Answer:
Pvalue = 0.1505
y = 0.550x1 + 3.600x2 + 7.300
Step-by-step explanation:
Given the data :
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Using technology, the Pvalue obtained using the Fratio :
F = MSregression / MSresidual = 30.228571/ 8.190476 = 3.69
The Pvalue for the regression equation is:
Using the Pvalue from Fratio calculator :
F(1, 3), 3.69 = 0.1505
Using the Pvalue approach :
At α = 0.01
Pvalue > α ; Hence, we fail to reject H0 and conclude that ; There is not enough evidence to show that the relationship is statistically significant.
The regression equation :
y = A1x1 + A2x2 +... AnXn
y = 0.550x1 + 3.600x2 + 7.300
x1 and x2 are the predictor variables ;
y = predicted variable
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
Answer:
its D.
Step-by-step explanation:
took test
if side of square is 4.05 find its area
Answer:
A
≈
16.4
please give brain list is there a formula for this?
help asap!!
Answer:
yes
Step-by-step explanation:
the answer is c well thats what my teacher said
Answer:
B
Step-by-step explanation:
using sine rule
[tex] \frac{y}{sin \: 45} = \frac{5}{sin \: 45} \\ y = 5[/tex]
using sin rule
[tex] \frac{x}{sin \: 90} = \frac{5}{sin \: 45} \\ \\ 5sin90 = xsin45 \\ \\ x = \frac{5 \: sin \: 90}{sin \: 45} \\ x = \frac{5}{0.7071} \\ x = 7.071[/tex]
x=5√2
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
A town recently dismissed 5 employees in order to meet their new budget reductions. The town had 4 employees over 50 years of age and 16 under 50. If the dismissed employees were selected at random, what is the probability that no more than 1 employee was over 50
Answer:
0.7513 = 75.13% probability that no more than 1 employee was over 50
Step-by-step explanation:
The employees are chosen from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
4 + 16 = 20 employees, which means that [tex]N = 20[/tex]
4 over 50, which means that [tex]k = 4[/tex]
5 were dismissed, which means that [tex]n = 5[/tex]
What is the probability that no more than 1 employee was over 50?
Probability of at most one over 50, which is:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
In which
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,20,5,4) = \frac{C_{4,0}*C_{16,5}}{C_{20,5}} = 0.2817[/tex]
[tex]P(X = 1) = h(1,20,5,4) = \frac{C_{4,1}*C_{16,4}}{C_{20,5}} = 0.4696[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.2817 + 0.4696 = 0.7513[/tex]
0.7513 = 75.13% probability that no more than 1 employee was over 50
Find the value of x.
Answer:
x = 3
Step-by-step explanation:
A midsegment in a trapezoid is formed when one connects the midpoints of the two legs (non-parallel sides) in a trapezoid. The midsegment theorem states that the length of the midsegment is equal to the average of the two bases (that is the parallel sides).
One can apply the midsegment theorem here by stating the following;
[tex]\frac{(YZ)+(TM)}{2}=PW[/tex]
Substitute,
[tex]\frac{23+11x+2}{2}=29[/tex]
Simplify,
[tex]\frac{25+11x}{2}=29[/tex]
Inverse operations,
[tex]\frac{25+11x}{2}=29[/tex]
[tex]25+11x=58\\\\11x = 33\\\\x = 3[/tex]
At the Fidelity Credit Union, a mean of 5.8 customers arrive hourly at the drive-through window. What is the probability that, in any hour, more than 5 customers will arrive
Answer:
0.5217
Step-by-step explanation:
P(more than 5 customer arrive):
P(X>=6)=1-P(X<=5)= 1-∑x=0x e-λ*λx/x!= 0.5217
Exactly how many planes contain points J, K, and N?
a - 0
b - 1
c - 2
d - 3
F(x) =-2x-4 find x if f(x)=14
Answer:
14=-2x-4
18=-2x
x=-9
Hope This Helps!!!
What angles can you construct using just a pair of compasses and a ruler?
Answer:
By using a pair of compasses and a ruler you can draw all angles
Complete the information for that object by making estimates using appropriate units of measurement of the dimensions and by getting the actual measurements using an appropriate measuring instrument.
Answer:
hlo how are u?whats ur day is going
What is the solution set of the equation x2+3*-4=6
Answer:
x=9
Step-by-step explanation:
Sofia bought a clothes iron that was discounted 15% off of the original price of $35. What was the sale price of the clothes iron?
Answer:
35 - 0.15 * 35 so it is $29.75
Step-by-step explanation:
I got u
Answer:
$29.75
Step-by-step explanation:
15% = .15
.15 x 35 = 5.25
35 - 5.25 = 29.75
Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) c, c, c , where c > 0
Answer:
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
Step-by-step explanation:
Given the data in the question;
vector is z = < c,c,c >
the direction cosines and direction angles of the vector = ?
Cosines are the angle made with the respect to the axes.
cos(∝) = z < 1,0,0 > / |z|
so
cos(∝) = < c,c,c > < 1,0,0 > / √[c² + c² + c²] = ( c + 0 + 0 ) / √[ 3c² ]
cos(∝) = c / √[ 3c² ] = c / c√3 = 1/√3
∝ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(β) = < c,c,c > < 0,1,0 > / √[c² + c² + c²] = ( 0 + c + 0 ) / √[ 3c² ]
cos(β) = c / √[ 3c² ] = c / c√3 = 1/√3
β = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(γ) = < c,c,c > < 0,0,1 > / √[c² + c² + c²] = ( 0 + 0 + c ) / √[ 3c² ]
cos(γ) = c / √[ 3c² ] = c / c√3 = 1/√3
γ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
Therefore;
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
please help i guess on a
Answer:
A = (2, 2)
B = (3, -1)
C = (-1, 0)
Step-by-step explanation:
To translate a point, you have to translate each individual point. At the bottom it shows <-2,3>, therefore you have to translate x 2 units to the left (because it's negative meaning the number is going away from 0, and 3 units to the right because 3 is a positive number.)
First Point A:
x: 4 - 2 = 2; y: -1 + 3 = 2
Second Point B:
x: 5 - 2 = 3; y: -4 + 3 = -1
Lastly, Point C:
x: 1 - 2 = -1, y: -3 + 3 = 0
I hope this helps!
Please help me out with these questions :
Answer:
Step-by-step explanation:
1. 3/7 x = 12
3x = 84
x = 28
2. 3x+ 6 = 39
3x = 33
x = 11
3. 1/3 x - 3/4 x = 15
9x - 4x = 180
x = 36
4. 1/4 x = x -21
3/4 x = 21
3x = 84
x=28
5. 86-36 = 50
50/2
25
find the exact value cos5pi/6
Answer:
[tex] - \frac{ \sqrt{3} }{2} [/tex]
Step-by-step explanation:
Unit circle
9. Mariah has 28 centimeters of reed
and 10 meters of reed for weaving
baskets. How many meters of reed
does she have? Write your answer as a
decimal and explain your answer.
Jill has 32 crayons. She loses 4 of the crayons. How many are left?
Answer:
the answer here is d
the answer is d
Answer:
28
Step-by-step explanation:
Total number of crayons = 32
Number of crayons lost = 4
Therefore, number of crayons she is left with is : 32 - 4 = 28
Working :
[tex]32\\04 - \\\overline{28}[/tex]
if cosA=3√2/5,then show that cos2A=11/25
Answer:
Step-by-step explanation:
Cos 2A = 2Cos² A - 1
[tex]= 2*(\frac{3\sqrt{2}}{5})^{2}-1\\\\=2*(\frac{3^{2}*(\sqrt{2})^{2}}{5^{2}})-1\\\\=2*\frac{9*2}{25} - 1\\\\=\frac{36}{25}-1\\\\=\frac{36}{25}-\frac{25}{25}\\\\=\frac{11}{25}[/tex]
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
The original price of a set lunch was 30 dollars. It is now sold at a 20%
discount. There is an extra discount of 10% for students. How much
should a student pay to order a set lunch?
(3b-4)(b+2) in standard form
Answer:
3b^2 + 2b -8
Step-by-step explanation:
* means multiply
^ means exponent
3b * b = 3b^2
3b * 2 = 6b
-4 * b = -4b
-4 * 2 = -8
3b^2 + 6b -4b -8
3b^2 + 2b -8
i need helpp pleaseee
Which best describes the function represented by the
table?
Х
-2
2
4
6
Y у
-5
5
10
15
O direct variation; k = 33 를
O direct variation; k = 5
- 를
O inverse variation; k = 10
direct variation; k = 1
10
Answer:
Direct variation
[tex]k = 2.5[/tex]
Step-by-step explanation:
Given
The attached table
Required
The type of variation
First, we check for direct variation using:
[tex]k = \frac{y}{x}[/tex]
Pick corresponding points on the table
[tex](x,y) = (-2,-5)[/tex]
So:
[tex]k = \frac{-5}{-2} = 2.5[/tex]
[tex](x,y) = (4,10)[/tex]
So:
[tex]k = \frac{10}{4} = 2.5[/tex]
[tex](x,y) = (6,15)[/tex]
So:
[tex]k = \frac{15}{6} = 2.5[/tex]
Hence, the table shows direct variation with [tex]k = 2.5[/tex]
Create a circle such that its center is point A and B is a point on the circle.
Answer:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
Describe the motion of a particle with position (x, y) as t varies in the given interval. (For each answer, enter an ordered pair of the form x, y.) x = 1 + sin(t), y = 3 + 2 cos(t), π/2 ≤ t ≤ 2π
Answer:
The motion of the particle describes an ellipse.
Step-by-step explanation:
The characteristics of the motion of the particle is derived by eliminating [tex]t[/tex] in the parametric expressions. Since both expressions are based on trigonometric functions, we proceed to use the following trigonometric identity:
[tex]\cos^{2} t + \sin^{2} t = 1[/tex] (1)
Where:
[tex]\cos t = \frac{y-3}{2}[/tex] (2)
[tex]\sin t = x - 1[/tex] (3)
By (2) and (3) in (1):
[tex]\left(\frac{y-3}{2} \right)^{2} + (x-1)^{2} = 1[/tex]
[tex]\frac{(x-1)^{2}}{1}+\frac{(y-3)^{2}}{4} = 1[/tex] (4)
The motion of the particle describes an ellipse.
4,3,5,9,12,17,...what is the next number?
Answer:
The next number is going to be 21
Answer:
19
Step-by-step explanation:
4 even number
3,5,7 odd numbers
14 even
17, 19, 21 even
what is the range of the funcion y=x^2
Answer:
Range = [0, infinity)
Step-by-step explanation:
Minimum point of the graph is at (0,0) and it is a u shaped graph. Hence, range is 0 inclusive to infinity
find the measures of m and n.
Answer:
m = 4
n = 5
Step-by-step explanation:
[tex]m + 8 = 3m\\\\m - 3m = - 8\\\\-2m = - 8\\\\m = 4[/tex]
[tex]2n - 1 = 9 \\\\2n = 9 + 1\\\\2n = 10\\\\n = 5[/tex]