-3) - 4x/(x²-9) = 7/(x+3) , U = R - {-3,3}

Answers

Answer:

1) a) [tex]x = \frac{3}{2}\cdot a[/tex], b) [tex]x = 5-3\cdot a[/tex], c) [tex]x = -a[/tex], d) [tex]x = \frac{5}{2}\cdot a[/tex]

2) a) [tex]x = -\frac{3}{4}[/tex], b) [tex]x = -5[/tex], c) [tex]x = 3[/tex]

Step-by-step explanation:

1) a) [tex]5\cdot x - a = x + 5\cdot a[/tex]

[tex]5\cdot x - x = 5\cdot a + a[/tex]

[tex]4\cdot x = 6\cdot a[/tex]

[tex]x = \frac{3}{2}\cdot a[/tex]

b) [tex]4\cdot x + 3\cdot a = 3\cdot x + 5[/tex]

[tex]4\cdot x - 3\cdot x = 5 - 3\cdot a[/tex]

[tex]x = 5-3\cdot a[/tex]

c) [tex]2\cdot (3\cdot x - a) - 4\cdot (x-a) = 3\cdot (x+a)[/tex]

[tex]6\cdot x -2\cdot a -4\cdot x +4\cdot a = 3\cdot x +3\cdot a[/tex]

[tex]6\cdot x -4\cdot x -3\cdot x = 3\cdot a -4\cdot a +2\cdot a[/tex]

[tex]-x = a[/tex]

[tex]x = -a[/tex]

d) [tex]\frac{2\cdot x}{5} - \frac{x-2\cdot a}{3} = \frac{a}{2}[/tex]

[tex]\frac{6\cdot x-5\cdot (x-2\cdot a)}{15} = \frac{a}{2}[/tex]

[tex]\frac{6\cdot x - 5\cdot x+10\cdot a}{15} = \frac{a}{2}[/tex]

[tex]2\cdot (x+10\cdot a) = 15 \cdot a[/tex]

[tex]2\cdot x = 5\cdot a[/tex]

[tex]x = \frac{5}{2}\cdot a[/tex]

2) a) [tex]\frac{3}{x} + \frac{5}{x+2} = 0[/tex]

[tex]\frac{3\cdot (x+2)+5\cdot x}{x\cdot (x+2)} = 0[/tex]

[tex]3\cdot (x+2) + 5\cdot x = 0[/tex]

[tex]3\cdot x +6 +5\cdot x = 0[/tex]

[tex]8\cdot x = - 6[/tex]

[tex]x = -\frac{3}{4}[/tex]

b) [tex]\frac{7}{x-2} = \frac{5}{x}[/tex]

[tex]7\cdot x = 5\cdot (x-2)[/tex]

[tex]7\cdot x = 5\cdot x -10[/tex]

[tex]2\cdot x = -10[/tex]

[tex]x = -5[/tex]

c) [tex]\frac{2}{x-3}-\frac{4\cdot x}{x^{2}-9} = \frac{7}{x+3}[/tex]

[tex]\frac{2}{x-3} - \frac{4\cdot x}{(x+3)\cdot (x-3)} = \frac{7}{x+3}[/tex]

[tex]\frac{1}{x-3}\cdot \left(2-\frac{4\cdot x}{x+3} \right) = \frac{7}{x+3}[/tex]

[tex]\frac{x+3}{x-3}\cdot \left[\frac{2\cdot (x+3)-4\cdot x}{x+3} \right] = 7[/tex]

[tex]\frac{2\cdot (x+3)-4\cdot x}{x-3} = 7[/tex]

[tex]2\cdot (x+3) -4\cdot x = 7\cdot (x-3)[/tex]

[tex]2\cdot x + 6 - 4\cdot x = 7\cdot x -21[/tex]

[tex]2\cdot x - 4\cdot x -7\cdot x = -21-6[/tex]

[tex]-9\cdot x = -27[/tex]

[tex]x = 3[/tex]

A total of n bar magnets are placed end to end in a line with random independent orientations. Adjacent like poles repel while ends with opposite polarities join to form blocks. Let X be the number of blocks of joined magnets. Find E(X) and Var(X).

Answers

Answer:

E(x)  [tex]= \frac{n+1}{2}[/tex]

Var(x) [tex]= \frac{1}{4} [ n - 1 ][/tex]

Step-by-step explanation:

Hint x = 1 + x1 + ......... Xn-1

[tex]X_{i} = \left \{ {{1} if the ith adjacent pair of magnets repel each other \atop {0} if ith adjacent pair of magnets join} \right.[/tex]

attached below is the detailed solutioN

usually like poles of magnets repel each other and unlike poles of magnets attract each other forming a block

Beginning 177 miles directly north of the city of Morristown, a van travels due west. If the van is travelling at a speed of 31 miles per hour, determine the rate of change of the distance between Morristown and the van when the van has been travelling for 71 miles. (Do not include units in your answer, and round to the nearest hundredth.)

Answers

Answer:

Step-by-step explanation:

From the given information;

let the hypotenuse be a , the opposite which is the north direction be b and the west direction which is the adjacent be c

SO, using the Pythagoras theorem

a² = c² + 177²

By taking the differentiation of both sides with respect to time t , we have

[tex]2a \dfrac{da}{dt} = 2c \dfrac{dc}{dt} + 0[/tex]

[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]

At c = 71 miles,[tex]a = \sqrt{ (71)^2 +(177)^2}[/tex]

[tex]a = \sqrt{ 5041+31329}[/tex]

[tex]a = \sqrt{ 36370}[/tex]

a = 190.71

SImilarly, [tex]\dfrac{dc}{dt} = \ 31 miles \ / hr[/tex]

Thus, the rate of change of the distance between Morristown and the van when the van has been travelling for 71 miles can be calculate as:

[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]

[tex]\dfrac{da}{dt} = \dfrac{71}{190.71} \times 31[/tex]

[tex]\dfrac{da}{dt} = 0.37229 \times 31[/tex]

[tex]\mathbf{\dfrac{da}{dt} = 11.54}[/tex]  to the nearest hundredth.

Please help me guys :)
Question:
In exercises 1 through 4, find the one-sided limits lim x->2(left) f(x) and limx-> 2(right) from the given graph of f and determine whether lim x->2 f(x) exists.​

Answers

Step-by-step explanation:

For a left-hand limit, we start at the left side and move right, and see where the function goes as we get close to the x value.

For a right-hand limit, we start at the right side and move left, and see where the function goes as we get close to the x value.

If the two limits are equal, then the limit exists.  Otherwise, it doesn't.

1.  As we approach x = 2 from the left, f(x) approaches -2.

lim(x→2⁻) f(x) = -2

As we approach x = 2 from the right, f(x) approaches 1.

lim(x→2⁺) f(x) = 1

The limits are not the same, so the limit does not exist.

lim(x→2) f(x) = DNE

2. As we approach x = 2 from the left, f(x) approaches 4.

lim(x→2⁻) f(x) = 4

As we approach x = 2 from the right, f(x) approaches 2.

lim(x→2⁺) f(x) = 2

The limits are not the same, so the limit does not exist.

lim(x→2) f(x) = DNE

3. As we approach x = 2 from the left, f(x) approaches 2.

lim(x→2⁻) f(x) = 2

As we approach x = 2 from the right, f(x) approaches 2.

lim(x→2⁺) f(x) = 2

The limits are equal, so the limit exists.

lim(x→2) f(x) = 2

4. As we approach x = 2 from the left, f(x) approaches 2.

lim(x→2⁻) f(x) = 2

As we approach x = 2 from the right, f(x) approaches infinity.

lim(x→2⁺) f(x) = ∞

The limits are not the same, so the limit does not exist.

lim(x→2) f(x) = DNE

A United Nations report shows the mean family income for Mexican migrants to the United States is $26,500 per year. A FLOC (Farm Labor Organizing Committee) evaluation of 24 Mexican family units reveals a mean to be $30,150 with a sample standard deviation of $10,560. State the null hypothesis and the alternate hypothesis.

Answers

Answer:

The null hypothesis [tex]\mathtt{H_0 : \mu = 26500}[/tex]

The alternative hypothesis [tex]\mathtt{H_1 : \mu \neq 26500}[/tex]

Step-by-step explanation:

The summary of the given statistics is:

Population Mean = 26,500

Sample Mean = 30,150

Standard deviation = 10560

sample size = 24

The objective is to state the null hypothesis and the alternate hypothesis.

An hypothesis is a claim with  insufficient information which tends to be challenged into  further testing and experimentation in order to determine if such claim is significant or not.

The null hypothesis is a default hypothesis where there is no statistical significance between the two variables in the hypothesis.

The alternative hypothesis is the research hypothesis that the  researcher is trying to prove.

The null hypothesis [tex]\mathtt{H_0 : \mu = 26500}[/tex]

The alternative hypothesis [tex]\mathtt{H_1 : \mu \neq 26500}[/tex]

The test statistic can be  computed as follows:

[tex]z = \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \dfrac{30150 - 26500}{\dfrac{10560}{\sqrt{24}}}[/tex]

[tex]z = \dfrac{3650}{\dfrac{10560}{4.8989}}[/tex]

[tex]z = \dfrac{3650 \times 4.8989 }{{10560}}[/tex]

z = 1.6933

Find the sum to infinity of the series 2+5/4+11/16+23/64+..........up to the infinity.
infinity​

Answers

We have

[tex]2+\dfrac54+\dfrac{11}{16}+\dfrac{23}{64}+\cdots=\displaystyle\sum_{n=0}^\infty\frac{3\cdot2^n-1}{4^n}[/tex]

(notice that each denominator is a power of 4, and each numerator is one less than some multiple of 3, in particular 3 times some power of 2)

Recall for [tex]|x|<1[/tex], we have

[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]

So we have

[tex]\displaystyle\sum_{n=0}^\infty\frac{3\cdot2^n-1}4=3\sum_{n=0}^\infty\left(\frac12\right)^n-\sum_{n=0}^\infty\left(\frac14\right)^n=\frac3{1-\frac12}-\frac1{1-\frac14}=\boxed{\frac{14}3}[/tex]

in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios

Answers

Answer:

9 hours

Step-by-step explanation:

Since the group of men remains the same, number of hours is proportional to number of radios.

1300/26 = 450/h

h = 26 * 450 / 1300 = 9 hours

Each power smoothie that Theo makes has 3 scoops of mango, 1 scoop of strawberries, and 1 scoop of spinach. If Theo makes 7 power smoothies, how many scoops will he use in all?

Answers

Answer: 35 scoops total!

Step-by-step explanation: FIrst, you would add the number of scoops in total which is 3+1+1=5 scoops.

Now you would do 7*5=35

Therefore, Theo uses 35 scoops in all. I hope this helps you!

4(x/2-2) > 2y-11 which of the following inequalities is equivalent to the inequality above?
1) 4x+2y-3 > 0
2) 4x-2y+3 > 0
3) 2x+2y-3 > 0
4) 2x-26+3 > 0

Answers

4) 2x-2y+3 > 0

although it is spelt "26" on the choices

limit chapter~ anyone can help me with these questions?
please gimme clear explanation :)​

Answers

Step-by-step explanation:

I(S) = aS / (S + c)

As S approaches infinity, S becomes much larger than c.  So S + c is approximately equal to just S.

lim(S→∞) I(S)

= lim(S→∞) aS / (S + c)

= lim(S→∞) aS / S

= lim(S→∞) a

= a

As S approaches infinity, I(S) approaches a.

Your job in a company is to fill quart-size bottles of oil from a full -gallon oil tank. Then you are to pack quarts of oil in a case to ship to a store. How many full cases of oil can you get from a full -gallon tank of oil?

Answers

Answer:

See below.

Step-by-step explanation:

1 gal = 4 qt

With a full gallon oil tank, you can fill 4 1-qt bottles.

The problem does not mention the number of quarts that go in a case, so there is not enough information to answer the question.

Also, is the full tank really only 1 gallon, or is there a number missing there too?

Given a sample of 35, what is the sample standard deviation of a pair of jeans if the 90% confidence interval is [37.14, 42.86]

Answers

Answer:

10.295

Step-by-step explanation:

Using the value for calculating the confidence interval as given;

CI = xbar + Z*σ/√n

xbar  is the mean = 37.14+42.86/2

xbar= 80/2

xbar = 40

Z is the z-score at the 90% confidence = 1.645

σ is the standard deviation

n is the sample size = 35

Given the confidence interval CI as [37.14, 42.86]

Using  the maximum value of the confidence interval to get the value of the standard deviation, we will have;

42.86 =  xbar + Z*σ/√n

42.86 = 40 + 1.645* σ/√35

42.86-40 = 1.645*σ/√35

2.86 = 1.645*σ/√35

2.86/1.645 = σ/√35

1.739 = σ/√35

1.739 = σ/5.92

σ= 1.739*5.92

σ = 10.295

Hence, the sample standard deviation of a pair of jeans is 10.295

a family spent $93 at a carnival.
*they spent $18 on tickets and $30 on food. they spent the rest of the money on games.

which equation can be used to to find "g", the amount of money used on games.

Answers

Answer: 93-(18+30)=g

93-48=g

45=g

Step-by-step explanation: yup

The answer is 93-18-30-g=0 or 18+30+g=93

perform the following division (-2/3) ÷ (4/7)

Answers

Answer:

-7/6

Step-by-step explanation:

-2/3 x 7/4 = -14/12 = -7/6

Answer: -7/6

Step-by-step explanation: (-2/3) ÷ (4/7) can be rewritten as (-2/3) · (7/4).

Remember that dividing by a fraction is the same thing

as multiplying by the reciprocal of the fraction.

Before multiplying however, notice that we

can cross-cancel the 2 and 4 to 1 and 2.

So multiplying across the numerators and denominator and

remembering our negative in the first fraction, we have -7/6.

What is 45x62 Please help.

Answers

Answer:

45

62x

______

  90

2700+

_________

2790

Step-by-step explanation:

Change the polar coordinates (r, θ) to rectangular coordinates (x, y):(-2,sqrt2pi

Answers

Step-by-step explanation:

x=rcosθandy=rsinθ,. 7.7. r2=x2+y2andtanθ=yx. 7.8. These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

A librarian needs to package up all of the children's books and move them to a different location in the library. There are 625 books, and she can fit 25 books in one box. How many boxes does she need in order to move all of the books? 5 B. 25 C. 125 D. 600 E. 650

Answers

Answer: B. 25

Step-by-step explanation:

Given: Total books = 625

Number of books can fit in one box = 25

Now, the number of boxes she need to move all of the books = (Total books) ÷ (Number of books can fit in one box )

= 625÷25

= 25

hence, she requires 25 boxes in order to move all of the books.

So, correct option is B. 25.

Which option is correct and how would one solve for it?

Answers

Answer:

28

Step-by-step explanation:

We need to find the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex]

We know that,

[tex]\Sigma n^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]

Here, n = 3

So,

[tex]\Sigma n^2=\dfrac{3(3+1)(2(3)+1)}{6}\\\\\Sigma n^2=14[/tex]

So,

[tex]\Sigma_{x=0}^3\ 2x^2=2\times 14\\\\=28[/tex]

So, the value of [tex]\Sigma_{x=0}^3\ 2x^2[/tex] is 28. Hence, the correct option is (d).

It is advertised that the average braking distance for a small car traveling at 65 miles per hour equals 122 feet. A transportation researcher wants to determine if the statement made in the advertisement is false. She randomly test drives 38 small cars at 65 miles per hour and records the braking distance. The sample average braking distance is computed as 116 feet. Assume that the population standard deviation is 21 feet. (You may find it useful to reference the appropriate table: z table or t table) a. State the null and the alternative hypotheses for the test.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

the null hypothesis is  [tex]H_o : \mu = 122[/tex]

the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]

The test statistics is  [tex]t = - 1.761[/tex]

The p-value is  [tex]p = P(Z < t ) = 0.039119[/tex]

so

    [tex]p \ge 0.01[/tex]

Step-by-step explanation:

From the question we are told that

   The population mean is  [tex]\mu = 122[/tex]

     The sample size is  n=  38

    The sample mean is  [tex]\= x = 116 \ feet[/tex]

     The standard deviation is [tex]\sigma = 21[/tex]

     

Generally the null hypothesis is  [tex]H_o : \mu = 122[/tex]

                the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]

Generally the test statistics is mathematically evaluated as

         [tex]t = \frac { \= x - \mu }{\frac{ \sigma }{ \sqrt{n} } }[/tex]

substituting values

         [tex]t = \frac { 116 - 122 }{\frac{ 21 }{ \sqrt{ 38} } }[/tex]

         [tex]t = - 1.761[/tex]

The p-value is mathematically represented as

      [tex]p = P(Z < t )[/tex]

From the z- table  

     [tex]p = P(Z < t ) = 0.039119[/tex]

So  

     [tex]p \ge 0.01[/tex]

 

         

     

           

Find the sum of the first 12 terms of the sequence 512, 256, 128, …

Answers

Answer: 1023.75 (a)

Step-by-step explanation:

The sequence is a Geometric progression with the common ratio of ¹/₂ and first term of 512.

a = 512, r = ¹/₂. To determine the ratio, just divide the second term by the first term.

Now to calculate the sum, we consider two formula here and select the one that is most appropriate,

(1)  a( rⁿ - 1 )/r - 1, when r is greater than 1

(2) a( 1 - rⁿ )/1 - rⁿ, when r is less than 1.

In this question, formula 2 shall be appropriate because r is less than 1.

so,

S₁₂      =  512( 1 - 0.5¹² )/1 - 0.5

             512( 1 - 2.44 ₓ 10⁻⁴ )/0.5

          = 512( 0,9998 )/0.5

          = 511.875/0.5

          = 1023.75

The answer is a

Two balls are drawn in succession out of a box containing 5 red and 4 white balls. Find the probability that at least 1 ball was​ red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw. ​(A) Find the probability that at least 1 ball was​ red, given that the first ball was replaced before the second draw. StartFraction 24 Over 49 EndFraction ​(Simplify your answer. Type an integer or a​ fraction.) ​(B) Find the probability that at least 1 ball was​ red, given that the first ball was not replaced before the second draw.

Answers

Answer:

The answer is below

Step-by-step explanation:

The box contains 5 red and 4 white balls.

A) The probability that at least 1 ball was​ red = P(both are red) + P(first is red and second is white) + P(first is white second is red)

Given that the first ball was (Upper A )Replaced before the second draw:

P(both are red) = P(red) × P(red) = 5/9 × 5/9 = 25/81

P(first is red and second is white) = P(red) × P(white) = 5/9 × 4/9 = 20/81

P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/9 = 20/81

The probability that at least 1 ball was​ red = 25/81 + 20/81 + 20/81 = 65/81

B) The probability that at least 1 ball was​ red = P(both are red) + P(first is red and second is white) + P(first is white second is red)

Given that the first ball was not Replaced before the second draw:

P(both are red) = P(red) × P(red) = 5/9 × 4/8 = 20/72 (since it was not replaced after the first draw the number of red ball remaining would be 4 and the total ball remaining would be 8)

P(first is red second is white) = P(red) × P(white) = 5/9 × 4/8 = 20/72

P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/8 = 20/72

The probability that at least 1 ball was​ red = 20/72 + 20/72 + 20/72 = 60/72

please answer this question please ​

Answers

Answer:Amount = Rs 13891.50Compound interest = Rs 1891.50

Step-by-step explanation:

C = Amount (A) - Principal (P)

Where

C is the compound interest

To find the amount we use the formula

[tex]A = P ({1 + \frac{r}{100} })^{n} [/tex]

where

P is the principal

r is the rate

n is the period / time

From the question

P = Rs 12, 000

r = 5%

n = 3 years

Substitute the values into the above formula

That's

[tex]A = 12000 ({1 + \frac{5}{100} })^{3} \\ A = 12000(1 + 0.05)^{3} \\ A = 12000 ({1.05})^{3} [/tex]

We have the answer as

Amount = Rs 13891.50

Compound interest = 13891.50 - 12000

Compound interest = Rs 1891.50

Hope this helps you

What is the median of these figure skating ratings?

6.0 6.0 7.0 7.0 7.0 8.0 9.0

Answers

Answer:

The median would be 7.0.

Step-by-step explanation:

The median of a set of numbers means it is the middle number. since this set has 7 numbers you would need to find the number that is in the middle of the set. This would be the 4th number since it is in the middle. 7.0 is your answer.

Evaluate the double integral ∬Ry2x2+y2dA, where R is the region that lies between the circles x2+y2=16 and x2+y2=121, by changing to polar coordinates.

Answers

Answer:

See answer and graph below

Step-by-step explanation:

∬Ry2x2+y2dA

=∫Ry.2x.2+y.2dA

=A(2y+4Ryx)+c

=∫Ry.2x.2+y.2dA

Integral of a constant ∫pdx=px

=(2x+2.2Ryx)A

=A(2y+4Ryx)

=A(2y+4Ryx)+c

The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2

The evaluation of the double integral is [tex]\mathbf{ \dfrac{105}{2}\pi }[/tex]

The double integral [tex]\mathbf{\int \int _R\ \dfrac{y^2}{x^2+y^2} \ dA}[/tex], where R is the region that lies between

the circles [tex]\mathbf{x^2 +y^2 = 16 \ and \ x^2 + y^2 = 121}[/tex].

Let consider x = rcosθ and y = rsinθ because x² + y² = r²;

Now, the double integral can be written in polar coordinates as:

[tex]\mathbf{\implies \int \int _R\ \dfrac{y^2}{x^2+y^2} \ dxdy}[/tex]

[tex]\mathbf{\implies \int \int _R\ \dfrac{r^2 \ sin^2 \theta}{r^2} \ rdrd\theta}[/tex]

[tex]\mathbf{\implies \int \int _R\ \ sin^2 \theta \ r \ drd\theta}[/tex]

Thus, the integral becomes:

[tex]\mathbf{=\int^{2 \pi}_{0} sin^2 \theta d\theta \int ^{11}_{4} rdr }[/tex]

since 2sin² = 1 - cos2θ

[tex]\mathbf{=\int^{2 \pi}_{0} \dfrac{1-cos 2 \theta }{2} \ \theta \ d\theta\dfrac{r}{2} \Big|^{11}_{4}dr }[/tex]  

[tex]\mathbf{\implies \dfrac{1}{2} \Big[\theta - \dfrac{sin \ 2 \theta}{2}\Big]^{2 \pi}_{0} \ \times\Big[ \dfrac{11^2-4^2}{2}\Big]}[/tex]

[tex]\mathbf{\implies \dfrac{\pi}{2} \times\Big[ 121-16\Big]}[/tex]

[tex]\mathbf{\implies \dfrac{105}{2}\pi }[/tex]

Learn more about double integral here:

https://brainly.com/question/19756166

Other Questions
what should be added to 66.778 get 78.2 Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bottom of the shorter building is 48degrees and from the bottom, the angle of of elevation of the top of the shorter building is 36 degrees. Calculate the difference in the heights of the buildings Fill in the blanks with the words given below- [Atoms, homogeneous, metals, true, saturated, homogeneous, colloidal, compounds, lustrous] 1.An element which are sonorous are called................ 2.An element is made up of only one kind of .................... 3.Alloys are ............................. mixtures. 4.Elements chemically combines in fixed proportion to form ........................ 5. Metals are................................... and can be polished. 6. a solution in which no more solute can be dissolved is called a .................... solution. 7. Milk is a .............. solution but vinegar is a .................. solution. 8. A solution is a ................... mixture. pls help, could not get these answers Standard rate per direct labor-hour $ 2 Standard direct labor-hours for each unit produced 3 Units manufactured 1,000 Actual direct labor-hours worked during the month 3,300 Total actual variable manufacturing overhead $ 6,600 Knowledge Check 01 Assume that direct labor-hours is used as the overhead allocation base. What is the variable overhead efficiency variance Using Tour Notes2. Categorizing Using your notes, list the cultures found in the Northeast Suppose an item sells for $125 in the United States and for 62,500 pesos in Chile. According to the law of one price, the nominal exchange rate (pesos/dollar) should be ________. Predict what will happen to the following lung volumes and capacities during strenuous exercise. Assume that you are comparing from a baseline of normal resting respiration.Lung Volume or Capacity Predicted change from resting baseline : Use Increase, Decrease or No ChangeTLC (total lung capacity)No changeVC (Vital capacity)IC (Inspiratory capacity)FRC (Functional residual capacityTV (Tidal volume)IRV (Inspiratory reserve volume)ERV (Expiratory reserve volume)RV (Residual volume) A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at an incident angle of 30 degrees. (a) At what angles do the two colors emerge went to the lake.is that a sentence or a fragment Kate is arranging new furniture in her rectangular sitting room. She has mapped the arrangement on a coordinate plane. A, B, and C represent the sofas, V1 and V2 are decorative vases and AQ represents the aquarium. Find the distance between V1 and the aquarium. Question 4 options: A) 11 units B) 10 units C) 1 units D) units Find the maximum and minimum values of the function f(x,y)=2x2+3y24x5 on the domain x2+y2100. The maximum value of f(x,y) is: Self-Checkpor LearningA truck mass 8000 kg and a car a mass 1000kg are travelling at the same velocity. Which one has greater kinetic energy ? Why? Suppose that $9500 is placed in an account that pays 9% interest compounded each year.Assume that no withdrawals are made from the account.Follow the instructions below. Do not do any rounding.(a) Find the amount in the account at the end of 1 year.so(b) Find the amount in the account at the end of 2 years.$? When Brandon decided he needed a new car, he immediately called his old college roommate, who owns a BMW dealership, to ask questions about options and financing. Brandon was searching for information from Group of answer choices Find the value of x. Round to the nearest tenth.Find the value of x. Round to the nearest tenth. Express 3a2b-1 with positive exponents. Which of the following is considered a source of general revenue in the Government-wide Statement of Activities? A) Charges for Services B) Operating GrantsC) Sales Tax Solve for X answer asap thanks Write a method that accepts a String object as an argument and returns a copy of the string with the first character of each sentence capitalized. For instance, if the argument is "hello. my name is Joe. what is your name?" the method should return the string "Hello. My name is Joe. What is your name?" Demonstrate the method in a program that asks the user to input a string and then passes it to the method. The modified string should be displayed on the screen. Harley-Davidson disciples share a common, deeply held attraction to the brand. Harley appeals include: freedom, independence, power, and authenticity. Harley-Davidson doesn't just sell motorcycles. It sells self-expression, lifestyles, aspirations, and dreams. This illustrates core customer values