Answer:
848 torr
Explanation:
The only variables are the pressure and the volume, so we can use Boyle's Law.
p₁V₁ = p₂V₂
Data:
p₁ = 565 torr; V₁ = 24.0 L
p₂ = ?; V₂ = 16.0 L
Calculations:
[tex]\begin{array}{rcl}p_{1}V_{1} & = & p_{2}V_{2}\\\text{565 torr} \times \text{24.0 L} & = & p_{2} \times \text{16.0 L}\\\text{13 560 torr} & = & 16.0p_{2}\\p_{2} & = & \dfrac{\text{13 560 torr}}{16.0}\\\\& = &\textbf{848 torr}\\\end{array}\\\text{The final pressure of the gas is $\large \boxed{\textbf{848 torr}}$}[/tex]
If a salt is formed by combining NH3 (Kb=1.8×10−5) and CH3COOH (Ka=1.8×10−5), an aqueous solution of this salt would be:
Answer:
Neutral
Explanation:
pKa of acid = -log Ka
= -log (1.8 x 10^-5)
= 4.74
pKb of base = -log Kb
= 4.74
pKa of acid = pKb of base
salt pH formula : pH = 7 + 1/2 [pKa -pKb ]
here pKa = pKb
so pH = 7
the salt it is CH3COONH4 exactly neutral solution .
If a salt is formed by combining NH₃ (Kb=1.8×10⁻⁵) and CH₃COOH (Ka=1.8×10⁻⁵), an aqueous solution of this salt would be neutral.
What information does pH convey?pH of any solution tells about the acidity or basicity or neutral nature of the solution.
pH of any solution is directly proportional to the acid dissociation constant value (Ka) and base dissociation constant (Kb). In the question it is given that,
Value of Kb for NH₃ = 1.8×10⁻⁵
Value of Ka for CH₃COOH = 1.8×10⁻⁵
Ka & Kb values for the base and acid is same means it dissociates with same extent. So the aqueous solution of this acid and base is a neutral in nature as they have same number of acid and base ions in it.
Hence resultant solution will be a neutral solution .
To know more about neutral solution, visit the below link:
https://brainly.com/question/13805901
A sample of ammonia gas was allowed to come to equilibrium at 400 K. 2NH3(g) <----> N2(g) 3H2(g) At equilibrium, it was found that the concentration of H2 was 0.0484 M, the concentration of N2 was 0.0161 M, and the concentration of NH3 was 0.295 M. What was the initial concentration of ammonia
Answer:
0.327 M
Explanation:
Step 1: Write the balanced equation
2 NH₃(g) ⇄ N₂(g) + 3H₂(g)
Step 2: Make an ICE chart
2 NH₃(g) ⇄ N₂(g) + 3 H₂(g)
I x 0 0
C -2y +y +3y
E x-2y y 3y
Step 3: Find the value of y
The concentration of N₂ at equilibrium is 0.0161 M. Then,
y = 0.0161
Step 4: Find the value of x
The concentration of NH₃ at equilibrium is 0.295 M. Then,
x-2y = 0.295
x-2(0.0161) = 0.295
x = 0.327
CI
Which of the following statements is INCORRECT?
(1)
(2)
the compound contains a o molecular orbital formed by the overlap of one carbon
sp2 hybrid orbital and one hydrogen sp3 hybrid orbital
the compound contains a T molecular orbital formed by the overlap of two
unhybridized carbon p atomic orbitals
the compound contains a polar C-Cl bond
each carbon atom of the C=C bond is sp2 hybridized
(3)
(4)
Answer:
The compound contains a o molecular orbital formed by the overlap of one carbon sp2 hybrid orbital and one hydrogen sp3 hybrid orbital.
Explanation:
Molecular orbital is function which describes wave like behavior of an electron in a molecule. The molecular orbital theory describes the electronic structure of molecule using quantum mechanics. Electrons are not assigned to individual bonds between atoms. The compound contains sp2 hybrid orbial which is polar C - CI bond.
The recommended application for dicyclanil for an adult sheep is 65 mg/kg of body mass. If dicyclanil is supplied in a spray with a concentration of 50. mg/mL, how many milliliters of the spray are required to treat a 70.-kg adult sheep?
Answer:
91 millilitres
Explanation:
Recommended application = 65mg / Kg
This means 65 mg of dicyclanil per kg (1 kg of body mass).
Concentration = 50 mg / mL
How many millilitres required to treat 70kg adult?
If 65mg = 1 kg
x = 70 mg
x = 70 * 65 = 4550 mg
Concentration = Mass / Volume
50 mg/mL = 4550 / volume
volume = 4550 / 50 = 91 mL
Select the true statement concerning voltaic and electrolytic cells. Select one: a. Voltaic cells involve oxidation-reduction reactions while electrolytic cells involve decomposition reactions. b. Voltaic cells require applied electrical current while electrolytic cells do not. . c. all electrochemical cells, voltaic and electrolytic, must have spontaneous reactions. d. Electrical current drives nonspontaneous reactions in electrolytic cells.
Answer:
Electrical current drives nonspontaneous reactions in electrolytic cells.
Explanation:
Electrochemical cells are cells that produce electrical energy from chemical energy.
There are two types of electrochemical cells; voltaic cells and electrolytic cells.
A voltaic cell is an electrochemical cell in which electrical energy is produced from spontaneous chemical process while an electrolytic cell is an electrochemical cell where electrical energy is produced from nonspontaneous chemical processes. Current is needed to drive these nonspontaneous chemical processes in an electrolytic cell.
Answer:
electrolytic cells generate electricity through a non-spontaneous reaction while voltaic cells absorb electricity to drive a spontaneous reaction.
Explanation:
Answer via Educere/ Founder's Education
How many moles of gaseous boron trifluoride, BF3, are contained in a 4.3421 L bulb at 787.9 K if the pressure is 1.218 atm?
Answer:
The amount of moles of gaseous boron trifluoride, BF₃, contained in a 4.3421 L bulb at 787.9 K if the pressure is 1,218 atm is 0.082 moles
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
In this case:
P= 1.218 atmV= 4.3421 Ln= ?R= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= 787.9 KReplacing:
1.218 atm* 4.3421 L= n*0.082 [tex]\frac{atm*L}{mol*K}[/tex] *787.9 K
Solving:
[tex]n=\frac{1.218 atm* 4.3421 L}{0.082 \frac{atm*L}{mol*K}*787.9 K}[/tex]
n= 0.082 moles
The amount of moles of gaseous boron trifluoride, BF₃, contained in a 4.3421 L bulb at 787.9 K if the pressure is 1,218 atm is 0.082 moles
Which response includes all the following processes that are accompanied by an increase in entropy? 1) 2SO 2(g) + O 2(g) → SO 3(g) 2) H 2O(l) → H 2O(s) 3) Br 2(l) → Br 2(g) 4) H 2O 2(l) → H 2O(l) + 1/ 2O 2(g)
Answer: Reaction (1) , (3) and (4) are accompanied by an increase in entropy.
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
(1) [tex]2SO_2(g)+O_2(g)\rightarrow SO_3(g)[/tex]
3 moles of reactant are changing to 1 mole of product , thus the randomness is increasing. Thus the entropy also increases.
2) [tex]H_2O(l)\rightarrow H_2O(s)[/tex]
1 mole of Liquid reactant is changing to 1 mole of solid product , thus the randomness is decreasing. Thus the entropy also decreases.
3) [tex]Br_2(l)\rightarrow Br_2(g)[/tex]
1 mole of Liquid reactant is changing to 1 mole of gaseous product , thus the randomness is increasing. Thus the entropy also increases.
4) [tex]H_2O_2(l)\rightarrow H_2O(l)+\frac{1}{2}O_2(g)[/tex]
1 mole of Liquid reactant is changing to half mole of gaseous product and 1 mole of liquid product, thus the randomness is increasing. Thus the entropy also increases.
What is the ph of 0.36M HNO3 ?
Answer:
0.44
Explanation:
We know that the pH of any acid solution is given by the negative logarithm of its hydrogen ion concentration. Hence, if I can obtain the hydrogen ion concentration of any acid, I can obtain its pH.
For the acid, HNO3, [H^+] = [NO3^-]= 0.36 M
pH= -log [H^+]
pH= - log[0.36]
pH= 0.44
Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C. (The equation is balanced.) 3 Cl2(g) + 2 Fe(s) → 6 Cl-(aq) + 2 Fe3+(aq) Cl2(g) + 2 e- → 2 Cl-(aq) E° = +1.36 V Fe3+(aq) + 3 e- → Fe(s) E° = -0.04 V
The cell potential for the electrochemical cell has been 1.40 V.
The standard reaction for the cell will be:
[tex]\rm 3\;Cl_2\;+\;2\;Fe\;\rightarrow\;6\;Cl^-\;+\;2\;Fe^3^+[/tex]
The half-reaction of the cells has been:
[tex]\rm Fe^3^+\;+\;3\;e^-\;\rightarrow\;Fe[/tex]
The potential for this reduction has been -0.04 V.
[tex]\rm Cl_2\;+\;2\;e^-\;\rightarrow\;2\;Cl^-[/tex]
The potential for the reduction has been 1.36 V.
The cell potential has been: Potential of reduction - Potential of oxidation
Cell potential = 1.36 - (-0.04) V
Cell potential = 1.40 V.
The cell potential for the electrochemical cell has been 1.40 V.
For more information about the electrochemical cell, refer to the link:
https://brainly.com/question/22550969
(9443+45−9.9) (9443+45−9.9) ×8.4× 10 6
What class of organic product results when 1-heptyne is treated with a mixture of mercuric acetate in aqueous sulfuric acid, and then HOCH2CH2OH with catalytic sulfuric acid
Answer:
2-methyl-2-pentyl-1,3-dioxolane
Explanation:
In this case, we have two reactions:
First reaction:
1-heptyne + mercuric acetate -------> Compound A
Second reaction:
Compound A + HOCH2CH2OH -------> Compound C
First reaction
In the first reaction, we have as a main functional group a triple bond. We have to remember that mercuric acetate in sulfuric acid will produce a ketone. The carbonyl group (C=O) would be placed in the most substituted carbon of the triplet bond (in this case, carbon 2). With this in mind, we will have as a product: heptan-2-one. (See figure 1).
Second reaction
In this reaction, we have as reagents:
-) Heptan-2-one
-) Ethylene-glycol [tex]HOCH_2CH_2OH[/tex]
-) Sulfuric acid [tex]H_2SO_4[/tex]
When we put ethylene-glycol with a ketone or an aldehyde we will form a cyclic acetal. In this case, this structure would be formed on carbon 2 forming 2-methyl-2-pentyl-1,3-dioxolane. (See figure 2).
I hope it helps!
The complex ion Fe(CN)63- is paramagnetic with one unpaired electron. The complex ion Fe(SCN)63- has five unpaired electrons. Where does SCN- lie in the spectrochemical series with respect to CN-?
Answer:
SCN- is a weak field ligand while CN- is a strong field ligand
Explanation:
The spectrochemical series is an arrangement of ligands according to their magnitude of crystal field splitting. Ligands that cause only a small degree of crystal field splitting are called weak field ligands while ligands that cause large crystal field splitting are called strong field ligands.
Strong field ligands often lead to the formation of low spin complexes with the least number of unpaired electrons while high spin complexes are formed by weak field ligands.
CN- is a strong field ligand as it lies towards the right hand side of the spectrochemical series.
SCN- is a weak field ligand hence it forms a high spin complex having the maximum number of unpaired electrons for Fe^3+, hence the answer.
SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.
CN⁻ is a strong field ligand with a large splitting constant, and it is high up in the spectrochemical series.
Conversely, SCN⁻ is a weak field ligand with a low splitting constant, and it is lower in the spectrochemical series.
Hence, SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.
Learn more here: https://brainly.com/question/14658134
Find the standard enthalpy of formation of iodine atoms. (Round your answer to one decimal place.) Standard enthalpy of formation
Answer:
Enthalpy of formation is the energy change when one mole of a substance is formed from its constituent atoms under standard conditions
You are the captain of a ship, and you just hit an iceberg. Water is rushing into the ship and it is quickly sinking. A total of 10 people are on the ship and all of them are in grave danger! Hungry sharks are everwhere! The good news is that you have a lifeboat onboard. The bad news is that it only has room for 5 people. You don't know any of the people very well (only the information provided), and you don't have time to interview them before hopping onto the lifeboat. So, you do you keep, and why (and you do NOT have to keep yourself)?
Answer:
let the people who dont know how to fight on the life boat and the fighters can stay back and try to keep the sharks away.
A solution contains 2.2 × 10-3 M in Cu2+ and 0.33 M in LiCN. If the Kf for Cu(CN)42- is 1.0 × 1025, how much copper ion remains at equilibrium?
Answer:
[Cu²⁺] = 2.01x10⁻²⁶
Explanation:
The equilibrium of Cu(CN)₄²⁻ is:
Cu²⁺ + 4CN⁻ ⇄ Cu(CN)₄²⁻
And Kf is defined as:
Kf = 1.0x10²⁵ = [Cu(CN)₄²⁻] / [Cu²⁺] [CN⁻]⁴
As Kf is too high you can assume all Cu²⁺ is converted in Cu(CN)₄²⁻ -Cu²⁺ is limiting reactant-, the new concentrations will be:
[Cu²⁺] = 0
[CN⁻] = 0.33M - 4×2.2x10⁻³ = 0.3212M
[Cu(CN)₄²⁻] = 2.2x10⁻³
Some [Cu²⁺] will be formed and equilibrium concentrations will be:
[Cu²⁺] = X
[CN⁻] = 0.3212M + 4X
[Cu(CN)₄²⁻] = 2.2x10⁻³ - X
Where X is reaction coordinate
Replacing in Kf equation:
1.0x10²⁵ = [2.2x10⁻³ - X] / [X] [0.3212M +4X]⁴
1.0x10²⁵ = [2.2x10⁻³ - X] / 0.0104858X + 0.524288 X² + 9.8304 X³ + 81.92 X⁴ + 256 X⁵
1.04858x10²³X + 5.24288x10²⁴ X² + 9.8304x10²⁵ X³ + 8.192x10²⁶ X⁴ + 2.56x10²⁷ X⁵ = 2.2x10⁻³ - X
1.04858x10²³X + 5.24288x10²⁴ X² + 9.8304x10²⁵ X³ + 8.192x10²⁶ X⁴ + 2.56x10²⁷ X⁵ - 2.2x10⁻³ = 0
Solving for X:
X = 2.01x10⁻²⁶
As
[Cu²⁺] = X
[Cu²⁺] = 2.01x10⁻²⁶Arrange the compounds in order of decreasing magnitude of lattice energy:
a. LiBr
b. KI
c. CaO.
Rank from largest to smallest.
Answer:
The correct answer is CaO > LiBr > KI.
Explanation:
Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.
With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.
The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.
Arranging the chemical compounds in order of decreasing magnitude of lattice energy, we have:
c. CaO.
a. LiBr
b. KI
Lattice energy can be defined as a measure of the energy required to dissociate one (1) mole of an ionic compound into its constituent anions and cations, in the gaseous state.
Hence, it is typically used to measure the bond strength of ionic compounds.
Generally, lattice energy is inversely proportional to the size of the ions and directly proportional to their electric charges.
Lithium bromide (LiBr) comprises the following ions:
[tex]Li^+[/tex] and [tex]Br^-[/tex]Potassium iodide (KI) comprises the following ions:
[tex]K^+[/tex] and [tex]I^-[/tex]Calcium oxide (CaO) comprises the following ions:
[tex]Ca^{2+}[/tex] and [tex]O^{2-}[/tex]From the above, we can deduce that there is an increase in the charge possessed by the ionic chemical compounds and as such this would result in an increase in the lattice energy.
In order of decreasing magnitude of lattice energy, the chemical compounds are arranged as:
I. CaO.
II. KI.
III. LiBr.
Read more: https://brainly.com/question/24605723
a boy capable of swimming 2.1m/a in still water is swimming in a river with a 1.8 m/a current. At what angle must he swim in order to end up directly opposite his starting point?
Answer:
The boy must swim at an angle of 59°northwest to get to a position directly opposite his starting point.
Explanation:
To get to a point directly opposite his starting point, the boy must travel at an angle x, in a direction northwest of his starting point. The speed of the boy and the speed of the river current forms a right-angled triangle with an an opposite side of 1.8 m/a and a hypotenuse of 2.1 m/a having an angle x.
Sin x = opp/ hyp
Sin x = 1.8/2.1
x = sin⁻¹ (1.8/2.10
x = 58.99
x = 59°
Therefore, the boy must swim at an angle of 59° in the northwesterly direction to get to a position directly opposite his starting point.
suppose you make lemonade with one can lemonade concentrate mixed with four cans of water. What is the fraction of the final product that is water
Answer:
0.8 part of the product is water
Explanation:
Volume (or parts) of water = 4
Volume (or parts) of lemonade = 1
Total volume = 4 + 1 = 5
Fraction of water = Volume of water / Total volume = 4 / 5 = 0.8
Rectangular cube 3.2 m length 1.2 m in height and 5 m in length is split into two parts. The container has a movable airtight divider that divides its length as necessary. Part A has 58 moles of gas and part B has 165 moles of a gas.
Required:
At what length will the divider to equilibrium?
Answer:
The length the divider is to equilibrium from Part A = 1.30 m and from Part B = 3.70 m
Explanation:
Given that:
A rectangular cube with 3.2 m breadth, 1.2 m height and 5 m in length is splitted into two parts.
The diagrammatic expression for the above statement can be found in the attached diagram below.
The container has a movable airtight divider that divides its length as necessary.
Part A has 58 moles of gas
Part B has 165 moles of a gas.
Thus, the movable airtight divider will stop at a length where the pressure on it is equal on both sides.
i.e
[tex]\mathtt{P = P_A = P_B}[/tex]
Using the ideal gas equation,
PV = nRT
where, P,R,and T are constant.
Then :
[tex]\mathsf{\dfrac{V_A}{n_A}= \dfrac{V_B}{n_B}}[/tex]
[tex]\mathsf{\dfrac{L_A \times B \times H}{n_A}= \dfrac{L_B \times B \times H}{n_B}}[/tex] --- (1)
since Volume of a cube = L × B × H
From the question; the L = 5m
i,e
[tex]\mathsf{L_A +L_B}[/tex] = 5
[tex]\mathsf{L_A = 5 - L_B}[/tex]
From equation (1) , we divide both sides by (B × H)
Then :
[tex]\mathsf{\dfrac{L_A }{n_A}= \dfrac{L_B }{n_B}}[/tex]
[tex]\mathsf{\dfrac{5-L_B}{58}= \dfrac{L_B }{165}}[/tex]
By cross multiplying; we have:
165 ( 5 - [tex]\mathsf{L_B}[/tex] ) = 58 (
825 - 165[tex]\mathsf{L_B}[/tex] = 58
825 = 165[tex]\mathsf{L_B}[/tex] +58
825 = 223[tex]\mathsf{L_B}[/tex]
[tex]\mathsf{L_B}[/tex] = 825/223
[tex]\mathsf{L_B}[/tex] = 3.70 m
[tex]\mathsf{L_A = 5 - L_B}[/tex]
[tex]\mathsf{L_A = 5 - 3.70}[/tex]
[tex]\mathsf{ L_A}[/tex] = 1.30 m
The length the divider is to equilibrium from Part A = 1.30 m and from Part B = 3.70 m
Identify the compound that does NOT have hydrogen bonding.
A) CH3NH2
B) H2O
C) (CH3)3N
D) CH3OH
E) HF
Answer:
(CH3)3N
Explanation:
Hydrogen bonding can be called a type of intracellular force of the attraction. It is the force that occur between molecules. It is the bonding between the molecules and of hydrogen and electronegative items in the covalent bond. This is called the hydrogen donor. An electro-negative hydrogen atoms may be a hydrogen bonded. It is also called a hydrogen acceptor.
Thus in (CH3)3N, the hydrogen atoms becomes bonded with carbon. Carbon is not electronegative atoms. Thus it does not play as donor. Nitrogen is electronegative and play as hydrogen acceptor. But there is no presence of hydrogen acceptor. Thus there is no molecules that exhibit hydrogen molecules bonding.
[tex]\bold {(CH_3)_3N}[/tex] does not have hydrogen bonding because of the absence of electronegativity difference.
Hydrogen bond:
It is an inter-molecular bond. It is due to the difference in electronegativities of constituent atoms. This creates dipole in the atoms so, atoms start to attract each other.
In [tex]\bold {(CH_3)_3N}[/tex], the hydrogen atoms are bonded with carbon. The difference between the electronegativities Carbon and hydrogen is very less.
Therefore, [tex]\bold {(CH_3)_3N}[/tex] does not have hydrogen bonding because of the absence of electronegativity difference.
To know more about Hydrogen Bond,
https://brainly.com/question/3464712
0.25 L of aqueous solution contains 0.025g of HCLO4 (strong acid) what will be the Ph of the solution g
Answer:
The pH of the solution will be 3
Explanation:
The strength of acids is determined by their ability to dissociate into ions in aqueous solution. A strong acid is any compound capable of completely and irreversibly releasing protons or hydrogen ions, H⁺. That is, an acid is said to be strong if it is fully dissociated into hydrogen ions and anions in solution.
Being pH=- log [H⁺] or pH= - log [H₃O⁺] and being a strong acid, all the HClO₃ dissociates:
HClO₄ + H₂O → H₃O⁺ + ClO₄-
So: [HCLO₄]= [H₃O⁺]
The molar concentration is:
[tex]molar concentration=\frac{number of moles of solute}{volume solution}[/tex]
The molar mass of HClO₄ being 100 g / mole, then if 100 grams of the compound are present in 1 mole, 0.025 grams in how many moles are present?
[tex]moles of HClO_{4} =\frac{0.025 grams*1 mole}{100 grams}[/tex]
moles of HClO₄= 0.00025
Then:
[tex][HClO_{4}]=\frac{0.00025 moles}{0.25 L}[/tex]
[tex][HClO_{4}]=0.001 \frac{ moles}{ L}[/tex]
Being [HCLO₄]= [H₃O⁺]:
pH= - log 0.001
pH= 3
The pH of the solution will be 3
What is the rate constant of a reaction if rate = 1 x 10-2 (mol/L)/s, [A] is 2 M,
[B] is 3 M, m = 2, and n = 1?
Answer:
[tex]0.10 \text{ L$^2$mol$^{-2}$s$^{-1}$}[/tex]
Explanation:
The general formula for a rate law is
[tex]\text{rate} = k\text{[A]}^m \text{[B]}^{n}[/tex]
With your numbers, the rate law becomes
1.2 mol·L⁻¹s⁻¹ = k(2 mol·L⁻¹)²(3 mol·L⁻¹)¹ = k × 4 mol²L⁻² × 3 mol·L⁻¹
= 12k mol³L⁻³
[tex]\\ k = \dfrac{\text{1.2 mol $\cdot$ L$^{-1}$s$^{-1}$} }{12\text{ mol$^{3}$L}^{-3}} = \mathbf{0.10} \textbf{ L$\mathbf{^2}$mol$^{\mathbf{-2}}$s$^{\mathbf{-1}}$}[/tex]
Which of the following types of electromagnetic radiation have higher frequencies than visible light and which have shorter frequencies than visible light? Sort them accordingly. ltems (6 items) (Drag and drop into the appropriate area below)
a. Gamma rays
b. Infrared radiation
c. Ultraviolet liht
d. X-rays
e. Microwaves
f. Radio waves
Answer:
Higher frequency than visible light - Ultraviolet light, X-rays, and Gamma rays
Lower frequency than visible light - Infrared radiation, microwaves, and Radio waves
Explanation:
The frequencies of electromagnetic radiations vary according to their wavelengths. The relationship between the frequency and wavelength of the waves is expressed such that:
λ = c/f, where λ = wavelength, c = speed of light, and f = frequency.
Thus, there is an inverse relationship between the wavelength and the frequency of electromagnetic waves.
The order of the electromagnetic waves based on their frequency from the lowest to the highest is radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma-rays
Hence, electromagnetic waves with higher frequencies than visible light include ultraviolet light, X-rays, and Gamma rays while those with lower frequencies include Infrared radiation, microwaves, and Radio waves.
Answer:
need points
Explanation:
Come up with a definition for density
Density measures how tightly packed particles are.
If particles are tightly packed together, they will be more dense.
If they are loosely together, they will be less dense.
However, a common mistake is thinking that if something
is more dense it means that it's heavier.
However, that's not the case.
It has to do with how particles are packed in an object.
9
What might happen if acidic chemicals were emitted into
the air by factories? Choose the best answer.
A
The acid would destroy metallic elements in the air
B
The acid would be neutralized by bases within clouds
C
Acid rain might destroy ecosystems and farmland
D
Violent chemical reactions would take place within the
atmosphere
co search
O
BI
Increasing which factor will cause the gravitational force between two objects to decrease?
weights of the objects
distance between the objects
acceleration of the objects
masses of the objects
Answer:
B
Explanation:
Increasing distance between the objects factor will cause the gravitational force between two objects to decrease. Therefore, option B is correct.
What causes gravitational force to decrease?The gravitational force grows in proportion to the size of the masses . The gravitational force weakens rapidly as the distance between masses grows. Unless at least one of the objects has a lot of mass, detecting gravitational force is extremely difficult.
Gravity is affected by object size and distance between objects. Mass is a unit of measurement for the amount of matter in an object.
The force of gravity is proportional to the masses of the two objects and inversely proportional to the square of the distance between them. This means that the force of gravity increases with mass but decreases as the distance between objects increases.
Thus, option B is correct.
To learn more about the gravitational force, follow the link;
https://brainly.com/question/12528243
#SPJ6
Suppose a student completes an experiment with an average value of 2.9 mL and a calculated standard deviation of 0.71 mL. What is the minimum value within a 1 SD range of the average
Answer:
The correct answer is 2.2 mL.
Explanation:
Given:
Average: 2.9 mL
SD: 0.71 mL
We can define a 1 SD range in which the value of volume (in mL) will be comprised:
Volume (mL) = Average ± SD = (2.9 ± 0.7) mL
Maximum value= Average + SD= 2.9 + 0.7 mL = 3.6 mL
Minimum value= Average - SD = 2.9 - 0.7 mL = 2.2 mL
Thus, the minimum value within a 1 SD range of the average is 2.2 mL
The minimum value within 1 SD is 2.19 mL
The z score is used to determine by how many standard deviations the raw score is above or below the mean. The z score is given by:
[tex]z=\frac{x-\mu}{\sigma} \\\\where\ x\ is\ raw\ score, \mu=mean,\sigma=standard\ deviation[/tex]
Given that μ = 2.9 mL, σ = 0.71 mL; hence:
The minimum value within 1 SD range = μ ± σ = 2.9 ± 0.71 = (2.19, 3.61)
Therefore the minimum value within 1 SD is 2.19 mL
Find out more at: https://brainly.com/question/23907081
If 100-mL of 1.0 M Sr(OH)2 is added to 100 mL of 1.0 M HCl, the pH of the mixture would be _____. Group of answer choices
Answer:
pH = 13.7
Explanation:
A strong acid (HCl) reacts with a strong base Sr(OH)₂ producing water and a salt, thus:
2HCl + Sr(OH)₂ → 2H₂O + SrCl₂
To solve this problem, we need to find initial moles of both reactants and, with the chemical equation find limiting reactant and moles in excess to find pH as follows:
The initial moles of HCl and Sr(OH)₂ are:
100mL = 0.1L ₓ (1.0mol / L) = 0.100 moles of both HCl and Sr(OH)₂
As 2 moles of HCl reacts per mole of Sr(OH)₂, moles of Sr(OH)₂ that reacts with 0.100 moles of HCl are:
0.100 moles HCl ₓ (1 mol Sr(OH)₂ / 2 mol HCl) = 0.050 moles Sr(OH)₂
That means HCl is limiting reactant and after reaction will remain in solution:
0.100 mol - 0.050mol =
0.050 moles of Sr(OH)₂
Find pH:
1 mole of Sr(OH)₂ contains 2 moles of OH⁻, 0.050 moles contains 0.050×2 = 0.100 moles of OH⁻. In 200mL = 0.2L:, molar concentration of OH⁻ is:
0.100 moles / 0.2L =
[OH⁻] = 0.5M
As pOH of a solution is -log[OH⁻],
pOH = -log 0.5M
pOH = 0.301
And knowing:
pH = 14 - pOH
pH = 14 - 0.301
pH = 13.7For a particular reaction at 235.8 °C, ΔG=−936.92 kJ/mol , and ΔS=513.79 J/(mol⋅K) . Calculate ΔG for this reaction at −9.9 °C.
Answer:
-138.9 kJ/mol
Explanation:
Step 1: Convert 235.8°C to the Kelvin scale
We will use the following expression.
K = °C + 273.15 = 235.8°C + 273.15 = 509.0 K
Step 2: Calculate the standard enthalpy of reaction (ΔH°)
We will use the following expression.
ΔG° = ΔH° - T.ΔS°
ΔH° = ΔG° / T.ΔS°
ΔH° = (-936.92kJ/mol) / 509.0K × 0.51379 kJ/mol.K
ΔH° = -3.583 kJ (for 1 mole of balanced reaction)
Step 3: Convert -9.9°C to the Kelvin scale
K = °C + 273.15 = -9.9°C + 273.15 = 263.3 K
Step 4: Calculate ΔG° at 263.3 K
ΔG° = ΔH° - T.ΔS°
ΔG° = -3.583 kJ/mol - 263.3 K × 0.51379 kJ/mol.K
ΔG° = -138.9 kJ/mol
please help guys the question is
give reasons
a. we have to separate the mixture
b. All impure substances are not harmful.
c. A mixture of iron fillings and sand can be separated by using a magnet
d. A sentences "shake before well use" is written on the bottle of the medicine.
Answer:
(a )people separate mixtures in order to ger a specific substance that they need.