Answer:
[tex]c = \frac{A}{12h} - b[/tex]
Step-by-step explanation:
Okay, so the goal is to isolate c on one side with all the other terms on the other side. So, let's start by dividing both sides with 12h. After we do that, we will be left with [tex]\frac{A}{12h} = b+c[/tex]. Now, we can subtract both sides by b, and we will be left with [tex]\frac{A}{12h} - b = c[/tex]. Yay! We've now isolated c and that is our final answer!
Hope this helped! :)
Figure A is translated 3 units right and 2 units up. The translated figure is labeled figure B. Figure B is reflected over the x-axis. The reflected figure is labeled figure C. Which best explains why figure A is congruent to figure C? On a coordinate plane, triangle A has points (1, negative 2), (3, negative 2), (3, negative 5). Triangle B has points (4, 0), (6, 0), (6, negative 3). Triangle C has points (4, 0), (6, 0), (6, 3). A Is congruent to B and B Is congruent to C A Is congruent to A, B Is congruent to B, C Is congruent to C Each triangle is a right triangle. Each triangle is an isosceles triangle.
Answer:
A Is congruent to B and B Is congruent to C
Step-by-step explanation:
Let's look at the answer choices:
A: "A Is congruent to B and B Is congruent to C"
Well, clearly, if A ≅ B and B ≅ C, then by the transitive property, we can say that A ≅ C. So, A is very likely correct.
B: "A Is congruent to A, B Is congruent to B, C Is congruent to C"
Just because A is congruent to itself (and same with B and C) doesn't necessarily mean that they're congruent to each other. So, B is wrong.
C: "Each triangle is a right triangle."
Again, there are so many right triangles out there with different dimensions. For example, there are some with sides 3, 4, and 5, and others with sides 5, 12, and 13. They are not congruent, however. So, rule out C.
D: "Each triangle is an isosceles triangle."
This is just like choice C since there are so many variations of isosceles triangles. So D is wrong.
The answer is thus A.
Answer:
First one:
A Is congruent to B and B Is congruent to C
Step-by-step explanation:
Since B is obtained by translating A, it has the same measure angles and sides as A, hence B is congruent to A
C is obtained by reflecting B, which doesn't alter the measure of sides and angles, so C is congruent to B
Therefore by transition, C is congruent to A
What is the vertex of the graph of the function f(x) = x2 + 8x - 2 ?
(-4, 18)
(0, -2)
(-8, -2)
(-4, -18)
Answer: (-4,-18)
Step-by-step explanation: If you use desmos you can graph the equation to find the vertex.
The vertex of the graph of function f(x) = x² + 8x - 2 is (-4, -18)
What is the vertex of the graph of a quadratic function?In a quadratic function, the vertex of the graph refers to the highest or lowest possible outcome of the function. In a graph, the vertex is the highest or lowest point on the parabola,
Given that:
f(x) = x² + 8x - 2
where;
a = 1b = 8c = - 2By using the vertex formula to find the x-value;
[tex]\mathbf{x = \dfrac{-b}{2a}}[/tex]
[tex]\mathbf{x = \dfrac{-8}{2(1)}}[/tex]
x = -4
So,
y = (-4)² + 8(-4) - 2
y = 16 -32 -2
y = -18
Therefore, the vertex of the graph of function f(x) = x² + 8x - 2 is (-4, -18)
Learn more about the vertex of the graph function here:
https://brainly.com/question/1305555
#SPJ2
A footbridge has a span of 54 feet. A sign is
to be placed exactly halfway across the bridge. How far will the center of the sign be from each end of the bridge?
Answer:
27
Step-by-step explanation:
Because if it is halfway, that means
halfway=1/2
1/2=1/2 of 54
54/2 or 1/2 of 54=27
PLS MARK ME BRAINLIEST I NEED IT PLEASE
The center of the sign will be 27 feet apart from both ends of the bridge.
Given that,
A footbridge has a span of 54 feet. A sign is to be placed exactly halfway across the bridge. How far will the center of the sign be from each end of the bridge is to be determined.
In mathematics, it deals with numbers of operations according to the statements. There are four major arithmetic operators, addition, subtraction, multiplication, and division,
Here,
Since the bridge is 54 feet long,
Now at the center of the bridge, a sign is placed,
So the distance of sign from both ends is equal to half of the total length of the bridge. i.e.
= 54 / 2
= 27
Thus, the center of the sign will be 27 feet apart from both ends of the bridge.
Learn more about arithmetic here:
brainly.com/question/14753192
#SPJ2
Solve 20x = 10 for x. A. x = 1/2 B. x = 1.5 C. x = 2 D. x = 10
Answer:
A. 1/2
Step-by-step explanation:
20x=10
Divide 20 on both sides of the equation to get x by itself
20x=10
___. __
20. 20
x =1/2
Answer:
A) x= 1/2
Step-by-step explanation:
20x= 10 we then divide 10 by 20 to get x= 10/20 or if we simplify x= 1/2. Thus answer choice A) is correct!
You roll a six-sided number cube (die). What is the BEST answer for the probability that the number rolled is between 1 and 6, inclusive?
A) certain
B) unlikely
C) impossible
D) very likely
Answer: It is A certain.
Step-by-step explanation:
Because all the numbers on a six-sided cube is between 1 and 6 so it is certain or 100/100 that the number will land on a number between 1 and 6.
Suppose you had to
guess on a four-choice
multiple-choice test and
were given four questions.
Find the binomial
probability distribution.
( + ) ℎ =
4 = 0.25
Answer:
For 0 correct answer [tex]^4c_0p^0q^{4-0}[/tex]
For 1 correct answer [tex]^4c_1p^1q^{4-1}[/tex]
For 2 correct answer [tex]^4c_2p^0q^{4-2}[/tex]
For 3 correct answer [tex]^4c_3p^1q^{4-3}[/tex]
For 4 correct answer [tex]^4c_4p^1q^{4-4}[/tex]
Step-by-step explanation:
It is given that there are 4 questions n = 4
Number of choices is 4
So probability of getting correct answer [tex]=\frac{1}{4}[/tex]
Probability of getting incorrect answer [tex]=1-\frac{1}{4}=\frac{3}{4}[/tex]
Probability distribution is given by [tex]^nc_rp^rq^{n-r}[/tex]
Therefore probability distribution of 0 correct answer
[tex]^4c_0p^0q^{4-0}[/tex]
Therefore probability distribution of 1 correct answer
[tex]^4c_1p^1q^{4-1}[/tex]
Therefore probability distribution of 2 correct answer
[tex]^4c_2p^0q^{4-2}[/tex]
Therefore probability distribution of 3 correct answer.
[tex]^4c_3p^1q^{4-3}[/tex]
Therefore probability distribution of 4 correct answer.
[tex]^4c_4p^1q^{4-4}[/tex]
Plz help ..............!!!!!
Answer:
1.8
is the median
Answer: 1.8
Step-by-step explanation: 1.8 is the median
Which expression is equivalent to m n + z?
n m + n
z + m z
m z + n
z + n m
Answer:
z + n m
Step-by-step explanation:
These expressions are equivalent because the commutative property of addition, which states that when adding two terms, the order doesn't matter.
If this answer is correct, please make me Brainliest!
Answer:
It's "c"
Step-by-step explanation:
i just did this on edge
Junior bought a bag of mixed fruit snacks. The flavors in the bag are 4 strawberry, 3 cherry, and 5 grape. If he chooses one fruit snack at random, what it the probability of the first one being grape?
Answer:I believe it would be 5/12
Step-by-step explanation:
You add all of them up then since it's 5 grapes and in total there is 12 fruit snacks. It should be 5 grapes of 12 fruit snacks in the bag.
What is the area of the triangle
Answer:
A. 6 inchesssssssss
Answer:
6
Step-by-step explanation:
Ramesh examined the pattern in the table. Powers of 7 Value 7 Superscript 4 2,401 7 Superscript 3 343 7 Superscript 2 49 7 Superscript 1 7 7 Superscript 0 1 7 Superscript negative 1 StartFraction 1 Over 7 EndFraction Ramesh says that based on the pattern 7 Superscript negative 5 = negative 16,807. Which statement explains whether Ramesh is correct? Ramesh is correct because 7 Superscript negative 5 is equivalent to Negative 7 times (negative 7) times (negative 7) times (negative 7) times (negative 7), which has the same value as Negative 16,807. Ramesh is correct because as the exponents decrease, the previous value is divided by 7, so 7 Superscript negative 5 = 1 divided by 7 divided by 7 divided by 7 divided by 7 divided by 7 = negative 16,807. Ramesh is not correct because 7 Superscript negative 5 is equivalent to StartFraction 1 Over 7 Superscript 5 EndFraction, which has the same value as StartFraction 1 Over 7 Superscript 4 EndFraction divided by 7 = StartFraction 1 Over 7 cubed EndFraction = StartFraction 1 Over 343 EndFraction. Ramesh is not correct because as the exponents decrease, the previous value is divided by 7, so 7 Superscript negative 5 = 1 divided by 7 divided by 7 divided by 7 divided by 7 divided by 7 = StartFraction 1 Over 16,807 EndFraction. NEED HELP NOW PLEASE I HAVE ONLY SEEN WRONG ANSWERS
Answer:
D
Step-by-step explanation:
Answer:
D.- Ramesh is not correct because as the exponents decrease, the previous value is divided by 7, so 7^-5 = 1 ÷ 7 ÷ 7 ÷ 7 ÷ 7 ÷ 7 = 1/16,807.
Suppose the round-trip airfare between Philadelphia and Los Angeles a month before the departure date follows the normal probability distribution with a mean of $387.20 and a standard deviation of $68.50. What is the probability that a randomly selected airfare between these two cities will be between $325 and $425?
Answer:
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 387.20, \sigma = 68.50[/tex]
What is the probability that a randomly selected airfare between these two cities will be between $325 and $425?
This is the pvalue of Z when X = 425 subtracted by the pvalue of Z when X = 325. So
X = 425
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{425 - 387.20}{68.50}[/tex]
[tex]Z = 0.55[/tex]
[tex]Z = 0.55[/tex] has a pvalue of 0.7088
X = 325
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{325 - 387.20}{68.50}[/tex]
[tex]Z = -0.91[/tex]
[tex]Z = -0.91[/tex] has a pvalue of 0.1814
0.7088 - 0.1814 = 0.5274
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425
Identify two Pythagorean triples using the known triple 9, 40 , 41. *
Your answer
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} \\ {9}^{2} + {40}^{2} = {41}^{2} \\ 81 + 1600 = 1681 \\ 1681 = 1681[/tex]
Two samples each of size 20 are taken from independent populations assumed to be normally distributed with equal variances. The first sample has a mean of 43.5 and standard deviation of 4.1 while the second sample has a mean of 40.1 and standard deviation of 3.2. A researcher would like to test if there is a difference between the population means at the 0.05 significance level. What can the researcher conclude?
Answer:
[tex]t=\frac{(43.5 -40.1)-(0)}{3.678\sqrt{\frac{1}{20}+\frac{1}{20}}}=2.923[/tex]
The degrees of freedom are
[tex]df=20+20-2=38[/tex]
And the p value is given by:
[tex]p_v =2*P(t_{38}>2.923) =0.0058[/tex]
Since the p value for this cae is lower than the significance level of 0.05 we have enough evidence to reject the null hypothesis and we can conclude that the true means for this case are significantly different
Step-by-step explanation:
When we have two independent samples from two normal distributions with equal variances we are assuming that
[tex]\sigma^2_1 =\sigma^2_2 =\sigma^2[/tex]
And the statistic is given by this formula:
[tex]t=\frac{(\bar X_1 -\bar X_2)-(\mu_{1}-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}[/tex]
Where t follows a t distribution with [tex]n_1+n_2 -2[/tex] degrees of freedom and the pooled variance [tex]S^2_p[/tex] is given by this formula:
[tex]S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
The system of hypothesis on this case are:
Null hypothesis: [tex]\mu_1 = \mu_2[/tex]
Alternative hypothesis: [tex]\mu_1 \neq \mu_2[/tex]
We have the following data given:
[tex]n_1 =20[/tex] represent the sample size for group 1
[tex]n_2 =20[/tex] represent the sample size for group 2
[tex]\bar X_1 =43.5[/tex] represent the sample mean for the group 1
[tex]\bar X_2 =40.1[/tex] represent the sample mean for the group 2
[tex]s_1=4.1[/tex] represent the sample standard deviation for group 1
[tex]s_2=3.2[/tex] represent the sample standard deviation for group 2
First we can begin finding the pooled variance:
[tex]\S^2_p =\frac{(20-1)(4.1)^2 +(20 -1)(3.2)^2}{20 +20 -2}=13.525[/tex]
And the deviation would be just the square root of the variance:
[tex]S_p=3.678[/tex]
The statistic is givne by:
[tex]t=\frac{(43.5 -40.1)-(0)}{3.678\sqrt{\frac{1}{20}+\frac{1}{20}}}=2.923[/tex]
The degrees of freedom are
[tex]df=20+20-2=38[/tex]
And the p value is given by:
[tex]p_v =2*P(t_{38}>2.923) =0.0058[/tex]
Since the p value for this cae is lower than the significance level of 0.05 we have enough evidence to reject the null hypothesis and we can conclude that the true means for this case are significantly different
Using the t-distribution, as we have the standard deviation for the sample, it is found that the researcher can conclude that there is a difference between the population means at the 0.05 significance level.
What are the hypothesis tested?At the null hypothesis, it is tested if there is no difference, that is:
[tex]H_0: \mu_1 - \mu_2 = 0[/tex]
At the alternative hypothesis, it is tested if there is a difference, that is:
[tex]H_a: \mu_1 - \mu_2 \neq 0[/tex]
What is the mean and the standard error of the distribution of differences?For each sample, we have that they are given by
[tex]\mu_1 = 43.5, s_1 = \frac{4.1}{\sqrt{20}} = 0.9168[/tex]
[tex]\mu_2 = 40.2, s_2 = \frac{3.2}{\sqrt{20}} = 0.7155[/tex]
Hence, for the distribution of differences, the mean and the standard error are given by:
[tex]\overline{x} = \mu_1 - \mu_2 = 43.5 - 40.2 = 3.3[/tex]
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.9168^2 + 0.7155^2} = 1.163[/tex]
What is the test statistic?It is given by:
[tex]t = \frac{\overline{x} - \mu}{s}[/tex]
In which [tex]\mu = 0[/tex] is the value tested at the null hypothesis, hence:
[tex]t = \frac{\overline{x} - \mu}{s}[/tex]
[tex]t = \frac{3.3 - 0}{1.163}[/tex]
[tex]t = 2.84[/tex]
What is the decision?Considering a two-tailed test, as we are testing if the mean is different of a value, with a significance level of 0.05 and 20 + 20 - 2 = 38 df, the critical value is of [tex]|z^{\ast}| = 2.0244[/tex].
Since the absolute value of the test statistic is greater than the critical value, it is found that the researcher can conclude that there is a difference between the population means at the 0.05 significance level.
More can be learned about the t-distribution at https://brainly.com/question/16313918
how many tenths are in 4600
Answer:
4600 tenths as a Fraction
Since 4600 tenths is 4600 over ten, 4600 tenths as a Fraction is 4600/10.
4600 tenths as a Decimal
If you divide 4600 by ten you get 4600 tenths as a decimal which is 460.00.
4600 tenths as a Percent
To get 4600 tenths as a Percent, you multiply the decimal with 100 to get the answer of 46000 percent.
4600 tenths of a dollar
First we divide a dollar into ten parts where each part is 10 cents. Then we multiply 10 cents with 4600 and get 46000 cents or 460 dollars and 0 cents.
Step-by-step explanation:
Hope this helped!
Stay safe!!!
Answer:
Step-by-step explanation:
To answer this, multiply 4600 by 10: 46000. There are 46000 tenths in 4600.
Equations
What is the solution of the system of linear equations?
-3x + 4y = -18
2x - y = 7
(-2,-3)
(-2,3)
(2, -3)
(2, 3)
Answer:
Step-by-step explanation:
-3x + 4y = -18
8x - 4y = 28
5x = 10
x = 2
4 - y = 7
-y = 3
y = -3
(2, -3)
The solution of the system of linear equations given is (2,-3), the correct option is C.
What is System of Linear Equation?The system of linear equation is set of equations which have a common solution.
The equations are
-3x+4y = -18
2x-y =7
The linear equations can be solved using substitution method
y = 2x -7 from equation 2 will be substituted in equation 1
-3x +4 ( 2x -7) = -18
-3x +8x -28 = -18
5x = 10
x = 2
y = 2 * 2 -7 = -3
To know more about System of Linear Equations
https://brainly.com/question/12895249
#SPJ2
Find an equation for the nth term of the arithmetic sequence.
a16 = 21, a17 = -1
Answer:nth term=a1 - 27n + 27
Step-by-step explanation:
first term =a1
common difference=d=-1-21
d=-27
Using the formula
Tn=a1 + d x (n-1)
nth term=a1 + (-27)(n-1)
nth term=a1 - 27n + 27
Daryl wishes to save money to provide for his retirement. He is now 30 years old and will be
retiring at age 64. Beginning one month from now, he will begin depositing a fixed amount into
a retirement savings account that will earn 12% compounded monthly. Then one year after
making his final deposit, he will withdraw $100,000 annually for 25 years. In addition, and after
he passes away (assuming he lives 25 years after retirement) he wishes to leave in the fund a sum
worth $1,000,000 to his nephew who is under his charge. The fund will continue to earn 12%
compounded monthly. How much should the monthly deposits be for his retirement plan?
Answer:
Step-by-step explanation:
Today's Age = 30
Retirement Age = 64
Total Monthly Deposits = ( 64 - 30 ) * 12 = 408
In case of 12% Compounded Monthly , Interest Rate per month = ( 12% / 12 ) = 1%
Effective Interest Rate per year = ( 1 + 0.12/12 )12 - 1 = 1.1268 - 1 = 0.1268 = 12.68%
Present value of Annual 25 Years withdrawal of $100,000 at time of Retirement = $100,000 * PVAF ( 12.68% , 25 )
= $100,000 * 7.4864
= $748,642.20
Present Value of Money for nephew at time of Retirement = $1,000,000 * PVF ( 12.68% , 25 )
= $1,000,000 * 0.050535
= $50,534.52
Now the Present Value of total Amount Required at time of Retirement = $748,642.20 + $50,534.52
= $799,176.70
Now the monthly deposit be X
= X * FVAF ( 408 , 1% ) = $799,176.70
= X * 5752.85 = $799,176.70
X = $138.918
Therefore Monthly Deposit = $138.92
1.] What is the probability of choosing a king
from a standard deck of playing cards?
Answer:
1/13
Step-by-step explanation:
there are 4 kings in a deck of 52 cards.
4/52 = 1/13
Which number line correctly shows 0.8 + 0.3?
Answer:
the second answer
Step-by-step explanation:
cause 0+0.8 is 0.8 and 0.8+0.3 is 1.1
Answer:
A
Step-by-step explanation:
Im a parent for a 5th grader and don't remember this, plz help?
Again,
Josh wants to make 5 airplane propellers. he needs 18 centimeters of wood for each propeller. how many centimeters of wood will he use? How can I help him understand this problem.
Answer:
90 cm.
Step-by-step explanation:
One airplane propeller needs 18 centimetres of wood.
Josh wants to make 5 of them.
So, we would have to take the '18' centimetres of wood and multiply by 5 to get the total for all 5 pieces.
[tex]\text{Number of Propellers} * 18 \text{ Centimetres}[/tex]
[tex]5 * 18 = 90[/tex]
Josh should need 90 centimetres of wood total to make 5 airplane propellers.
What is the number of possible permutations of 5 objects taken 2 at a time? A. 10 B. 20 C. 60 D. 120
Answer:
B. 20
Step-by-step explanation:
5P2 is equal to 20 using the permutation formula.
Drag each tile to the correct box. Not all tiles will be used.
Arrange the equations in the correct sequence to find the inverse of f(x) = y = 3x / 8 + x
Answer:
Inverse of f(x)
[tex]f^{l} (x) = \frac{8 x}{3-x}[/tex]
Step-by-step explanation:
Explanation:-
Step(i):-
Given the function
[tex]f(x) = \frac{3 x}{8+x}[/tex]
Given function is one-one and onto function
Hence f(x) is bijection function
[tex]y = f(x) = \frac{3 x}{8+x}[/tex]
now cross multiplication, we get
( 8+x)y = 3 x
8 y + x y = 3 x
8 y = 3 x - x y
taking Common 'x' we get
x (3 - y) = 8 y
[tex]x = \frac{8 y}{3-y}[/tex]
Step(ii):-
The inverse function
[tex]x = \frac{8 y}{3-y} = f^{l}(y)[/tex]
The inverse function of x
[tex]f^{l}(x) = \frac{8 x}{3-x}[/tex]
Final answer:-
Inverse of f(x)
[tex]f^{l} (x) = \frac{8 x}{3-x}[/tex]
The object below is a cubical lunch box having each edge as 10 cm.
Find its surface area.
A
600 cm2
B
360 cm2
C
300 cm2
D
36 cm2
Answer:
B
Step-by-step explanation:
The total surface area of a cubical lunch box having each edge as 10 cm is 600 square centimeter. Therefore, option A is the correct answer.
What is surface area of a cube?The surface area of the cube all six faces of the cube are made up of squares of the same dimensions then the total surface area of the cube will be the surface area of one face added six times to itself. The formula to find the surface area of a cube is 6a², where a is edge.
Given that, the cubical lunch box having each edge as 10 cm.
Here, surface area = 6×10²
= 600 square centimeter
Therefore, option A is the correct answer.
Learn more about the surface area of a cube here:
brainly.com/question/23273671.
#SPJ2
A polynomial function has a root of -5 with multiplicity 3, a root of 1 with multiplicity 2, and a root of 3 with multiplicity 7. If the
function has a negative leading coefficient and is of even degree, which statement about the graph is true?
The graph of the function is positive on (-0, 5).
The graph of the function is negative on (-5, 3)
The graph of the function is positive on (-0, 1).
The graph of the function is negative on (3,co)
Mark this and return
Save and Exit
Sabem
Answer:
The graph of the function is negative on (3, ∞)
Step-by-step explanation:
The function starts negative at the left side of the graph, crosses the x-axis at x = -5, touches the x-axis at x = 1, again crosses into negative values at x = 3.
The function is positive on the open intervals (-5, 1) and (1, 3). It is negative on the open intervals (-∞, -5) and (3, ∞). The latter description matches the last answer choice:
the graph of the function is negative on (3, ∞).
Find the compound interest on GHS 50,200 invested at 13% p.a. compounded annually for 3 years ( to the nearest
GHS).
Select one:
A. GHS 19,578
B. GHS 69,778
O
C. GHS 72,433
D. GHS 22.233
Answer:
D
Step-by-step explanation:
First found amount yielded
A = P(1+r)^nt
P is amount deposited 50,200
r is interest rate 13% = 13/100 = 0.13
t = 3
A = 50,200(1+0.13)^3
A = 50,200(1,13)^3
A = 72,433.42939999998
A is approximately 72,433.43
interest = A - P = 72,433.43-50,200 = 22,233.43= 22,233 to the nearest GHS
To the nearest tenth of a cubic centimeter, what is the volume of
the sphere if r = 17 cm?
Answer:
V≈20579.53
Step-by-step explanation:
[tex]V=\frac{4}{3} \pi r^3[/tex]
2x + 3y = 12
Complete the missing value in the solution to the equation.
,8)
will mark the branliest to first one who answers
Answer:
3 1/4
Step-by-step explanation:
3/4 + (1/3 ÷1/6) - (-1/2)
Subtracting a negative is adding
3/4 + (1/3 ÷1/6) +1/2
Parentheses first
Copy dot flip
3/4 + (1/3 * 6/1) +1/2
3/4 + 2 + 1/2
Get a common denominator
3/4 + 2 + 2/4
2 + 5/4
2 + 4/4 +1/4
2+1 + 1/4
3 1/4
Simplify the expression below.
14a8y3 - 7 Ay5 + 28a12y2
7aty
A.
OB.
2a²y3 - ay5 + 4a3y2
2a4y? - JA + 428 y
2a4y3 – 5 + 428 y?
D. 2012,4 - 2876 +4215,3
C.
Answer:
14a8y3 - 7 Ay5 + 28a12y2- 7ay2 • (4a11 + 2a7y - y3)
Step-by-step explanation:
Equation at the end of step 1 :
(((14•(a8))•(y3))-(7a•(y5)))+((22•7a12)•y2)
Step 2 :
Equation at the end of step 2 :
(((14•(a8))•(y3))-7ay5)+(22•7a12y2)
Step 3 :
Equation at the end of step 3 :
(((2•7a8) • y3) - 7ay5) + (22•7a12y2)
Pull out like factors
Answer: 7ay2 • (4a11 + 2a7y - y3)
Hope this helps.