Answer:
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Explanation:
We have the reactants as calcium chloride and potassium carbonate. Recall that we are expecting that the reaction will yield a precipitate. We must keep that in mind as we seek to write its balanced chemical reaction equation.
So we now have;
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Recall that the rule of balancing chemical reaction equation states that the number of atoms of each element on the right side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation.
how does the disturbance travel through the coil when you move your arm back and forth?
Answer:
The waves travel in a direction parallel to direction of the vibration of the medium
The waves travel in a direction parallel to direction of the vibration of the medium
what is mechanical wave ?A mechanical wave is defined as an oscillation of matter which is responsible for energy transfer via medium.
The propagation of wave is limited by the medium of transmission, the oscillating material which revolve around a fixed point with little translational motion.
A surface wave which is an example of mechanical wave that propagate along the interface of two different media in physics. other common examples are Gravity waves on the surface of liquids, ocean waves.
Surface wave can be propagated in a slow way through Earth material and are generally lower in frequency than body waves.
For more details regarding wave, visit
brainly.com/question/17837173
#SPJ5
How many moles are in 56.4 grams of AlF3
Answer: 0.671614483912211
Explanation: A mole is 6.02214076×1023 (also known as the Avogadro number) I hope this helps!
A student working in the laboratory produces 6.81 grams of calcium oxide, CaO, from 20.7 grams of calcium
carbonate, CaCO3, according to the reaction CaCO3 → CaO + CO2. Calculate the theoretical yield and
the percent yield for the reaction. Show and/or explain your work.
Answer:
A. Theoretical yield of CaO is 11.59 g
B. Percentage yield of CaO = 58.76%
Explanation:
The following data were obtained from the question:
Mass of CaCO₃ = 20.7 g
Actual yield of CaO = 6.81 g
Theoretical yield of CaO =?
Percentage yield of CaO =?
The equation for the reaction is given below:
CaCO₃ —> CaO + CO₂
Next, we shall determine the mass of CaCO₃ that decomposed and the mass of CaO produced from the balanced equation. This can be obtained as follow:
Molar mass of CaCO₃ = 40 + 12 + (3×16)
= 40 + 12 + 48
= 100 g/mol
Mass of CaCO₃ from the balanced equation = 1 × 100 = 100 g
Molar mass of CaO = 40 + 16 = 56 g/mol
Mass of CaO from the balanced equation = 1 × 56 = 56 g
SUMMARY:
From the balanced equation above,
100 g of CaCO₃ decomposed to produce 56 g of CaO.
A. Determination of the theoretical yield of CaO.
From the balanced equation above,
100 g of CaCO₃ decomposed to produce 56 g of CaO.
Therefore, 20.7 g of CaCO₃ will decompose to produce =
(20.7 × 56)/100 = 11.59 g of CaO.
Thus, the theoretical yield of CaO is 11.59 g
B. Determination of the percentage yield.
Actual yield of CaO = 6.81 g
Theoretical yield of CaO = 11.59 g
Percentage yield of CaO =?
Percentage yield = Actual yield /Theoretical yield × 100
Percentage yield = 6.81/11.59 × 100
Percentage yield of CaO = 58.76%