The magnetic field at the center of a 1 cm diameter loop is 2.5 mT. If a long straight wire carries the same current as the loop of wire, at what distance from the wire is the magnetic field 2.5 mT? A. 0.10 m B. 1.6x10-3 m C. 0.01 m D. 20 m

Answers

Answer 1

Answer:

B. 1.6 x 10⁻³ m

Explanation:

The magnetic field at the center of the loop is given by;

[tex]B = \frac{\mu_o I }{2R}[/tex]

Where;

μ₀ is the permeability of free space

I is the current in the loop

R is the radius of the circular loop

B is the magnetic field

Given;

diameter of the loop = 1cm

radius of the loop, r = 0.5 cm = 0.005 m

magnetic field, B = 2.5mT = 2.5 x 10⁻³ T

The current in the loop is calculated as;

[tex]I = \frac{2BR}{\mu_o} \\\\I = \frac{2*2.5*10^{-3}*0.005}{4\pi*10^{-7}} \\\\I = 19.89 \ A[/tex]

The magnetic at a distance from the long straight wire is calculated as;

[tex]B = \frac{\mu_o I}{2\pi d}[/tex]

where;

d is the distance from the wire;

[tex]d = \frac{\mu_o I}{2\pi B} \\\\d = \frac{4\pi *10^{-7} * 19.89}{2\pi *2.5*10^{-3}} \\\\d = 1.6 *10^{-3} \ m[/tex]

Therefore, the distance from the wire where the magnetic field is 2.5 mT is 1.6 x 10⁻³ m.

B. 1.6 x 10⁻³ m

Answer 2

This question involves the concepts of the magnetic field due to a loop and a  current-carrying wire and current.

A long straight wire carrying the same current as the loop of wire has a magnetic field of 2.5 mT at a distance of b "B. 1.5 x 10⁻³ m".

The magnetic field at the center of a loop of wire is given by the following formula:

[tex]B=\frac{\mu_o I}{2r}[/tex]

where,

B = Magnetic Field = 2.5 mT = 2.5 x 10⁻³ T

μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²

I = current = ?

r = radius = diameter/2 = 1 cm/2 = 0.5 cm = 0.005 m

Therefore,

[tex]I = \frac{(2.5\ x\ 10^{-3}\ T)(2)(0.005\ m)}{4\pi\ x\ 10^{-7}\ N/A^2}[/tex]

I = 19.9 A

Now, the magnetic field at a distance from the straight wire is given by the following formula:

[tex]B=\frac{\mu_o I}{2\pi R}[/tex]

where,

R = distance from wire = ?

Therefore,

[tex]R = \frac{(4\pi \ x \ 10^{-7}\ N/A^2)(19.9\ A)}{2\pi(2.5\ x\ 10^{-3}\ T)}[/tex]

R = 1.6 x 10⁻³ m

Learn more about the magnetic field here:

https://brainly.com/question/19542022?referrer=searchResults


Related Questions

which category would a person who has an IQ of 84 belong ?

Answers

answer: below average

How long will it take a spacecraft travelling at 99% the speed of light (gamma = 7) to reach

the star Sirius which is 8.6 light-years away according to people on Earth ? How long will it

take according to the crew of the ship?

Answers

Answer:

The time taken is  [tex]t = 2.739 *10^{8} \ s[/tex]

Explanation:

From the question we are told that

    The speed of the spacecraft is [tex]v = 0.99c[/tex]

    where c is the speed of light with value [tex]c = 3.0*10^{8} \ m/s[/tex]

    =>   [tex]v = 0.99 * 3.0 *10^{8 } = 2.97*10^{8}\ m/s[/tex]

    The distance of Sirius is [tex]d = 8.6 \ light-years = 8.6 * 9.461*10^{15}= 8.135*10^{16} \ m[/tex]

   

Generally the time taken is mathematically represented as

       [tex]t = \frac{d}{v}[/tex]

substituting values

      [tex]t = \frac{8.136 *10^{16}}{2.97 *10^{8}}[/tex]

      [tex]t = 2.739 *10^{8} \ s[/tex]

"Can we consider light wave as a single frequency wave? Either Yes or No, explain the reason of your answer. "

Answers

Answer:

Well, yes.

We can have an isolated light wave that is defined by only one frequency (and one wavelenght). But this is not a really common situation, most of the light that we can see in nature, is actually a composition of different waves with different frequencies.

Even if we have, for example, a red laser, the actual frequency of the light that comes from the laser may be in a range of frequencies, so the actual wave is a composition of different waves with really close frequencies.

An example of a light wave defined by only one frequency can be, for example, the photon that comes out of a change in energy of an electron.

Here we have a single photon, with a single frequency, that is modeled as a single frequency wave.

In a physics laboratory experiment, a coil with 250 turns enclosing an area of 14 cm2 is rotated in a time interval of 0.030 s from a position where its plane is perpendicular to the earth's magnetic field to a position where its plane is parallel to the field. The earth's magnetic field at the lab location is 5.0×10^−5 T.Required:a. What is the total magnetic flux through the coil before it is rotated? After it is rotated? b. What is the average emf induced in the coil?

Answers

Explanation:

Consider a loop of wire, which has an area of [tex]A=14 \mathrm{cm}^{2}[/tex] and [tex]N=250[/tex] turns, it is initially placed perpendicularly in the earth magnetic field. Then it is rotated from this position to a position where its plane is parallel to the field as shown in the following figure in [tex]\Delta t=0.030[/tex] s. Given that the earth's magnetic field at the position of the loop is [tex]B=5.0 \times 10^{-5} \mathrm{T}[/tex], the flux through the loop before it is rotated is,

[tex]\Phi_{B, i} &=B A \cos \left(\phi_{i}\right)=B A \cos \left(0^{\circ}\right[/tex]

[tex]=\left(5.0 \times 10^{-5} \mathrm{T}\right)\left(14 \times 10^{-4} \mathrm{m}^{2}\right)(1)[/tex]

[tex]=7.0 \times 10^{-8} \mathrm{Wb}[/tex]

[tex]\quad\left[\Phi_{B, i}=7.0 \times 10^{-8} \mathrm{Wb}\right[/tex]

after it is rotated, the angle between the area and the magnetic field is [tex]\phi=90^{\circ}[/tex] thus,

[tex]\Phi_{B, f}=B A \cos \left(\phi_{f}\right)=B A \cos \left(90^{\circ}\right)=0[/tex]

[tex]\qquad \Phi_{B, f}=0[/tex]

(b) The average magnitude of the emf induced in the coil equals the change in the flux divided by the time of this change, and multiplied by the number of turns, that is,

[tex]{\left|\mathcal{E}_{\mathrm{av}}\right|=N\left|\frac{\Phi_{B, f}-\Phi_{B, i}}{\Delta t}\right|}{=} & \frac{1.40 \times 10^{-5} \mathrm{Wb}}{0.030 \mathrm{s}}[/tex]

[tex]& 3.6 \times 10^{-4} \mathrm{V}=0.36 \mathrm{mV}[/tex]

[tex]\mathbb{E}=0.36 \mathrm{mV}[/tex]

(a) The initial and final flux through the coil is 1.75 × 10⁻⁵ Wb and 0 Wb

(b) The induced EMF in the coil is 0.583 mV

Flux and induced EMF:

Given that the coil has N = 250 turns

and an area of A = 14cm² = 1.4×10⁻³m².

It is rotated for a time period of Δt = 0.030s such that it is parallel with the earth's magnetic field that is B = 5×10⁻⁵T

(a) The flux passing through the coil is given by:

Ф = NBAcosθ

where θ is the angle between area vector and the magnetic field

The area vector is perpendicular to the plane of the coil.

So, initially, θ = 0°, as area vector and earth's magnetic field both are perpendicular to the plane of the coil

So the initial flux is:

Φ = NABcos0° = NAB

Ф = 250×1.4×10⁻³×5×10⁻⁵ Wb

Ф = 1.75 × 10⁻⁵ Wb

Finally, θ = 90°, and since cos90°, the final flux through the coil is 0

(b) The EMF induced is given by:

E = -ΔФ/Δt

E = -(0 - 1.75 × 10⁻⁵)/0.030

E = 0.583 × 10⁻³ V

E = 0.583 mV

Learn more about magnetic flux:

https://brainly.com/question/15359941?referrer=searchResults

A projectile is shot from the edge of a cliff 80 m above ground level with an initial speed of 60 m/sec at an angle of 30° with the horizontal. Determine the time taken by the projectile to hit the ground below.

Answers

Answer:

8 seconds

Explanation:

Answer:

Explanation:

Going up

Time taken to reach maximum height= usin∅/g

=3 secs

Maximum height= H+[(usin∅)²/2g]

=80+[(60sin30)²/20]

=125 meters

Coming Down

Maximum height= ½gt²

125= ½(10)(t²)

t=5 secs

A lab technician uses laser light with a wavelength of 650 nmnm to test a diffraction grating. When the grating is 42.0 cmcm from the screen, the first-order maxima appear 6.09 cmcm from the center of the pattern. How many lines per millimeter does this grating have?

Answers

Answer:

221 lines per millimetre

Explanation:

We know that for a diffraction grating, dsinθ =mλ where d = spacing between grating, θ = angle to maximum, m = order of maximum and λ = wavelength of light.

Since the grating is 42.0 cm from the screen and its first order maximum (m = 1) is at 6.09 cm from the center of the pattern,

tanθ = 6.09 cm/42.0 cm = 0.145

From trig ratios, cot²θ + 1 = cosec²θ

cosecθ = √((1/tanθ)² + 1) = √((1/0.145)² + 1) = √48.562 = 6.969

sinθ = 1/cosecθ = 1/6.969 = 0.1435

Also, sinθ = mλ/d at the first-order maximum, m = 1. So

sinθ = (1)λ/d = λ/d

Equating both expressions we have  

0.1435 = λ/d

d = λ/0.1435

Now, λ = 650 nm = 650 × 10⁻⁹ m

d = 650 × 10⁻⁹ m/0.1435

d = 4529.62 × 10⁻⁹ m per line

d = 4.52962 × 10⁻⁶ m per line

d = 0.00452962 × 10⁻³ m per line

d = 0.00452962 mm per line

Since d = width of grating/number of lines of grating

Then number of lines per millimetre = 1/grating spacing

= 1/0.00452962

= 220.77 lines per millimetre

≅ 221 lines per millimetre since we can only have a whole number of lines.

The place you get your hair cut has two nearly parallel mirrors 6.5 m apart. As you sit in the chair, your head is

Answers

Complete question is;

The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?

Answer:

13 m

Explanation:

We are given;

Distance between two nearly parallel mirrors; d = 6.5 m

Distance between the face and the nearer mirror; x = 3 m

Thus, the distance between the back-head and the mirror = 6.5 - 3 = 3.5m

Now, From the given values above and using the law of reflection, we can find the distance of the first reflection of the back of the head of the person in the rear mirror.

Thus;

Distance of the first reflection of the back of the head in the rear mirror from the object head is;

y' = 2y

y' = 2 × 3.5

y' = 7

The total distance of this image from the front mirror would be calculated as;

z = y' + x

z = 7 + 3

z = 10

Finally, the second reflection of this image will be 10 meters inside in the front mirror.

Thus, the total distance of the image of the back of the head in the front mirror from the person will be:

T.D = x + z

T.D = 3 + 10

T.D = 13m

B. CO
A wave has frequency of 2 Hz and a wave length of 30 cm. the velocity of the wave is
A. 60.0 ms
B. 6.0 ms
D. 0.6 ms​

Answers

Answer:

0.6 m/s

Explanation:

2Hz = 2^-1 = 2 /s

30cm = .3m

Velocity is in the units m/s, so multiplying wavelength in meters by the frequency will give you the velocity.

(.3m)*(2 /s) = 0.6 m/s

The answer is 0.6 ms

: A spaceship is traveling at the speed 2t 2 1 km/s (t is time in seconds). It is pointing directly away from earth and at time t 0 it is 1000 kilometers from earth. How far from earth is it at one minute from time t 0

Answers

Answer:

145060km

Explanation: Given that

speed = dx/dt = 2t^2 +1

integrate

x = 2/3t^3 + t + c (c is constant, x is in km, t is in second)

given that at t=0, x = 1000

so 1000 = 2/3 X (0)^3 + 0 + c

or c = 1000

So x = 2/3t^3 + t + 1000

for t = 1 min = 60s

x = 2/3 X 60^3 + 60 + 1000

x = 2/3×216000+ 1060

x = 144000+1060

= 145060km

At one minute, it will be 145060km far from the earth

What physical feature of a wave is related to the depth of the wave base? What is the difference between the wave base and still water level?

Answers

Answer:

physical feature of a wave is related to the depth of the wave base is The circular orbital motion

B. The wave base is the depth, and the still water level is the horizontal level

If you stood on a planet having a mass four times higher than Earth's mass, and a radius two times 70) lon longer than Earth's radius, you would weigh:________
A) four times more than you do on Earth.
B) two times less than you do on Earth.
C) the same as you do on Earth
D) two times more than you do on Earth.

Answers

CHECK COMPLETE QUESTION BELOW

you stood on a planet having a mass four times that of earth mass and a radius two times of earth radius , you would weigh?

A) four times more than you do on Earth.

B) two times less than you do on Earth.

C) the same as you do on Earth

D) two times more than you do on Earth

Answer:

OPTION C is correct

The same as you do on Earth

Explanation :

According to law of gravitation :

F=GMm/R^2......(a)

F= mg.....(b)

M= mass of earth

m = mass of the person

R = radius of the earth

From law of motion

Put equation b into equation a

mg=GMm/R^2

g=GMm/R^2

g=GM/R^2

We know from question a planet having a mass four times that of earth mass and a radius two times of earth radius if we substitute we have

m= 4M

r=(2R)^2=4R^2

g= G4M/4R^2

Then, 4in the denominator will cancel out the numerator we have

g= GM/R^2

Therefore, g remain the same

Figure (3) shows a car travelling along the route PQRST in 30 minutes. What is the average speed of the car in km/hour?

Answers

Answer:

60 km/hour.

Explanation:

We'll begin by calculating the total distance traveled by the car. This is illustrated below:

Total distance traveled = sum of distance between PQRST

Total distance = 10 + 5 + 10 + 5

Total distance = 30 km

Next, we shall convert 30 mins to hour. This can obtained as follow:

Recall:

60 mins = 1 hour

Therefore,

30 mins = 30/60 = 0.5 hour.

Finally, we shall determine the average speed of the car as follow:

Distance = 30 km

Time = 0.5 hour

Speed =?

Speed = distance /time

Speed = 30/0.5

Speed = 60 km/hour

Therefore, the speed of the car is 60 km/hour.

Scientists today learn about the world by _____. 1. using untested hypotheses to revise theories 2. observing, measuring, testing, and explaining their ideas 3. formulating conclusions without testing them 4. changing scientific laws

Answers

Answer:

Option 2 (observing, measuring, testing, and explaining their ideas) is the correct choice.

Explanation:

A traditional perception of such a scientist is those of an individual who performs experiments in some kind of a white coat. The reality of the situation is, a researcher can indeed be described as an individual interested in the comprehensive as well as a recorded review of the occurrences occurring in nature but perhaps not severely constrained to physics, chemistry as well as biology alone.

The other three choices have no relation to a particular task. So the option given here is just the right one.

At what rate must Uranium 235 undergo fission by neutron bombardment to generate energy at a rate of 100 W (1 W

Answers

Complete Question

At what rate must Uranium 235 undergo fission by neutron bombardment to generate energy at a rate of 100 W (1 W = 1 J/s)? Assume each fission reaction releases 200 MeV of energy.

Answer

a. Approximately [tex]5*10^{10}[/tex] fissions per second.

b. Approximately [tex]6*10^{12 }[/tex]fissions per second.

c. Approximately [tex]4*10^{11}[/tex] fissions per second.

d. Approximately [tex]3*10^{12}[/tex] fissions per second.

e. Approximately[tex]3*10^{14}[/tex] fissions per second.

Answer:

The correct option is  d

Explanation:

From the question we are told that

       The energy released by each fission reaction [tex]E = 200 \ MeV = 200 *10^{6} * 1.60 *10^{-19} =3.2*10^{-11} \ J /fission[/tex]

Thus to generated  [tex]100 \ J/s[/tex] i.e  (100 W  ) the rate of fission is  

              [tex]k = \frac{100}{3.2 *10^{-11} }[/tex]

              [tex]k =3*10^{12} fission\ per \ second[/tex]

An electron is trapped between two large parallel charged plates of a capacitive system. The plates are separated by a distance of 1 cm and there is vacuum in the region between the plates. The electron is initially found midway between the plates with a kinetic energy of 11.2 eV and with its velocity directed toward the negative plate. How close to the negative plate will the electron get if the potential difference between the plates is 100 V? (1 eV = 1.6 x 10-19 J)

Answers

Answer:

The electron will get at about 0.388 cm (about 4 mm) from the negative plate before stopping.

Explanation:

Recall that the Electric field is constant inside the parallel plates, and therefore the acceleration the electron feels is constant everywhere inside the parallel plates, so we can examine its motion using kinematics of a constantly accelerated particle. This constant acceleration is (based on Newton's 2nd Law:

[tex]F=m\,a\\q\,E=m\,a\\a=\frac{q\,E}{m}[/tex]

and since the electric field E in between parallel plates separated a distance d and under a potential difference [tex]\Delta V[/tex], is given by:

[tex]E=\frac{\Delta\,V}{d}[/tex]

then :

[tex]a=\frac{q\,\Delta V}{m\,d}[/tex]

We want to find when the particle reaches velocity zero via kinematics:

[tex]v=v_0-a\,t\\0=v_0-a\,t\\t=v_0/a[/tex]

We replace this time (t) in the kinematic equation for the particle displacement:

[tex]\Delta y=v_0\,(t)-\frac{1}{2} a\,t^2\\\Delta y=v_0\,(\frac{v_0}{a} )-\frac{a}{2} (\frac{v_0}{a} )^2\\\Delta y=\frac{1}{2} \frac{v_0^2}{a}[/tex]

Replacing the values with the information given, converting the distance d into meters (0.01 m), using [tex]\Delta V=100\,V[/tex], and the electron's kinetic energy:

[tex]\frac{1}{2} \,m\,v_0^2= (11.2)\,\, 1.6\,\,10^{-19}\,\,J[/tex]

we get:

[tex]\Delta\,y= \frac{1}{2} v_0^2\,\frac{m (0.01)}{q\,(100)} =11.2 (1.6\,\,10^{-19})\,\frac{0.01}{(1.6\,\,10^{-19})\,(100)}=\frac{11.2}{10000} \,meters=0.00112\,\,meters[/tex]Therefore, since the electron was initially at 0.5 cm (0.005 m) from the negative plate, the closest it gets to this plate is:

0.005 - 0.00112 m = 0.00388 m [or 0.388 cm]

What is the reason for the increase and decrease size of the moon and write down in a paragraph.

Answers

Answer:

The reason for the increase or decrease of the moon is due to the angular perception of the moon.

Explanation:

Also called lunar illusion, this phenomenon is due to the position in which the moon is, it can be at the zenith or on the horizon, both distances are different from each other with respect to the position of the person.

The zenith is the highest part of the sky and the horizon the lowest.

When there are landmarks such as trees, buildings or mountains on the horizon, the illusion of closeness is given and the illusion of distance is misinterpreted.

But when looking up at the sky as there is no reference point there will be a failure in the perception of size.

The A block, with negligible dimensions and weight P, is supported by the coordinate point (1.1/2) of the parabolic fixed grounded surface, from equation y = x^2/2 If the block is about to slide, what is the coefficient of friction between it and the surface; determine the force F tangent to the surface, which must be applied to the block to start the upward movement.

Answers

Answer:

μ = 1

F = P√2

Explanation:

The parabola equation is: y = ½ x².

The slope of the tangent is dy/dx = x.

The angle between the tangent and the x-axis is θ = tan⁻¹(x).

At x = 1, θ = 45°.

Draw a free body diagram of the block.  There are three forces:

Weight force P pulling down,

Normal force N pushing perpendicular to the surface,

and friction force Nμ pushing up tangential to the surface.

Sum of forces in the perpendicular direction:

∑F = ma

N − P cos 45° = 0

N = P cos 45°

Sum of forces in the tangential direction:

∑F = ma

Nμ − P sin 45° = 0

Nμ = P sin 45°

μ = P sin 45° / N

μ = tan 45°

μ = 1

Draw a new free body diagram.  This time, friction force points down tangential to the surface, and applied force F pushes up tangential to the surface.

Sum of forces in the tangential direction:

∑F = ma

F − Nμ − P sin 45° = 0

F = Nμ + P sin 45°

F = (P cos 45°) μ + P sin 45°

F = P√2

an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device

Answers

Answer: R=24.2Ω

Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:

P=V.i

P=R.i²

[tex]P=\frac{V^{2}}{R}[/tex]

The resistance of the system is:

[tex]P=\frac{V^{2}}{R}[/tex]

[tex]R=\frac{V^{2}}{P}[/tex]

[tex]R=\frac{110^{2}}{500}[/tex]

R = 24.2Ω

For the device, resistance is 24.2Ω.

Distinguish between physical and chemical changes. Include examples in your explanations.

Answers

Answer:

Chemical changes are recognized when a substance changes its properties permanently and it cannot be the same substance as before.

Instead the physical changes implies that if you can return to the same substance through a reverse process.

Explanation:

A chemical change is, by example, a combustion, if a sheet of paper burns, its result is ashes, the ashes cannot go back to being a sheet of paper because its properties changed, heat energy was generated that changed matter permanently.

A physical change, by example, is that of freezing water, the water becomes ice, but this can easily become water again if the temperature is increased, its properties do not change and the chemistry of the substance does not change.

A chemical change takes place when a chemical reaction takes place, while when a matter changes forms but not the chemical identity then a physical change takes place.  

A product or a new compound formation takes place from a chemical change as the rearrangement of atoms takes place to produce novel chemical bonds.  

• In a chemical change always a chemical reaction takes place.  

• Some of the chemical changes examples are souring milk, burning wood, digesting food, mixing acid and base, cooking food, etc.  

• In a physical change no new chemical species form.  

• The changing of the state of a pure substance between liquid, gas, or solid is a physical change as there is no change in the identity of the matter.  

• Some of the physical changes are melting of ice, tempering of steel, breaking a bottle, crumpling a sheet of aluminum foil, boiling water, and shredding paper.  

Thus, a new substance is formed during a chemical change, while a physical change does not give rise to a new substance.  

To know more about:

https://brainly.com/question/7279398

A rectangular conducting loop of wire is approximately half-way into a magnetic field B (out of the page) and is free to move. Suppose the magnetic field B begins to decrease rapidly in strength

Requried:
What happens to the loop?

1. The loop is pushed to the left, toward the magnetic field.
2. The loop doesn’t move.
3. The loop is pushed downward, towards the bottom of the page.
4. The loop will rotate.
5. The loop is pushed upward, towards the top of the page.
6. The loop is pushed to the right, away from the magnetic field

Answers

Answer:

. The loop is pushed to the right, away from the magnetic field

Explanation

This decrease in magnetic strength causes an opposing force that pushes the loop away from the field

Determine the orbital period (in hours) of an observation satellite in a circular orbit 1,787 km above Mars.

Answers

Answer:

T = 3.14 hours

Explanation:

We need to find the orbital period (in hours) of an observation satellite in a circular orbit 1,787 km above Mars.

We know that the radius of Mars is 3,389.5 km.

So, r = 1,787 + 3,389.5 = 5176.5 km

Using Kepler's law,

[tex]T^2=\dfrac{4\pi ^2}{GM}r^3[/tex]

M is mass of Mars, [tex]M=6.39\times 10^{23}\ kg[/tex]

So,

[tex]T^2=\dfrac{4\pi ^2}{6.67\times 10^{-11}\times 6.39\times 10^{23}}\times (5176.5 \times 10^3)^3\\\\T=\sqrt{\dfrac{4\pi^{2}}{6.67\times10^{-11}\times6.39\times10^{23}}\times(5176.5\times10^{3})^{3}}\\\\T=11334.98\ s[/tex]

or

T = 3.14 hours

So, the orbital period is 3.14 hours

What is the angle between a wire carrying an 8.40 A current and the 1.20 T field it is in, if 50.0 cm of the wire experiences a magnetic force of 2.55 N? ° (b) What is the force (in N) on the wire if it is rotated to make an angle of 90° with the field? N

Answers

Answer:

A. 30.38°

B 5.04N

Explanation:

Using

F= ILBsin theta

2 .55N= 8.4Ax 0.5mx 1.2T x sintheta

Theta = 30.38°

B. If theta is 90°

Then

F= 8.4Ax 0.5mx 1.2x sin 90°

F= 5.04N

The momentum of an electron is 1.75 times larger than the value computed non-relativistically. What is the speed of the electron

Answers

Answer:

Speed of the electron is 2.46 x 10^8 m/s

Explanation:

momentum of the electron before relativistic effect = [tex]M_{0} V[/tex]

where [tex]M_{0}[/tex] is the rest mass of the electron

V is the velocity of the electron.

under relativistic effect, the mass increases.

under relativistic effect, the new mass M will be

M = [tex]M_{0}/ \sqrt{1 - \beta ^{2} }[/tex]

where

[tex]\beta = V/c[/tex]

c  is the speed of light = 3 x 10^8 m/s

V is the speed with which the electron travels.

The new momentum will therefore be

==> [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]

It is stated that the relativistic momentum is 1.75 times the non-relativistic momentum. Equating, we have

1.75[tex]M_{0} V[/tex] = [tex]M_{0}V/ \sqrt{1 - \beta ^{2} }[/tex]

the equation reduces to

1.75 = [tex]1/ \sqrt{1 - \beta ^{2} }[/tex]

square both sides of the equation, we have

3.0625 = 1/[tex](1 - \beta ^{2} )[/tex]

3.0625 - 3.0625[tex]\beta ^{2}[/tex] = 1

2.0625 = 3.0625[tex]\beta ^{2}[/tex]

[tex]\beta ^{2}[/tex] = 0.67

β = 0.819

substitute for  [tex]\beta = V/c[/tex]

V/c = 0.819

V = c x 0.819

V = 3 x 10^8 x 0.819 = 2.46 x 10^8 m/s

A certain car traveling 33.0mph skids to a stop in 39m from the point where the brakes were applied. In approximately what distance would the car stop had it been going 66.0mph

Answers

Answer: 156.02 metre.

Explanation:

Give that a certain car traveling 33.0mph skids to a stop in 39m from the point where the brakes were applied.

Let us use third equation of motion,

V^2 = U^2 + 2as

Since the car is decelerating, V = 0

And acceleration a will be negative.

U = 33 mph

S = 39 m

Substitute both into the formula

0 = 33^2 - 2 × a × 39

0 = 1089 - 78a

78a = 1089

a = 1089 / 78

a = 13.96 m/h^2

If we assume that the car decelerate at the same rate.

the distance the car will stop had it been going 66.0mph will be achieved by using the same formula

V^2 = U^2 + 2as

0 = 66^2 - 2 × 13.96 × S

4356 = 27.92S

S = 4356 / 27.92

S = 156.02 m

Therefore, the car would stop at

156.02 m

An astronomer is measuring the electromagnetic radiation emitted by two stars, both of which are assumed to be perfect blackbody emitters. For each star she makes a plot of the radiation intensity per unit wavelength as a function of wavelength. She notices that the curve for star A has a maximum that occurs at a shorter wavelength than does the curve for star B. What can she conclude about the surface temperatures of the two stars

Answers

Answer:

Star A has a higher surface temperature than star B.

Explanation:

The effective temperature of a star can be determined by means of its spectrum and Wien's displacement law:

[tex]T = \frac{2.898x10^{-3} m. K}{\lambda max}[/tex] (1)

Where T is the effective temperature of the star and [tex]\lambda_{max}[/tex] is the maximum peak of emission.  

A body that is hot enough emits light as a consequence of its temperature. For example, if an iron bar is put in contact with fire, it will start to change colors as the temperature increase, until it gets to a blue color, that scenario is known as Wien's displacement law. Which establishes that the peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase and higher wavelengths as the temperature decreases.

Therefore, star A has a higher surface temperature than star B, as it is shown in equation 1 since T and [tex]\lambda max[/tex] are inversely proportional.

Each proton-proton cycle generates 26.7 MeV of energy. If 9.9 Watts are generated via by the proton-proton cycle, how many billion neutrinos are produced

Answers

Answer:

4.635 *10^12 Neutrinos

Explanation:

Here in this question, we are to determine the number of neutrinos in billions produced, given the power generated by the proton-proton cycle.

We proceed as follows;

In proton-proton cycle generates 26.7 MeV of energy and in this cycle two neutrinos are produced.

From the question, we are given that

Power P = 9.9 watts = 9.9 J/s

Watts is same as J/s

The number of proton-proton cycles required to generate E energy is N = E / E '

Where E ' = Energy generated in proton-proton cycle which is given as 26.7 Mev in the question

Converting Mev to J, we have

= 26.7 x1.6 x10 -13 J

To get the number N which is the number of proton-proton cycle required, we have;

N = 9.9 /(26.7 x1.6 x10^-13) = 2.32 * 10^12

Since we have two proton cycles( proton-proton), it automatically means 2 neutrinos will be produced.

Therefore number of neutrions produced = 2 x Number of proton-proton cycles = 2 * 2.32 * 10^12 = 4.635 * 10^12 neutrinos

Two automobiles are equipped with the same singlefrequency horn. When one is at rest and the other is moving toward the first at 20 m/s , the driver at rest hears a beat frequency of 9.0 Hz.

Requried:
What is the frequency the horns emit?

Answers

Answer: f ≈ 8.5Hz

Explanation: The phenomenon known as Doppler Shift is characterized as a change in frequency when one observer is stationary and the source emitting the frequency is moving or when both observer and source are moving.

For a source moving and a stationary observer, to determine the frequency:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

where:

[tex]f_{0}[/tex] is frequency of observer;

[tex]f_{s}[/tex] is frequency of source;

c is the constant speed of sound c = 340m/s;

[tex]v_{s}[/tex] is velocity of source;

Rearraging for frequency of source:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

[tex]f_{s} = f_{0}.\frac{c-v_{s}}{c}[/tex]

Replacing and calculating:

[tex]f_{s} = 9.(\frac{340-20}{340})[/tex]

[tex]f_{s} = 9.(0.9412)[/tex]

[tex]f_{s} =[/tex] 8.5

Frequency the horns emit is 8.5Hz.

You shine unpolarized light with intensity 52.0 W/m2 on an ideal polarizer, and then the light that emerges from this polarizer falls on a second ideal polarizer. The light that emerges from the second polarizer has intensity 15.0 W/m2. Find the intensity of the light that emerges from the first polarizer.

Answers

Answer:

The intensity of light from the first polarizer  is [tex]I_1 = 26 W/m^2[/tex]

Explanation:

  The intensity of the unpolarized light is  [tex]I_o = 52.0 \ W/m^2[/tex]

   

Generally the intensity of light that emerges from the first polarized light is

            [tex]I_1 = \frac{I_o}{2 }[/tex]

 substituting values

             [tex]I_1 = \frac{52. 0}{2 }[/tex]

             [tex]I_1 = 26 W/m^2[/tex]

Monochromatic light is incident on a pair of slits that are separated by 0.220 mm. The screen is 2.60 m away from the slits. (Assume the small-angle approximation is valid here.)
(a) If the distance between the central bright fringe and either of the adjacent bright fringes is 1.97 cm, find the wavelength of the incident light.
(b) At what angle does the next set of bright fringes appear?

Answers

Answer:

a

   [tex]\lambda = 1.667 nm[/tex]

b

     [tex]\theta = 0.8681^o[/tex]

Explanation:

From the question we are told that

   The distance of separation is [tex]d = 0.220 \ mm = 0.00022 \ m[/tex]

    The  is distance of the screen from the slit is  [tex]D = 2.60 \ m[/tex]

    The distance between the central bright fringe and either of the adjacent bright   [tex]y = 1.97 cm = 1.97 *10^{-2}\ m[/tex]

Generally  the condition for constructive interference is  

      [tex]d sin \tha(\theta ) = n \lambda[/tex]

From the question we are told that small-angle approximation is valid here.

So    [tex]sin (\theta ) = \theta[/tex]

=>        [tex]d \theta = n \lambda[/tex]

=>        [tex]\theta = \frac{n * \lambda }{d }[/tex]

Here n is the order of maxima and the value is  n =  1 because we are considering the central bright fringe and either of the adjacent bright fringes

Generally the distance between the central bright fringe and either of the adjacent bright  is mathematically represented as

         [tex]y = D * sin (\theta )[/tex]

From the question we are told that small-angle approximation is valid here.

So

       [tex]y = D * \theta[/tex]

=>   [tex]\theta = \frac{ y}{D}[/tex]

So

     [tex]\frac{n * \lambda }{d } = \frac{y}{D}[/tex]

     [tex]\lambda =\frac{d * y }{n * D}[/tex]

substituting values

       [tex]\lambda = \frac{0.00022 * 1.97*10^{-2} }{1 * 2.60 }[/tex]

        [tex]\lambda = 1.667 *10^{-6}[/tex]

        [tex]\lambda = 1.667 nm[/tex]

In the b part of the question we are considering the next set of bright fringe so  n=  2

    Hence

     [tex]dsin (\theta ) = n \lambda[/tex]

    [tex]\theta = sin^{-1}[\frac{ n * \lambda }{d} ][/tex]

    [tex]\theta = sin^{-1}[\frac{ 2 * 1667 *10^{-9}}{ 0.00022} ][/tex]

    [tex]\theta = 0.8681^o[/tex]

The starter motor of a car engine draws a current of 140 A from the battery. The copper wire to the motor is 4.20 mm in diameter and 1.2 m long. The starter motor runs for 0.760 s until the car engine starts.Required:a. How much charge passes through the starter motor? b. How far does an electron travel along the wire while the starter motor is on?(mm)

Answers

Answer:

(a)106.4C

b)0.5676mm

Explanation:

(a)To get the charge that have passed through the starter then The current will be multiplied by the duration

I= current

t= time taken

Q= required charge

Q= I*t = 140*0.760 = 106.C

(b) b. How far does an electron travel along the wire while the starter motor is on?(mm)

diameter of the conductor is 4.20 mm

But Radius= diameter/2= 4.20/2=

The radius of the conductor is 2.1mm, then if we convert to metre for consistency same then

radius of the conductor is 0.0021m.

We can now calculate the area of the conductor which is

A = π*r^2

= π*(0.0021)^2 = 13.85*10^-6 m^2

We can proceed to calculate the current density below

J = 140/13.85*10^-6 = 10108303A/m

According to the listed reference:

Where e= 1.6*10^-19

n= 8.46*10^28

Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 ) =0.0007468m/s=0 .7468 mm/s

Therefore , the distance traveled is:

x = v*t = 0.7468 * 0.760 = 0.5676mm

(a) The charge passes through the starter motor is 106.4C.

(b) An electron travel along the wire while the starter motor is on 0.5676mm.

Electron

Answer (a)

I= current

t= time taken

Q= required charge

Q= I*t

Q= 140*0.760

Q= 106.C

Answer (b)

The n electron travel along the wire while the starter motor is on:

Diameter of the conductor is 4.20 mm

Radius= diameter/2= 4.20/2

Radius =2.1mm

Radius of the conductor is 0.0021m.

A = π*r^2

A= π*(0.0021)^2

A= 13.85*10^-6 m^2

Where e= 1.6*10^-19

n= 8.46*10^28

Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 )

Vd  =0.0007468m/s

Vd =0 .7468 mm/s

The distance traveled is:

x = v*t

x= 0.7468 * 0.760

x = 0.5676mm

Learn more about "Electron":

https://brainly.com/question/1255220?referrer=searchResults

Other Questions
It requires work to _____. A. stretch a spring only B. compress a spring only C. stretch or compress a spring Can somebody help me please? Select the correct answer. Which phrase is a noun phrase in the given paragraph? Since childhood Jess has been interested in the art of storytelling. She would entertain her little brother and sister with tales of magic and adventure. She started writing stories almost as soon as she learned the alphabet. To write her stories, Jess relies on her colorful imagination. A. has been interested B. the art of storytelling C. would entertain D. started writing E. as soon as An isosceles triangle has a side that measures 12 inches. What is the length of the hypotenuse HELP PLEASE!! (math) please help me for the homework 34x+6=1+13x suppose you make lemonade with one can lemonade concentrate mixed with four cans of water. What is the fraction of the final product that is water What are some home remedies for a broken hand? What do California homeowners receive to protect equity when a court forces the sale of a house to pay for a judgment The nurse understands that the client who is undergoing induction therapy for leukemia needs additional instruction when the client makes which statement What is the main purpose of state legislatures?A. to provide legislative support for CongressB. to challenge the legality of federal lawsC. to control the legislation of local governmentsD. to make and pass laws at the state levelE. to provide financial support for the federal government Which Property of real numbers does this equation show? 4 x 1 = 4 What is 5 divided by 3,678 If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this? The two points on the coordinate plane represent Jane's house and her friend's house. Find the distance between the houses. Question 3 options: A) units B) units C) units D) units An example of Movement is what?Group of answer choicesMediaMountain RangesPlacesLocations I'm thinking of going to the Extra Book Fair this Saturday. I heard that you have alreadybeen there. Could you please tell me about some of the things I could do there or howI can get there? I know nothing about this fair. PLEASE HELP ME I WILL GIVE 5 STARS TO THE FIRST ONE WHO GETS THIS RIGHT ! The Battle of Hastings in 1066 was fought in ____?